source: trunk/source/processes/hadronic/models/incl/src/G4InclAblaCascadeInterface.cc@ 968

Last change on this file since 968 was 819, checked in by garnier, 17 years ago

import all except CVS

File size: 20.2 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4InclAblaCascadeInterface.cc,v 1.10 2007/12/10 16:31:55 gunter Exp $
27// Translation of INCL4.2/ABLA V3
28// Pekka Kaitaniemi, HIP (translation)
29// Christelle Schmidt, IPNL (fission code)
30// Alain Boudard, CEA (contact person INCL/ABLA)
31// Aatos Heikkinen, HIP (project coordination)
32
33//#define DEBUGINCL 1
34
35#include "G4InclAblaCascadeInterface.hh"
36#include "math.h"
37#include "G4GenericIon.hh"
38#include "CLHEP/Random/Random.h"
39
40G4InclAblaCascadeInterface::G4InclAblaCascadeInterface()
41{
42 hazard = new G4Hazard();
43 const G4long* table_entry = CLHEP::HepRandom::getTheSeeds(); // Get random seed from CLHEP.
44 hazard->ial = (*table_entry);
45
46 varntp = new G4VarNtp();
47 calincl = new G4Calincl();
48 ws = new G4Ws();
49 mat = new G4Mat();
50 incl = new G4Incl(hazard, calincl, ws, mat, varntp);
51
52 verboseLevel = 0;
53}
54
55G4InclAblaCascadeInterface::~G4InclAblaCascadeInterface()
56{
57 delete hazard;
58 delete varntp;
59 delete calincl;
60 delete ws;
61 delete mat;
62 delete incl;
63}
64
65G4HadFinalState* G4InclAblaCascadeInterface::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& theNucleus)
66{
67 G4int maxTries = 200;
68
69 G4int particleI, n = 0;
70
71 G4int bulletType = 0;
72
73 // Print diagnostic messages: 0 = silent, 1 and 2 = verbose
74 verboseLevel = 0;
75
76 // Increase the event number:
77 eventNumber++;
78
79 if (verboseLevel > 1) {
80 G4cout << " >>> G4InclAblaCascadeInterface::ApplyYourself called" << G4endl;
81 }
82
83 if(verboseLevel > 1) {
84 G4cout <<"G4InclAblaCascadeInterface: Now processing INCL4 event number:" << eventNumber << G4endl;
85 }
86
87 // INCL4 needs the energy in units MeV
88 G4double bulletE = aTrack.GetKineticEnergy() * MeV;
89
90#ifdef DEBUGINCL
91 G4cout <<"Bullet energy = " << bulletE / MeV << G4endl;
92#endif
93
94 G4double targetA = theNucleus.GetN();
95 G4double targetZ = theNucleus.GetZ();
96
97 G4double eKin;
98 G4double momx = 0.0, momy = 0.0, momz = 0.0;
99 G4DynamicParticle *cascadeParticle = 0;
100 G4ParticleDefinition *aParticleDefinition = 0;
101
102 // INCL assumes the projectile particle is going in the direction of
103 // the Z-axis. Here we construct proper rotation to convert the
104 // momentum vectors of the outcoming particles to the original
105 // coordinate system.
106 G4LorentzVector projectileMomentum = aTrack.Get4Momentum();
107 G4LorentzRotation toZ;
108 toZ.rotateZ(-projectileMomentum.phi());
109 toZ.rotateY(-projectileMomentum.theta());
110 G4LorentzRotation toLabFrame = toZ.inverse();
111
112 theResult.Clear(); // Make sure the output data structure is clean.
113
114 // Map Geant4 particle types to corresponding INCL4 types.
115 enum bulletParticleType {nucleus = 0, proton = 1, neutron = 2, pionPlus = 3, pionZero = 4,
116 pionMinus = 5, deuteron = 6, triton = 7, he3 = 8, he4 = 9};
117
118 // Coding particles for use with INCL4 and ABLA
119 if (aTrack.GetDefinition() == G4Proton::Proton() ) bulletType = proton;
120 if (aTrack.GetDefinition() == G4Neutron::Neutron() ) bulletType = neutron;
121 if (aTrack.GetDefinition() == G4PionPlus::PionPlus() ) bulletType = pionPlus;
122 if (aTrack.GetDefinition() == G4PionMinus::PionMinus() ) bulletType = pionMinus;
123 if (aTrack.GetDefinition() == G4PionZero::PionZero() ) bulletType = pionZero;
124
125#ifdef DEBUGINCL
126 G4int baryonBullet = 0, chargeBullet = 0;
127 if(bulletType == proton || bulletType == neutron) baryonBullet = 1;
128 if(bulletType == proton || bulletType == pionPlus) chargeBullet = 1;
129 if(bulletType == pionMinus) chargeBullet = -1;
130 G4int baryonNumber = int(std::floor(targetA)) + baryonBullet;
131 G4int chargeNumber = int(std::floor(targetZ)) + chargeBullet;
132 G4double mass = aTrack.GetDefinition()->GetPDGMass();
133 G4double amass = theNucleus.AtomicMass(targetA, targetZ);
134 G4double eKinSum = bulletE;
135 G4LorentzVector labv = G4LorentzVector(0.0, 0.0, std::sqrt(bulletE*(bulletE + 2.*mass)), bulletE + mass + amass);
136 G4LorentzVector labvA = G4LorentzVector(0.0, 0.0, 0.0, 0.0);
137 G4cout <<"Energy in the beginning = " << labv.e() / MeV << G4endl;
138#endif
139
140 for(int i = 0; i < 15; i++) {
141 calincl->f[i] = 0.0; // Initialize INCL input data
142 }
143
144 // Check wheter the input is acceptable.
145 if((bulletType != 0) && ((targetA != 1) && (targetZ != 1))) {
146 calincl->f[0] = targetA; // Target mass number
147 calincl->f[1] = targetZ; // Charge number
148 calincl->f[6] = bulletType; // Type
149 calincl->f[2] = bulletE; // Energy [MeV]
150 calincl->f[5] = 1.0; // Time scaling
151 calincl->f[4] = 45.0; // Nuclear potential
152
153 ws->nosurf = -2; // Nucleus surface, -2 = Woods-Saxon
154 ws->xfoisa = 8;
155 ws->npaulstr = 0;
156
157 int nTries = 0;
158 varntp->ntrack = 0;
159
160 mat->nbmat = 1;
161 mat->amat[0] = int(calincl->f[0]);
162 mat->zmat[0] = int(calincl->f[1]);
163
164 incl->initIncl(true);
165
166 while((varntp->ntrack <= 0) && (nTries < maxTries)) { // Loop until we produce real cascade
167 nTries++;
168 if(verboseLevel > 1) {
169 G4cout <<"G4InclAblaCascadeInterface: Try number = " << nTries << G4endl;
170 }
171 incl->processEventInclAbla(eventNumber);
172
173 if(verboseLevel > 1) {
174 G4cout <<"G4InclAblaCascadeInterface: number of tracks = " << varntp->ntrack <<G4endl;
175 }
176 }
177
178 if(verboseLevel > 1) {
179 /**
180 * Diagnostic output
181 */
182 G4cout <<"G4InclAblaCascadeInterface: Bullet type: " << bulletType << G4endl;
183 G4cout <<"G4Incl4AblaCascadeInterface: Bullet energy: " << bulletE << " MeV" << G4endl;
184
185 G4cout <<"G4InclAblaCascadeInterface: Target A: " << targetA << G4endl;
186 G4cout <<"G4InclAblaCascadeInterface: Target Z: " << targetZ << G4endl;
187
188 if(verboseLevel > 3) {
189 diagdata <<"G4InclAblaCascadeInterface: Bullet type: " << bulletType << G4endl;
190 diagdata <<"G4InclAblaCascadeInterface: Bullet energy: " << bulletE << " MeV" << G4endl;
191
192 diagdata <<"G4InclAblaCascadeInterface: Target A: " << targetA << G4endl;
193 diagdata <<"G4InclAblaCascadeInterface: Target Z: " << targetZ << G4endl;
194 }
195
196 for(particleI = 0; particleI < varntp->ntrack; particleI++) {
197 G4cout << n << " " << calincl->f[6] << " " << calincl->f[2] << " ";
198 G4cout << varntp->massini << " " << varntp->mzini << " ";
199 G4cout << varntp->exini << " " << varntp->mulncasc << " " << varntp->mulnevap << " " << varntp->mulntot << " ";
200 G4cout << varntp->bimpact << " " << varntp->jremn << " " << varntp->kfis << " " << varntp->estfis << " ";
201 G4cout << varntp->izfis << " " << varntp->iafis << " " << varntp->ntrack << " " << varntp->itypcasc[particleI] << " ";
202 G4cout << varntp->avv[particleI] << " " << varntp->zvv[particleI] << " " << varntp->enerj[particleI] << " ";
203 G4cout << varntp->plab[particleI] << " " << varntp->tetlab[particleI] << " " << varntp->philab[particleI] << G4endl;
204 // For diagnostic output
205 if(verboseLevel > 3) {
206 diagdata << n << " " << calincl->f[6] << " " << calincl->f[2] << " ";
207 diagdata << varntp->massini << " " << varntp->mzini << " ";
208 diagdata << varntp->exini << " " << varntp->mulncasc << " " << varntp->mulnevap << " " << varntp->mulntot << " ";
209 diagdata << varntp->bimpact << " " << varntp->jremn << " " << varntp->kfis << " " << varntp->estfis << " ";
210 diagdata << varntp->izfis << " " << varntp->iafis << " " << varntp->ntrack << " ";
211 diagdata << varntp->itypcasc[particleI] << " ";
212 diagdata << varntp->avv[particleI] << " " << varntp->zvv[particleI] << " " << varntp->enerj[particleI] << " ";
213 diagdata << varntp->plab[particleI] << " " << varntp->tetlab[particleI] << " " << varntp->philab[particleI] << G4endl;
214 }
215 }
216 }
217
218 // Check whether a valid cascade was produced.
219 // If not return the original bullet particle with the same momentum.
220 if(varntp->ntrack <= 0) {
221 if(verboseLevel > 1) {
222 G4cout <<"WARNING G4InclAblaCascadeInterface: No cascade. Returning original particle with original momentum." << G4endl;
223 G4cout <<"\t Reached maximum trials of 200 to produce inelastic scattering." << G4endl;
224 }
225
226 theResult.SetStatusChange(stopAndKill);
227
228 if(bulletType == proton) {
229 aParticleDefinition = G4Proton::ProtonDefinition();
230 }
231 if(bulletType == neutron) {
232 aParticleDefinition = G4Neutron::NeutronDefinition();
233 }
234 if(bulletType == pionPlus) {
235 aParticleDefinition = G4PionPlus::PionPlusDefinition();
236 }
237 if(bulletType == pionZero) {
238 aParticleDefinition = G4PionZero::PionZeroDefinition();
239 }
240 if(bulletType == pionMinus) {
241 aParticleDefinition = G4PionMinus::PionMinusDefinition();
242 }
243
244 cascadeParticle = new G4DynamicParticle();
245 cascadeParticle->SetDefinition(aParticleDefinition);
246 cascadeParticle->Set4Momentum(aTrack.Get4Momentum());
247 theResult.AddSecondary(cascadeParticle);
248 }
249
250 // Convert INCL4 output to Geant4 compatible data structures.
251 // Elementary particles are converted to G4DynamicParticle.
252 theResult.SetStatusChange(stopAndKill);
253
254#ifdef DEBUGINCL
255 G4cout << "E [MeV]" << std::setw(12)
256 << " Ekin [MeV]" << std::setw(12)
257 << "Px [MeV]" << std::setw(12)
258 << " Py [MeV]" << std::setw(12)
259 << "Pz [MeV]" << std::setw(12)
260 << "Pt [MeV]" << std::setw(12)
261 << "A" << std::setw(12)
262 << "Z" << G4endl;
263#endif
264
265 for(particleI = 0; particleI < varntp->ntrack; particleI++) { // Loop through the INCL4+ABLA output.
266 // Get energy/momentum and construct momentum vector in INCL4 coordinates.
267 momx = varntp->plab[particleI]*std::sin(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::cos(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV;
268 momy = varntp->plab[particleI]*std::sin(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::sin(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV;
269 momz = varntp->plab[particleI]*std::cos(varntp->tetlab[particleI]*CLHEP::pi/180.0)*MeV;
270
271 eKin = varntp->enerj[particleI] * MeV;
272
273 G4ThreeVector momDirection(momx, momy, momz); // Direction of the particle.
274 momDirection = momDirection.unit();
275 if(verboseLevel > 2) {
276 G4cout <<"G4InclAblaCascadeInterface: " << G4endl;
277 G4cout <<"A = " << varntp->avv[particleI] << " Z = " << varntp->zvv[particleI] << G4endl;
278 G4cout <<"eKin = " << eKin << " MeV" << G4endl;
279 G4cout <<"px = " << momDirection.x() << " py = " << momDirection.y() <<" pz = " << momDirection.z() << G4endl;
280 }
281
282 G4int particleIdentified = 0; // Check particle ID.
283
284 if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 1)) { // Proton
285 cascadeParticle =
286 new G4DynamicParticle(G4Proton::ProtonDefinition(), momDirection, eKin);
287 particleIdentified++;
288#ifdef DEBUGINCL
289 baryonNumber--;
290 chargeNumber--;
291#endif
292 }
293
294 if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 0)) { // Neutron
295 cascadeParticle =
296 new G4DynamicParticle(G4Neutron::NeutronDefinition(), momDirection, eKin);
297 particleIdentified++;
298#ifdef DEBUGINCL
299 baryonNumber--;
300#endif
301 }
302
303 if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 1)) { // PionPlus
304 cascadeParticle =
305 new G4DynamicParticle(G4PionPlus::PionPlusDefinition(), momDirection, eKin);
306 particleIdentified++;
307#ifdef DEBUGINCL
308 chargeNumber--;
309#endif
310 }
311
312 if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 0)) { // PionZero
313 cascadeParticle =
314 new G4DynamicParticle(G4PionZero::PionZeroDefinition(), momDirection, eKin);
315 particleIdentified++;
316 }
317
318 if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == -1)) { // PionMinus
319 cascadeParticle =
320 new G4DynamicParticle(G4PionMinus::PionMinusDefinition(), momDirection, eKin);
321 particleIdentified++;
322#ifdef DEBUGINCL
323 chargeNumber++;
324#endif
325 }
326
327 if((varntp->avv[particleI] > 1) && (varntp->zvv[particleI] >= 1)) { // Nucleus fragment
328 G4ParticleDefinition * aIonDef = 0;
329 G4ParticleTable *theTableOfParticles = G4ParticleTable::GetParticleTable();
330
331 G4int A = G4int(varntp->avv[particleI]);
332 G4int Z = G4int(varntp->zvv[particleI]);
333 G4double excitationE = G4double(varntp->exini) * MeV;
334
335 if(verboseLevel > 1) {
336 G4cout <<"Finding ion: A = " << A << " Z = " << Z << " E* = " << excitationE/MeV << G4endl;
337 }
338 aIonDef = theTableOfParticles->GetIon(Z, A, excitationE);
339
340 if(aIonDef == 0) {
341 if(verboseLevel > 1) {
342 G4cout <<"G4InclAblaCascadeInterface: " << G4endl;
343 G4cout <<"FATAL ERROR: aIonDef = 0" << G4endl;
344 G4cout <<"A = " << A << " Z = " << Z << " E* = " << excitationE << G4endl;
345 }
346 }
347
348 if(aIonDef != 0) { // If the ion was identified add it to output.
349 cascadeParticle =
350 new G4DynamicParticle(aIonDef, momDirection, eKin);
351 particleIdentified++;
352#ifdef DEBUGINCL
353 baryonNumber = baryonNumber - A;
354 chargeNumber = chargeNumber - Z;
355#endif
356 }
357 }
358
359 if(particleIdentified == 1) { // Particle identified properly.
360 cascadeParticle->Set4Momentum(cascadeParticle->Get4Momentum()*=toLabFrame);
361#ifdef DEBUGINCL
362 G4ParticleDefinition *pd = cascadeParticle->GetDefinition();
363 G4LorentzVector fm = cascadeParticle->Get4Momentum();
364 G4ThreeVector mom = cascadeParticle->GetMomentum();
365 G4double m = pd->GetPDGMass();
366 G4double p = mom.mag();
367 labv -= fm;
368 if(varntp->avv[particleI] > 1) {
369 labvA += fm;
370 }
371 G4double px = mom.x() * MeV;
372 G4double py = mom.y() * MeV;
373 G4double pz = mom.z() * MeV;
374 G4double pt = std::sqrt(px*px+py*py);
375 G4double e = fm.e();
376 eKinSum -= cascadeParticle->GetKineticEnergy() * MeV;
377 G4double exE;
378 if(varntp->avv[particleI] > 1) {
379 exE = varntp->exini;
380 }
381 else {
382 exE = 0.0;
383 }
384 G4cout << fm.e() / MeV
385 << std::setw(12) << cascadeParticle->GetKineticEnergy() / MeV
386 << std::setw(12) << mom.x() / MeV
387 << std::setw(12) << mom.y() / MeV
388 << std::setw(12) << mom.z() / MeV
389 << std::setw(12) << pt / MeV
390 << std::setw(12) << varntp->avv[particleI]
391 << std::setw(12) << varntp->zvv[particleI] << G4endl;
392#endif
393 theResult.AddSecondary(cascadeParticle); // Put data into G4HadFinalState.
394 }
395 else { // Particle identification failed.
396 if(particleIdentified > 1) { // Particle was identified as more than one particle type.
397 if(verboseLevel > 1) {
398 G4cout <<"G4InclAblaCascadeInterface: One outcoming particle was identified as";
399 G4cout <<"more than one particle type. This is probably due to a bug in the interface." << G4endl;
400 G4cout <<"Particle A:" << varntp->avv[particleI] << "Z: " << varntp->zvv[particleI] << G4endl;
401 G4cout << "(particleIdentified =" << particleIdentified << ")" << G4endl;
402 }
403 }
404 }
405 }
406
407#ifdef DEBUGINCL
408 G4cout <<"--------------------------------------------------------------------------------" << G4endl;
409 G4double pt = std::sqrt(std::pow(labv.x(), 2) + std::pow(labv.y(), 2));
410 G4double ptA = std::sqrt(std::pow(labvA.x(), 2) + std::pow(labvA.y(), 2));
411 G4cout << labv.e() / MeV << std::setw(12)
412 << eKinSum / MeV << std::setw(12)
413 << labv.x() / MeV << std::setw(12)
414 << labv.y() / MeV << std::setw(12)
415 << labv.z() / MeV << std::setw(12)
416 << pt / MeV << std::setw(12)
417 << baryonNumber << std::setw(12)
418 << chargeNumber << " totals" << G4endl;
419 G4cout << " - " << std::setw(12)
420 << " - " << std::setw(12)
421 << labvA.x() / MeV << std::setw(12)
422 << labvA.y() / MeV << std::setw(12)
423 << labvA.z() / MeV << std::setw(12)
424 << ptA / MeV << std::setw(12)
425 << " - " << std::setw(12) << " - " << " totals ABLA" << G4endl;
426 G4cout << G4endl;
427
428 if(verboseLevel > 3) {
429 if(baryonNumber != 0) {
430 G4cout <<"WARNING G4InclCascadeInterface: Baryon number conservation violated." << G4endl;
431 G4cout <<"Baryon number balance after the event: " << baryonNumber << G4endl;
432 if(baryonNumber < 0) {
433 G4cout <<"Too many baryons produced." << G4endl;
434 } else {
435 G4cout <<"Too few baryons produced." << G4endl;
436 }
437 }
438 }
439#endif
440
441 varntp->ntrack = 0; // Clean up the number of generated particles in the event.
442 }
443 /**
444 * Report unsupported features.
445 * (Check bullet, target, energy range)
446 */
447 else { // If the bullet type was not recognized by the interface, it will be returned back without any interaction.
448 theResult.SetStatusChange(stopAndKill);
449
450 G4ParticleTable *theTableOfParticles = G4ParticleTable::GetParticleTable();
451 cascadeParticle = new G4DynamicParticle(theTableOfParticles->FindParticle(aTrack.GetDefinition()), aTrack.Get4Momentum());
452
453 theResult.AddSecondary(cascadeParticle);
454
455 if(verboseLevel > 1) {
456 G4cout <<"ERROR G4InclAblaCascadeInterface: Processing event number (internal) failed " << eventNumber << G4endl;
457 }
458 if(verboseLevel > 3) {
459 diagdata <<"ERROR G4InclAblaCascadeInterface: Error processing event number (internal) failed " << eventNumber << G4endl;
460 }
461
462 if(bulletType == 0) {
463 if(verboseLevel > 1) {
464 G4cout <<"G4InclAblaCascadeInterface: Unknown bullet type" << G4endl;
465 G4cout <<"Bullet particle name: " << cascadeParticle->GetDefinition()->GetParticleName() << G4endl;
466 }
467 if(verboseLevel > 3) {
468 diagdata <<"G4InclAblaCascadeInterface: Unknown bullet type" << G4endl;
469 diagdata <<"Bullet particle name: " << cascadeParticle->GetDefinition()->GetParticleName() << G4endl;
470 }
471 }
472
473 if((targetA == 1) && (targetZ == 1)) { // Unsupported target
474 if(verboseLevel > 1) {
475 G4cout <<"Unsupported target: " << G4endl;
476 G4cout <<"Target A: " << targetA << G4endl;
477 G4cout <<"TargetZ: " << targetZ << G4endl;
478 }
479 if(verboseLevel > 3) {
480 diagdata <<"Unsupported target: " << G4endl;
481 diagdata <<"Target A: " << targetA << G4endl;
482 diagdata <<"TargetZ: " << targetZ << G4endl;
483 }
484 }
485
486 if(bulletE < 100) { // INCL does not support E < 100 MeV.
487 if(verboseLevel > 1) {
488 G4cout <<"Unsupported bullet energy: " << bulletE << " MeV. (Lower limit is 100 MeV)." << G4endl;
489 G4cout <<"WARNING: Returning the original bullet with original energy back to Geant4." << G4endl;
490 }
491 if(verboseLevel > 3) {
492 diagdata <<"Unsupported bullet energy: " << bulletE << " MeV. (Lower limit is 100 MeV)." << G4endl;
493 }
494 }
495
496 if(verboseLevel > 3) {
497 diagdata <<"WARNING: returning the original bullet with original energy back to Geant4." << G4endl;
498 }
499 }
500
501 return &theResult;
502}
503
504G4ReactionProductVector* G4InclAblaCascadeInterface::Propagate(G4KineticTrackVector* , G4V3DNucleus* ) {
505 return 0;
506}
507
508
Note: See TracBrowser for help on using the repository browser.