source: trunk/source/processes/hadronic/models/incl/src/G4InclLightIonInterface.cc@ 1357

Last change on this file since 1357 was 1347, checked in by garnier, 15 years ago

geant4 tag 9.4

File size: 29.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4InclLightIonInterface.cc,v 1.15 2010/11/17 20:19:09 kaitanie Exp $
27// Translation of INCL4.2/ABLA V3
28// Pekka Kaitaniemi, HIP (translation)
29// Christelle Schmidt, IPNL (fission code)
30// Alain Boudard, CEA (contact person INCL/ABLA)
31// Aatos Heikkinen, HIP (project coordination)
32
33#include <vector>
34
35#include "G4InclLightIonInterface.hh"
36#include "G4FermiBreakUp.hh"
37#include "math.h"
38#include "G4GenericIon.hh"
39#include "CLHEP/Random/Random.h"
40
41G4InclLightIonInterface::G4InclLightIonInterface()
42{
43 hazard = new G4Hazard();
44
45 const G4long* table_entry = CLHEP::HepRandom::getTheSeeds(); // Get random seed from CLHEP.
46 hazard->ial = (*table_entry);
47
48 theExcitationHandler = new G4ExcitationHandler;
49 thePrecoModel = new G4PreCompoundModel(theExcitationHandler);
50
51 varntp = new G4VarNtp();
52 calincl = 0;
53 ws = new G4Ws();
54 mat = new G4Mat();
55 incl = new G4Incl(hazard, calincl, ws, mat, varntp);
56 useProjectileSpectator = true;
57 useFermiBreakup = true;
58 incl->setUseProjectileSpectators(useProjectileSpectator);
59 if(!getenv("G4INCLABLANOFERMIBREAKUP")) { // Use Fermi Break-up by default if it is NOT explicitly disabled
60 incl->setUseFermiBreakUp(true);
61 useFermiBreakup = true;
62 }
63 verboseLevel = 0;
64 if(getenv("G4INCLVERBOSE")) {
65 verboseLevel = 1;
66 }
67}
68
69G4InclLightIonInterface::~G4InclLightIonInterface()
70{
71 delete thePrecoModel;
72 delete theExcitationHandler;
73
74 delete hazard;
75 delete varntp;
76 delete calincl;
77 delete ws;
78 delete mat;
79 delete incl;
80}
81
82G4HadFinalState* G4InclLightIonInterface::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& theNucleus)
83{
84 // const G4bool useFermiBreakup = false;
85 G4int maxTries = 200;
86
87 G4int particleI;
88
89 G4int baryonNumberBalanceInINCL = 0;
90 G4int chargeNumberBalanceInINCL = 0;
91
92 G4ParticleTable *theTableOfParticles = G4ParticleTable::GetParticleTable();
93
94 // Increase the event number:
95 eventNumber++;
96
97 // Clean up the INCL input
98 if(calincl != 0) {
99 delete calincl;
100 calincl = 0;
101 }
102
103 if (verboseLevel > 1) {
104 G4cout << " >>> G4InclLightIonInterface::ApplyYourself called" << G4endl;
105 }
106
107 if(verboseLevel > 1) {
108 G4cout <<"G4InclLightIonInterface: Now processing INCL4 event number:" << eventNumber << G4endl;
109 }
110
111 // Inverse kinematics for targets with Z = 1 and A = 1
112 // if(false) {
113 G4LorentzRotation toBreit = aTrack.Get4Momentum().boostVector();
114
115 if(theNucleus.GetZ_asInt() == 1 && theNucleus.GetA_asInt() == 1 && G4InclInput::canUseInverseKinematics(aTrack, theNucleus)) {
116 G4ParticleDefinition *oldTargetDef = theTableOfParticles->GetIon(theNucleus.GetA_asInt(), theNucleus.GetZ_asInt(), 0.0);
117 const G4ParticleDefinition *oldProjectileDef = aTrack.GetDefinition();
118
119 if(oldTargetDef != 0 && oldProjectileDef != 0) {
120 G4int oldTargetA = oldTargetDef->GetAtomicMass();
121 G4int newTargetA = oldProjectileDef->GetAtomicMass();
122 G4int newTargetZ = oldProjectileDef->GetAtomicNumber();
123
124 if(newTargetA > 0 && newTargetZ > 0) {
125 G4Nucleus swappedTarget(oldProjectileDef->GetAtomicMass(), oldProjectileDef->GetAtomicNumber());
126
127 // G4cout <<"Original projectile kinE = " << aTrack.GetKineticEnergy() / MeV << G4endl;
128
129 // We need the same energy/nucleon.
130 G4double projectileE = ((aTrack.GetKineticEnergy() / MeV) / newTargetA) * oldTargetA * MeV;
131
132 // G4cout <<"projectileE = " << projectileE << G4endl;
133 G4DynamicParticle swappedProjectileParticle(oldTargetDef, G4ThreeVector(0.0, 0.0, 1.0), projectileE);
134 const G4LorentzVector swapped4Momentum = (swappedProjectileParticle.Get4Momentum()*=toBreit);
135 swappedProjectileParticle.Set4Momentum(swapped4Momentum);
136 const G4HadProjectile swappedProjectile(swappedProjectileParticle);
137 // G4cout <<"New projectile kinE = " << swappedProjectile.GetKineticEnergy() / MeV << G4endl;
138 calincl = new G4InclInput(swappedProjectile, swappedTarget, true);
139 } else {
140 G4cout <<"Badly defined target after swapping. Falling back to normal (non-swapped) mode." << G4endl;
141 calincl = new G4InclInput(aTrack, theNucleus, false);
142 }
143 }
144 } else {
145 calincl = new G4InclInput(aTrack, theNucleus, false);
146 }
147
148 G4double eKin;
149 G4double momx = 0.0, momy = 0.0, momz = 0.0;
150 G4DynamicParticle *cascadeParticle = 0;
151 G4ParticleDefinition *aParticleDefinition = 0;
152
153 // INCL assumes the projectile particle is going in the direction of
154 // the Z-axis. Here we construct proper rotation to convert the
155 // momentum vectors of the outcoming particles to the original
156 // coordinate system.
157 G4LorentzVector projectileMomentum = aTrack.Get4Momentum();
158 G4LorentzRotation toZ;
159 toZ.rotateZ(-projectileMomentum.phi());
160 toZ.rotateY(-projectileMomentum.theta());
161 G4LorentzRotation toLabFrame = toZ.inverse();
162
163 /*
164 G4cout <<"Projectile theta = " << projectileMomentum.theta() << " phi = " << projectileMomentum.phi() << G4endl;
165 G4cout <<"Projectile momentum "
166 << "(px = " << projectileMomentum.px()
167 << ", py = " << projectileMomentum.py()
168 << ", pz = " << projectileMomentum.pz() << ")" << G4endl;
169 G4cout << "Projectile energy = " << bulletE << " MeV" << G4endl;
170 */
171
172 G4ReactionProductVector *thePrecoResult = 0;
173 G4ReactionProductVector *theSpectatorPrecoResult = 0;
174
175 theResult.Clear(); // Make sure the output data structure is clean.
176
177 std::vector<G4DynamicParticle*> result; // Temporary list for the results
178
179 // Map Geant4 particle types to corresponding INCL4 types.
180 enum bulletParticleType {nucleus = 0, proton = 1, neutron = 2, pionPlus = 3, pionZero = 4,
181 pionMinus = 5, deuteron = 6, triton = 7, he3 = 8, he4 = 9,
182 c12 = -12}; // Carbon beam support.
183
184 G4int bulletType = calincl->bulletType();
185 chargeNumberBalanceInINCL = calincl->targetZ();
186 baryonNumberBalanceInINCL = calincl->targetA();
187
188 // G4cout <<"Type of the projectile (INCL projectile code): " << bulletType << G4endl;
189
190 if(bulletType == proton) {
191 chargeNumberBalanceInINCL += 1;
192 baryonNumberBalanceInINCL += 1;
193 } else if(bulletType == neutron) {
194 baryonNumberBalanceInINCL += 1;
195 } else if(bulletType == pionPlus) { //Note: positive pion doesn't contribute to the baryon and charge number counters
196 chargeNumberBalanceInINCL += 1;
197 } else if(bulletType == pionMinus) {
198 chargeNumberBalanceInINCL -= 1;
199 } else if(bulletType == deuteron) {
200 chargeNumberBalanceInINCL += 1;
201 baryonNumberBalanceInINCL += 2;
202 } else if(bulletType == triton) {
203 chargeNumberBalanceInINCL += 1;
204 baryonNumberBalanceInINCL += 3;
205 } else if(bulletType == he3) {
206 chargeNumberBalanceInINCL += 2;
207 baryonNumberBalanceInINCL += 3;
208 } else if(bulletType == he4) {
209 chargeNumberBalanceInINCL += 2;
210 baryonNumberBalanceInINCL += 4;
211 } if(bulletType == c12) {
212 chargeNumberBalanceInINCL += 6;
213 baryonNumberBalanceInINCL += 12;
214 } if(bulletType == -666) {
215 chargeNumberBalanceInINCL += calincl->extendedProjectileZ();
216 baryonNumberBalanceInINCL += calincl->extendedProjectileA();
217 }
218
219 // Check wheter the input is acceptable.
220 if((bulletType != 0) && ((calincl->targetA() != 1) && (calincl->targetZ() != 1))) {
221 ws->nosurf = -2; // Nucleus surface, -2 = Woods-Saxon
222 ws->xfoisa = 8;
223 ws->npaulstr = 0;
224
225 int nTries = 0;
226 varntp->ntrack = 0;
227
228 mat->nbmat = 1;
229 mat->amat[0] = int(calincl->targetA());
230 mat->zmat[0] = int(calincl->targetA());
231
232 incl->setInput(calincl);
233 incl->initIncl(true);
234
235 while((varntp->ntrack <= 0) && (nTries < maxTries)) { // Loop until we produce real cascade
236 nTries++;
237 if(verboseLevel > 1) {
238 G4cout <<"G4InclLightIonInterface: Try number = " << nTries << G4endl;
239 }
240 incl->processEventIncl(calincl);
241
242 if(verboseLevel > 1) {
243 G4cout <<"G4InclLightIonInterface: number of tracks = " << varntp->ntrack <<G4endl;
244 }
245 }
246
247 if(verboseLevel > 1) {
248 /**
249 * Diagnostic output
250 */
251 G4cout <<"G4InclLightIonInterface: Bullet type: " << calincl->bulletType() << G4endl;
252 G4cout <<"G4Incl4AblaCascadeInterface: Bullet energy: " << calincl->bulletE() << " MeV" << G4endl;
253 if(bulletType == -666) {
254 G4cout <<" Extended projectile: A = " << calincl->extendedProjectileA()
255 <<" Z = " << calincl->extendedProjectileZ() << G4endl;
256 }
257
258 G4cout <<"G4InclLightIonInterface: Target A: " << calincl->targetA() << G4endl;
259 G4cout <<"G4InclLightIonInterface: Target Z: " << calincl->targetZ() << G4endl;
260
261 if(verboseLevel > 3) {
262 diagdata <<"G4InclLightIonInterface: Bullet type: " << calincl->bulletType() << G4endl;
263 diagdata <<"G4InclLightIonInterface: Bullet energy: " << calincl->bulletE() << " MeV" << G4endl;
264
265 diagdata <<"G4InclLightIonInterface: Target A: " << calincl->targetA() << G4endl;
266 diagdata <<"G4InclLightIonInterface: Target Z: " << calincl->targetZ() << G4endl;
267 }
268 }
269
270 // Check whether a valid cascade was produced.
271 // If not return the original bullet particle with the same momentum.
272 if(varntp->ntrack <= 0) {
273 if(verboseLevel > 1) {
274 G4cout <<"WARNING G4InclLightIonInterface: No cascade. Returning original particle with original momentum." << G4endl;
275 G4cout <<"\t Reached maximum trials of 200 to produce inelastic scattering." << G4endl;
276 }
277
278 theResult.SetStatusChange(stopAndKill);
279
280 if(bulletType == proton) {
281 aParticleDefinition = G4Proton::ProtonDefinition();
282 } else if(bulletType == neutron) {
283 aParticleDefinition = G4Neutron::NeutronDefinition();
284 } else if(bulletType == pionPlus) {
285 aParticleDefinition = G4PionPlus::PionPlusDefinition();
286 } else if(bulletType == pionZero) {
287 aParticleDefinition = G4PionZero::PionZeroDefinition();
288 } else if(bulletType == pionMinus) {
289 aParticleDefinition = G4PionMinus::PionMinusDefinition();
290 } else if(bulletType == deuteron) {
291 aParticleDefinition = G4Deuteron::DeuteronDefinition();
292 } else if(bulletType == triton) {
293 aParticleDefinition = G4Triton::TritonDefinition();
294 } else if(bulletType == he3) {
295 aParticleDefinition = G4He3::He3Definition();
296 } else if(bulletType == he4) {
297 aParticleDefinition = G4Alpha::AlphaDefinition();
298 } else { // Particle was not recognized. Probably an unsupported particle was given as input
299 aParticleDefinition = 0;
300 }
301
302 if(aParticleDefinition != 0) {
303 cascadeParticle = new G4DynamicParticle();
304 cascadeParticle->SetDefinition(aParticleDefinition);
305 cascadeParticle->Set4Momentum(aTrack.Get4Momentum());
306 result.push_back(cascadeParticle);
307 }
308 }
309
310 // Convert INCL4 output to Geant4 compatible data structures.
311 // Elementary particles are converted to G4DynamicParticle.
312 theResult.SetStatusChange(stopAndKill);
313
314 for(particleI = 0; particleI <= varntp->ntrack; particleI++) { // Loop through the INCL4+ABLA output.
315 // Get energy/momentum and construct momentum vector in INCL4 coordinates.
316 // if(varntp->itypcasc[particleI] == -1) continue; // Avoid nucleons that are part of the spectator
317 if(varntp->avv[particleI] == 0 && varntp->zvv[particleI] == 0) continue;
318 momx = varntp->plab[particleI]*std::sin(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::cos(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV;
319 momy = varntp->plab[particleI]*std::sin(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::sin(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV;
320 momz = varntp->plab[particleI]*std::cos(varntp->tetlab[particleI]*CLHEP::pi/180.0)*MeV;
321
322 eKin = varntp->enerj[particleI] * MeV;
323
324 G4ThreeVector momDirection(momx, momy, momz); // Direction of the particle.
325 momDirection = momDirection.unit();
326 if(verboseLevel > 2) {
327 G4cout <<"G4InclLightIonInterface: " << G4endl;
328 G4cout <<"A = " << varntp->avv[particleI] << " Z = " << varntp->zvv[particleI] << G4endl;
329 G4cout <<"eKin = " << eKin << " MeV" << G4endl;
330 G4cout <<"px = " << momDirection.x() << " py = " << momDirection.y() <<" pz = " << momDirection.z() << G4endl;
331 }
332
333 G4int particleIdentified = 0; // Check particle ID.
334
335 if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 1)) { // Proton
336 cascadeParticle =
337 new G4DynamicParticle(G4Proton::ProtonDefinition(), momDirection, eKin);
338 particleIdentified++;
339 baryonNumberBalanceInINCL -= 1;
340 chargeNumberBalanceInINCL -= 1;
341 }
342
343 if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 0)) { // Neutron
344 cascadeParticle =
345 new G4DynamicParticle(G4Neutron::NeutronDefinition(), momDirection, eKin);
346 particleIdentified++;
347 baryonNumberBalanceInINCL -= 1;
348 }
349
350 if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 1)) { // PionPlus
351 cascadeParticle =
352 new G4DynamicParticle(G4PionPlus::PionPlusDefinition(), momDirection, eKin);
353 particleIdentified++;
354 chargeNumberBalanceInINCL -= 1;
355 }
356
357 if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 0)) { // PionZero
358 cascadeParticle =
359 new G4DynamicParticle(G4PionZero::PionZeroDefinition(), momDirection, eKin);
360 particleIdentified++;
361 chargeNumberBalanceInINCL -= 0;
362 }
363
364 if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == -1)) { // PionMinus
365 cascadeParticle =
366 new G4DynamicParticle(G4PionMinus::PionMinusDefinition(), momDirection, eKin);
367 particleIdentified++;
368 chargeNumberBalanceInINCL -= -1;
369 }
370
371 if((varntp->avv[particleI] > 1) && (varntp->zvv[particleI] >= 1)) { // Nucleus fragment
372 G4ParticleDefinition * aIonDef = 0;
373
374 G4int A = G4int(varntp->avv[particleI]);
375 G4int Z = G4int(varntp->zvv[particleI]);
376 G4double excitationE = G4double(varntp->exini) * MeV;
377
378 if(verboseLevel > 1) {
379 G4cout <<"Finding ion: A = " << A << " Z = " << Z << " E* = " << excitationE/MeV << G4endl;
380 }
381 aIonDef = theTableOfParticles->GetIon(Z, A, excitationE);
382
383 if(aIonDef == 0) {
384 if(verboseLevel > 1) {
385 G4cout <<"G4InclLightIonInterface: " << G4endl;
386 G4cout <<"FATAL ERROR: aIonDef = 0" << G4endl;
387 G4cout <<"A = " << A << " Z = " << Z << " E* = " << excitationE << G4endl;
388 }
389 }
390
391 if(aIonDef != 0) { // If the ion was identified add it to output.
392 cascadeParticle =
393 new G4DynamicParticle(aIonDef, momDirection, eKin);
394 particleIdentified++;
395 baryonNumberBalanceInINCL -= A;
396 chargeNumberBalanceInINCL -= Z;
397 }
398 }
399
400 if(particleIdentified == 1) { // Particle identified properly.
401 cascadeParticle->Set4Momentum(cascadeParticle->Get4Momentum()*=toLabFrame);
402 result.push_back(cascadeParticle);
403 }
404 else { // Particle identification failed.
405 if(particleIdentified > 1) { // Particle was identified as more than one particle type.
406 if(verboseLevel > 1) {
407 G4cout <<"G4InclLightIonInterface: One outcoming particle was identified as";
408 G4cout <<"more than one particle type. This is probably due to a bug in the interface." << G4endl;
409 G4cout <<"Particle A:" << varntp->avv[particleI] << "Z: " << varntp->zvv[particleI] << G4endl;
410 G4cout << "(particleIdentified =" << particleIdentified << ")" << G4endl;
411 }
412 }
413 }
414 }
415
416 // Spectator nucleus Fermi break-up
417 if(useFermiBreakup && useProjectileSpectator && varntp->masp > 1) {
418 baryonNumberBalanceInINCL -= G4int(varntp->masp);
419 G4double nuclearMass = G4NucleiProperties::GetNuclearMass(G4int(varntp->masp), G4int(varntp->mzsp)) + varntp->exsp * MeV;
420 // Use momentum scaling to compensate for different masses in G4 and INCL:
421 G4double momentumScaling = G4InclUtils::calculate4MomentumScaling(G4int(varntp->masp),
422 G4int(varntp->mzsp),
423 varntp->exsp,
424 varntp->spectatorT,
425 varntp->spectatorP1,
426 varntp->spectatorP2,
427 varntp->spectatorP3);
428 G4LorentzVector p4(momentumScaling * varntp->spectatorP1 * MeV, momentumScaling * varntp->spectatorP2 * MeV,
429 momentumScaling * varntp->spectatorP3 * MeV,
430 varntp->spectatorT * MeV + nuclearMass);
431 // Four-momentum, baryon number and charge balance:
432 G4LorentzVector fourMomentumBalance = p4;
433 G4int baryonNumberBalance = G4int(varntp->masp);
434 chargeNumberBalanceInINCL -= G4int(varntp->mzsp);
435 G4int chargeBalance = G4int(varntp->mzsp);
436
437 G4LorentzRotation toFragmentZ;
438 // Assume that Fermi breakup uses Z as the direction of the projectile
439 toFragmentZ.rotateZ(-p4.theta());
440 toFragmentZ.rotateY(-p4.phi());
441 G4LorentzRotation toFragmentLab = toFragmentZ.inverse();
442 p4 *= toFragmentZ;
443
444 G4LorentzVector p4rest = p4;
445 p4rest.boost(-p4.boostVector());
446 if(verboseLevel > 0) {
447 G4cout <<"Spectator nucleus:" << G4endl;
448 G4cout <<"p4: " << G4endl;
449 G4cout <<" px: " << p4.px() <<" py: " << p4.py() <<" pz: " << p4.pz() << G4endl;
450 G4cout <<" E = " << p4.e() << G4endl;
451 G4cout <<"p4rest: " << G4endl;
452 G4cout <<" px: " << p4rest.px() <<" py: " << p4rest.py() <<" pz: " << p4rest.pz() << G4endl;
453 G4cout <<" E = " << p4rest.e() << G4endl;
454 }
455 G4Fragment theSpectatorNucleus(G4int(varntp->masp), G4int(varntp->mzsp), p4rest);
456 theSpectatorPrecoResult = thePrecoModel->DeExcite(theSpectatorNucleus);
457 if(theSpectatorPrecoResult != 0) {
458 G4ReactionProductVector::iterator fragment;
459 for(fragment = theSpectatorPrecoResult->begin(); fragment != theSpectatorPrecoResult->end(); fragment++) {
460 G4ParticleDefinition *theFragmentDefinition = (*fragment)->GetDefinition();
461
462 if(theFragmentDefinition != 0) {
463 G4DynamicParticle *theFragment = new G4DynamicParticle(theFragmentDefinition, (*fragment)->GetMomentum());
464 G4LorentzVector labMomentum = theFragment->Get4Momentum();
465 labMomentum.boost(p4.boostVector());
466 labMomentum *= toFragmentLab;
467 labMomentum *= toLabFrame;
468 theFragment->Set4Momentum(labMomentum);
469 fourMomentumBalance -= theFragment->Get4Momentum();
470 baryonNumberBalance -= theFragmentDefinition->GetAtomicMass();
471 chargeBalance -= theFragmentDefinition->GetAtomicNumber();
472 if(verboseLevel > 0) {
473 G4cout <<"Resulting fragment: " << G4endl;
474 G4cout <<" kinetic energy = " << theFragment->GetKineticEnergy() / MeV << " MeV" << G4endl;
475 G4cout <<" momentum = " << theFragment->GetMomentum().mag() / MeV << " MeV" << G4endl;
476 }
477 theResult.AddSecondary(theFragment);
478 } else {
479 G4cout <<"G4InclCascadeInterface: Error. Fragment produced by Fermi break-up does not exist." << G4endl;
480 G4cout <<"Resulting fragment: " << G4endl;
481 G4cout <<" momentum = " << (*fragment)->GetMomentum().mag() / MeV << " MeV" << G4endl;
482 }
483 }
484 delete theSpectatorPrecoResult;
485 theSpectatorPrecoResult = 0;
486
487 if(verboseLevel > 1 && std::abs(fourMomentumBalance.mag() / MeV) > 0.1 * MeV) {
488 G4cout <<"Four-momentum balance after remnant nucleus Fermi break-up:" << G4endl;
489 G4cout <<"Magnitude: " << fourMomentumBalance.mag() / MeV << " MeV" << G4endl;
490 G4cout <<"Vector components (px, py, pz, E) = ("
491 << fourMomentumBalance.px() << ", "
492 << fourMomentumBalance.py() << ", "
493 << fourMomentumBalance.pz() << ", "
494 << fourMomentumBalance.e() << ")" << G4endl;
495 }
496 if(baryonNumberBalance != 0 && verboseLevel > 1) {
497 G4cout <<"Baryon number balance after remnant nucleus Fermi break-up: " << baryonNumberBalance << G4endl;
498 }
499 if(chargeBalance != 0 && verboseLevel > 1) {
500 G4cout <<"Charge balance after remnant nucleus Fermi break-up: " << chargeBalance << G4endl;
501 }
502 }
503 }
504
505 // Finally do Fermi break-up if needed
506 if(varntp->massini > 0) {
507 baryonNumberBalanceInINCL -= G4int(varntp->massini);
508 chargeNumberBalanceInINCL -= G4int(varntp->mzini);
509 // Call Fermi Break-up
510 G4double nuclearMass = G4NucleiProperties::GetNuclearMass(G4int(varntp->massini), G4int(varntp->mzini)) + varntp->exini * MeV;
511 G4LorentzVector fragmentMomentum(varntp->pxrem * MeV, varntp->pyrem * MeV, varntp->pzrem * MeV,
512 varntp->erecrem * MeV + nuclearMass);
513 G4double momentumScaling = G4InclUtils::calculate4MomentumScaling(G4int(varntp->massini), G4int(varntp->mzini),
514 varntp->exini,
515 varntp->erecrem,
516 varntp->pxrem,
517 varntp->pyrem,
518 varntp->pzrem);
519 G4LorentzVector p4(momentumScaling * varntp->pxrem * MeV, momentumScaling * varntp->pyrem * MeV,
520 momentumScaling * varntp->pzrem * MeV,
521 varntp->erecrem + nuclearMass);
522
523 // For four-momentum, baryon number and charge conservation check:
524 G4LorentzVector fourMomentumBalance = p4;
525 G4int baryonNumberBalance = G4int(varntp->massini);
526 G4int chargeBalance = G4int(varntp->mzini);
527
528 G4LorentzRotation toFragmentZ;
529 toFragmentZ.rotateZ(-p4.theta());
530 toFragmentZ.rotateY(-p4.phi());
531 G4LorentzRotation toFragmentLab = toFragmentZ.inverse();
532 p4 *= toFragmentZ;
533
534 G4LorentzVector p4rest = p4;
535 p4rest.boost(-p4.boostVector());
536 if(verboseLevel > 0) {
537 G4cout <<"Cascade remnant nucleus:" << G4endl;
538 G4cout <<"p4: " << G4endl;
539 G4cout <<" px: " << p4.px() <<" py: " << p4.py() <<" pz: " << p4.pz() << G4endl;
540 G4cout <<" E = " << p4.e() << G4endl;
541
542 G4cout <<"p4rest: " << G4endl;
543 G4cout <<" px: " << p4rest.px() <<" py: " << p4rest.py() <<" pz: " << p4rest.pz() << G4endl;
544 G4cout <<" E = " << p4rest.e() << G4endl;
545 }
546
547 G4Fragment theCascadeRemnant(G4int(varntp->massini), G4int(varntp->mzini), p4rest);
548 thePrecoResult = thePrecoModel->DeExcite(theCascadeRemnant);
549 if(thePrecoResult != 0) {
550 G4ReactionProductVector::iterator fragment;
551 for(fragment = thePrecoResult->begin(); fragment != thePrecoResult->end(); fragment++) {
552 G4ParticleDefinition *theFragmentDefinition = (*fragment)->GetDefinition();
553
554 if(theFragmentDefinition != 0) {
555 G4DynamicParticle *theFragment = new G4DynamicParticle(theFragmentDefinition, (*fragment)->GetMomentum());
556 G4LorentzVector labMomentum = theFragment->Get4Momentum();
557 labMomentum.boost(p4.boostVector());
558 labMomentum *= toFragmentLab;
559 labMomentum *= toLabFrame;
560 theFragment->Set4Momentum(labMomentum);
561 fourMomentumBalance -= theFragment->Get4Momentum();
562 baryonNumberBalance -= theFragmentDefinition->GetAtomicMass();
563 chargeBalance -= theFragmentDefinition->GetAtomicNumber();
564 if(verboseLevel > 0) {
565 G4cout <<"Resulting fragment: " << G4endl;
566 G4cout <<" kinetic energy = " << theFragment->GetKineticEnergy() / MeV << " MeV" << G4endl;
567 G4cout <<" momentum = " << theFragment->GetMomentum().mag() / MeV << " MeV" << G4endl;
568 }
569 theResult.AddSecondary(theFragment);
570 } else {
571 G4cout <<"G4InclCascadeInterface: Error. Fragment produced by Fermi break-up does not exist." << G4endl;
572 G4cout <<"Resulting fragment: " << G4endl;
573 G4cout <<" momentum = " << (*fragment)->GetMomentum().mag() / MeV << " MeV" << G4endl;
574 }
575 }
576 delete thePrecoResult;
577 thePrecoResult = 0;
578
579 if(verboseLevel > 1 && std::abs(fourMomentumBalance.mag() / MeV) > 0.1 * MeV) {
580 G4cout <<"Four-momentum balance after remnant nucleus Fermi break-up:" << G4endl;
581 G4cout <<"Magnitude: " << fourMomentumBalance.mag() / MeV << " MeV" << G4endl;
582 G4cout <<"Vector components (px, py, pz, E) = ("
583 << fourMomentumBalance.px() << ", "
584 << fourMomentumBalance.py() << ", "
585 << fourMomentumBalance.pz() << ", "
586 << fourMomentumBalance.e() << ")" << G4endl;
587 }
588 if(baryonNumberBalance != 0 && verboseLevel > 1) {
589 G4cout <<"Baryon number balance after remnant nucleus Fermi break-up: " << baryonNumberBalance << G4endl;
590 }
591 if(chargeBalance != 0 && verboseLevel > 1) {
592 G4cout <<"Charge balance after remnant nucleus Fermi break-up: " << chargeBalance << G4endl;
593 }
594 }
595 }
596
597 varntp->ntrack = 0; // Clean up the number of generated particles in the event.
598
599 if(baryonNumberBalanceInINCL != 0 && verboseLevel > 1) {
600 G4cout <<"Event " << eventNumber <<": G4InclLightIonInterface: Baryon number conservation problem in INCL detected!" << G4endl;
601 G4cout <<"Baryon number balance: " << baryonNumberBalanceInINCL << G4endl;
602 if(baryonNumberBalanceInINCL < 0) {
603 G4cout <<"Event " << eventNumber <<": Too many outcoming baryons!" << G4endl;
604 } else if(baryonNumberBalanceInINCL > 0) {
605 G4cout <<"Event " << eventNumber <<": Too few outcoming baryons!" << G4endl;
606 }
607 }
608
609 if(chargeNumberBalanceInINCL != 0 && verboseLevel > 1) {
610 G4cout <<"Event " << eventNumber <<": G4InclLightIonInterface: Charge number conservation problem in INCL detected!" << G4endl;
611 G4cout <<"Event " << eventNumber <<": Charge number balance: " << chargeNumberBalanceInINCL << G4endl;
612 }
613 }
614 /**
615 * Report unsupported features.
616 * (Check bullet, target, energy range)
617 */
618 else { // If the bullet type was not recognized by the interface, it will be returned back without any interaction.
619 theResult.SetStatusChange(stopAndKill);
620
621 G4ParticleTable *theTableOfParticles = G4ParticleTable::GetParticleTable();
622 cascadeParticle = new G4DynamicParticle(theTableOfParticles->FindParticle(aTrack.GetDefinition()), aTrack.Get4Momentum());
623
624 result.push_back(cascadeParticle);
625
626 if(verboseLevel > 1) {
627 G4cout <<"G4InclLightIonInterface: Error processing event number (internal) " << eventNumber << G4endl;
628 }
629 if(verboseLevel > 3) {
630 diagdata <<"G4InclLightIonInterface: Error processing event number (internal) " << eventNumber << G4endl;
631 }
632
633 if(bulletType == 0) {
634 if(verboseLevel > 1) {
635 G4cout <<"G4InclLightIonInterface: Unknown bullet type" << G4endl;
636 G4cout <<"Bullet particle name: " << cascadeParticle->GetDefinition()->GetParticleName() << G4endl;
637 }
638 if(verboseLevel > 3) {
639 diagdata <<"G4InclLightIonInterface: Unknown bullet type" << G4endl;
640 diagdata <<"Bullet particle name: " << cascadeParticle->GetDefinition()->GetParticleName() << G4endl;
641 }
642 }
643
644 if((calincl->targetA() == 1) && (calincl->targetZ() == 1)) { // Unsupported target
645 if(verboseLevel > 1) {
646 G4cout <<"Unsupported target: " << G4endl;
647 G4cout <<"Target A: " << calincl->targetA() << G4endl;
648 G4cout <<"TargetZ: " << calincl->targetZ() << G4endl;
649 }
650 if(verboseLevel > 3) {
651 diagdata <<"Unsupported target: " << G4endl;
652 diagdata <<"Target A: " << calincl->targetA() << G4endl;
653 diagdata <<"TargetZ: " << calincl->targetZ() << G4endl;
654 }
655 }
656
657 if(calincl->bulletE() < 100) { // INCL does not support E < 100 MeV.
658 if(verboseLevel > 1) {
659 G4cout <<"Unsupported bullet energy: " << calincl->bulletE() << " MeV. (Lower limit is 100 MeV)." << G4endl;
660 G4cout <<"WARNING: Returning the original bullet with original energy back to Geant4." << G4endl;
661 }
662 if(verboseLevel > 3) {
663 diagdata <<"Unsupported bullet energy: " << calincl->bulletE() << " MeV. (Lower limit is 100 MeV)." << G4endl;
664 }
665 }
666
667 if(verboseLevel > 3) {
668 diagdata <<"WARNING: returning the original bullet with original energy back to Geant4." << G4endl;
669 }
670 }
671
672 // Finally copy the accumulated secondaries into the result collection:
673 G4ThreeVector boostVector = aTrack.Get4Momentum().boostVector();
674 G4LorentzRotation boostBack = toBreit.inverse();
675
676 for(std::vector<G4DynamicParticle*>::iterator i = result.begin(); i != result.end(); ++i) {
677 // If the calculation was performed in inverse kinematics we have to
678 // convert the result back...
679 if(calincl->isInverseKinematics()) {
680 G4LorentzVector mom = (*i)->Get4Momentum();
681 mom.setPz(-1.0 * mom.pz()); // Reverse the z-component of the momentum vector
682 mom *= boostBack;
683 (*i)->Set4Momentum(mom);
684 }
685 theResult.AddSecondary((*i));
686 }
687
688 delete calincl;
689 calincl = 0;
690 return &theResult;
691}
692
693G4ReactionProductVector* G4InclLightIonInterface::Propagate(G4KineticTrackVector* , G4V3DNucleus* ) {
694 return 0;
695}
696
697
Note: See TracBrowser for help on using the repository browser.