source: trunk/source/processes/hadronic/models/lll_fission/src/G4FissionLibrary.cc @ 1326

Last change on this file since 1326 was 819, checked in by garnier, 16 years ago

import all except CVS

  • Property svn:executable set to *
File size: 10.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// This software was developed by Lawrence Livermore National Laboratory.
28//
29// Redistribution and use in source and binary forms, with or without
30// modification, are permitted provided that the following conditions are met:
31//
32// 1. Redistributions of source code must retain the above copyright notice,
33//   this list of conditions and the following disclaimer.
34// 2. Redistributions in binary form must reproduce the above copyright notice,
35//   this list of conditions and the following disclaimer in the documentation
36//   and/or other materials provided with the distribution.
37// 3. The name of the author may not be used to endorse or promote products
38//   derived from this software without specific prior written permission.
39//
40// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
41// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
42// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
43// EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
45// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
46// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
47// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
48// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
49// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
50//
51// Copyright (c) 2006 The Regents of the University of California.
52// All rights reserved.
53// UCRL-CODE-224807
54//
55//
56// $Id: G4FissionLibrary.cc,v 1.4 2007/06/01 14:02:08 gcosmo Exp $
57//
58// neutron_hp -- source file
59// J.M. Verbeke, Jan-2007
60// A low energy neutron-induced fission model.
61//
62
63#include "G4FissionLibrary.hh"
64
65G4FissionLibrary::G4FissionLibrary()
66  : G4NeutronHPFinalState()
67{
68  hasXsec = false;
69}
70
71G4FissionLibrary::~G4FissionLibrary()
72{
73}
74
75G4NeutronHPFinalState * G4FissionLibrary::New()
76{
77  G4FissionLibrary * theNew = new G4FissionLibrary;
78  return theNew;
79}
80
81void G4FissionLibrary::Init (G4double A, G4double Z, G4String & dirName, G4String &)
82{
83  G4String tString = "/FS/";
84  G4bool dbool;
85  theIsotope = static_cast<G4int>(1000*Z+A);
86  G4NeutronHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), dirName, tString, dbool);
87  G4String filename = aFile.GetName();
88
89  if(!dbool)
90  {
91    hasAnyData = false;
92    hasFSData = false;
93    hasXsec = false;
94    return;
95  }
96  std::ifstream theData(filename, std::ios::in);
97
98  // here it comes
99  G4int infoType, dataType;
100  hasFSData = false;
101  while (theData >> infoType)
102  {
103    hasFSData = true;
104    theData >> dataType;
105    switch(infoType)
106    {
107      case 1:
108        if(dataType==4) theNeutronAngularDis.Init(theData);
109        if(dataType==5) thePromptNeutronEnDis.Init(theData);
110        if(dataType==12) theFinalStatePhotons.InitMean(theData);
111        if(dataType==14) theFinalStatePhotons.InitAngular(theData);
112        if(dataType==15) theFinalStatePhotons.InitEnergies(theData);
113        break;
114      case 2:
115        if(dataType==1) theFinalStateNeutrons.InitMean(theData);
116        break;
117      case 3:
118        if(dataType==1) theFinalStateNeutrons.InitDelayed(theData);
119        if(dataType==5) theDelayedNeutronEnDis.Init(theData);
120        break;
121      case 4:
122        if(dataType==1) theFinalStateNeutrons.InitPrompt(theData);
123        break;
124      case 5:
125        if(dataType==1) theEnergyRelease.Init(theData);
126        break;
127      default:
128        G4cout << "G4FissionLibrary::Init: unknown data type"<<dataType<<G4endl;
129        throw G4HadronicException(__FILE__, __LINE__, "G4FissionLibrary::Init: unknown data type");
130        break;
131    }
132  }
133  targetMass = theFinalStateNeutrons.GetTargetMass();
134  theData.close();
135}
136
137G4HadFinalState * G4FissionLibrary::ApplyYourself(const G4HadProjectile & theTrack)
138{ 
139  theResult.Clear();
140
141// prepare neutron
142  G4double eKinetic = theTrack.GetKineticEnergy();
143  const G4HadProjectile *incidentParticle = &theTrack;
144  G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>(incidentParticle->GetDefinition()) );
145  theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
146  theNeutron.SetKineticEnergy( eKinetic );
147
148// prepare target
149  G4Nucleus aNucleus;
150  G4ReactionProduct theTarget; 
151  G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
152  theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
153
154// set neutron and target in the FS classes
155  theNeutronAngularDis.SetNeutron(theNeutron);
156  theNeutronAngularDis.SetTarget(theTarget);
157
158// boost to target rest system
159  theNeutron.Lorentz(theNeutron, -1*theTarget);
160
161  eKinetic = theNeutron.GetKineticEnergy();   
162
163// dice neutron and gamma multiplicities, energies and momenta in Lab. @@
164// no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
165// also for mean, we rely on the consistency of the data. @@
166
167  G4int nPrompt=0, gPrompt=0;
168  SampleMult(theTrack, &nPrompt, &gPrompt, eKinetic);
169
170// Build neutrons and add them to dynamic particle vector
171  G4double momentum;
172  for(G4int i=0; i<nPrompt; i++)
173  {
174    G4DynamicParticle * it = new G4DynamicParticle;
175    it->SetDefinition(G4Neutron::Neutron());
176    it->SetKineticEnergy(getneng_(&i)*MeV);
177    momentum = it->GetTotalMomentum();
178    G4ThreeVector temp(momentum*getndircosu_(&i), 
179                       momentum*getndircosv_(&i), 
180                       momentum*getndircosw_(&i));
181    it->SetMomentum( temp );
182//    it->SetGlobalTime(getnage_(&i)*second);
183    theResult.AddSecondary(it);
184//    G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt neutron " << i << " = " << it->GetKineticEnergy()<<G4endl;
185  }
186
187// Build gammas, lorentz transform them, and add them to dynamic particle vector
188  for(G4int i=0; i<gPrompt; i++)
189  {
190    G4ReactionProduct * thePhoton = new G4ReactionProduct;
191    thePhoton->SetDefinition(G4Gamma::Gamma());
192    thePhoton->SetKineticEnergy(getpeng_(&i)*MeV);
193    momentum = thePhoton->GetTotalMomentum();
194    G4ThreeVector temp(momentum*getpdircosu_(&i), 
195                       momentum*getpdircosv_(&i), 
196                       momentum*getpdircosw_(&i));
197    thePhoton->SetMomentum( temp );
198    thePhoton->Lorentz(*thePhoton, -1.*theTarget);
199   
200    G4DynamicParticle * it = new G4DynamicParticle;
201    it->SetDefinition(thePhoton->GetDefinition());
202    it->SetMomentum(thePhoton->GetMomentum());
203//    it->SetGlobalTime(getpage_(&i)*second);
204//    G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt photon " << i << " = " << it->GetKineticEnergy()<<G4endl;
205    theResult.AddSecondary(it);
206    delete thePhoton; 
207  }
208//  G4cout <<"G4FissionLibrary::ApplyYourself: Number of secondaries = "<<theResult.GetNumberOfSecondaries()<< G4endl;
209//  G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt neutron = "<<nPrompt<<G4endl;
210//  G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt photons = "<<gPrompt<<G4endl;
211
212// finally deal with local energy depositions.
213  G4double eDepByFragments = theEnergyRelease.GetFragmentKinetic();
214  theResult.SetLocalEnergyDeposit(eDepByFragments);
215//   G4cout << "G4FissionLibrary::local energy deposit" << eDepByFragments<<G4endl;
216// clean up the primary neutron
217  theResult.SetStatusChange(stopAndKill);
218  return &theResult;
219}
220
221void G4FissionLibrary::SampleMult(const G4HadProjectile & theTrack, G4int* nPrompt,
222                                   G4int* gPrompt, G4double eKinetic)
223{
224   G4double promptNeutronMulti = 0;
225   promptNeutronMulti = theFinalStateNeutrons.GetPrompt(eKinetic); // prompt nubar from Geant
226   G4double delayedNeutronMulti = 0;
227   delayedNeutronMulti = theFinalStateNeutrons.GetDelayed(eKinetic); // delayed nubar from Geant
228
229   G4double time = theTrack.GetGlobalTime()/second;
230   if(delayedNeutronMulti==0&&promptNeutronMulti==0) {
231     // no data for prompt and delayed neutrons in Geant
232     // but there is perhaps data for the total neutron multiplicity, in which case
233     // we use it for prompt neutron emission
234     G4double totalNeutronMulti = theFinalStateNeutrons.GetMean(eKinetic);
235     genfissevt_(&theIsotope, &time, &totalNeutronMulti, &eKinetic);
236   } else {
237     // prompt nubar != 0 || delayed nubar != 0
238     genfissevt_(&theIsotope, &time, &promptNeutronMulti, &eKinetic);
239   }
240   *nPrompt = getnnu_();
241   if (*nPrompt == -1) *nPrompt = 0; // the fission library libFission.a has no data for neutrons
242   *gPrompt = getpnu_();
243   if (*gPrompt == -1) *gPrompt = 0; // the fission library libFission.a has no data for gammas
244}
245
Note: See TracBrowser for help on using the repository browser.