| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4LEAntiNeutronInelastic.cc,v 1.14 2006/06/29 20:44:43 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02 $
|
|---|
| 29 | //
|
|---|
| 30 | // Hadronic Process: AntiNeutron Inelastic Process
|
|---|
| 31 | // J.L. Chuma, TRIUMF, 18-Feb-1997
|
|---|
| 32 | // Last modified: 27-Mar-1997
|
|---|
| 33 | // J.P.Wellisch: 23-Apr-97: Added theNucleus.SetParameters call
|
|---|
| 34 | // J.P. Wellisch: 23-Apr-97: nm = np+1; in line 392
|
|---|
| 35 | // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
|
|---|
| 36 |
|
|---|
| 37 | #include "G4LEAntiNeutronInelastic.hh"
|
|---|
| 38 | #include "Randomize.hh"
|
|---|
| 39 |
|
|---|
| 40 | G4HadFinalState *
|
|---|
| 41 | G4LEAntiNeutronInelastic::ApplyYourself( const G4HadProjectile &aTrack,
|
|---|
| 42 | G4Nucleus &targetNucleus )
|
|---|
| 43 | {
|
|---|
| 44 | const G4HadProjectile *originalIncident = &aTrack;
|
|---|
| 45 | //
|
|---|
| 46 | // create the target particle
|
|---|
| 47 | //
|
|---|
| 48 | G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
|
|---|
| 49 |
|
|---|
| 50 | if( verboseLevel > 1 )
|
|---|
| 51 | {
|
|---|
| 52 | const G4Material *targetMaterial = aTrack.GetMaterial();
|
|---|
| 53 | G4cout << "G4LEAntiNeutronInelastic::ApplyYourself called" << G4endl;
|
|---|
| 54 | G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
|
|---|
| 55 | G4cout << "target material = " << targetMaterial->GetName() << ", ";
|
|---|
| 56 | G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
|
|---|
| 57 | << G4endl;
|
|---|
| 58 | }
|
|---|
| 59 | //
|
|---|
| 60 | // Fermi motion and evaporation
|
|---|
| 61 | // As of Geant3, the Fermi energy calculation had not been Done
|
|---|
| 62 | //
|
|---|
| 63 | G4double ek = originalIncident->GetKineticEnergy()/MeV;
|
|---|
| 64 | G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
|
|---|
| 65 | G4ReactionProduct modifiedOriginal;
|
|---|
| 66 | modifiedOriginal = *originalIncident;
|
|---|
| 67 |
|
|---|
| 68 | G4double tkin = targetNucleus.Cinema( ek );
|
|---|
| 69 | ek += tkin;
|
|---|
| 70 | modifiedOriginal.SetKineticEnergy( ek*MeV );
|
|---|
| 71 | G4double et = ek + amas;
|
|---|
| 72 | G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
|
|---|
| 73 | G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
|
|---|
| 74 | if( pp > 0.0 )
|
|---|
| 75 | {
|
|---|
| 76 | G4ThreeVector momentum = modifiedOriginal.GetMomentum();
|
|---|
| 77 | modifiedOriginal.SetMomentum( momentum * (p/pp) );
|
|---|
| 78 | }
|
|---|
| 79 | //
|
|---|
| 80 | // calculate black track energies
|
|---|
| 81 | //
|
|---|
| 82 | tkin = targetNucleus.EvaporationEffects( ek );
|
|---|
| 83 | ek -= tkin;
|
|---|
| 84 | modifiedOriginal.SetKineticEnergy( ek*MeV );
|
|---|
| 85 | et = ek + amas;
|
|---|
| 86 | p = std::sqrt( std::abs((et-amas)*(et+amas)) );
|
|---|
| 87 | pp = modifiedOriginal.GetMomentum().mag()/MeV;
|
|---|
| 88 | if( pp > 0.0 )
|
|---|
| 89 | {
|
|---|
| 90 | G4ThreeVector momentum = modifiedOriginal.GetMomentum();
|
|---|
| 91 | modifiedOriginal.SetMomentum( momentum * (p/pp) );
|
|---|
| 92 | }
|
|---|
| 93 |
|
|---|
| 94 | G4ReactionProduct currentParticle = modifiedOriginal;
|
|---|
| 95 | G4ReactionProduct targetParticle;
|
|---|
| 96 | targetParticle = *originalTarget;
|
|---|
| 97 | currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
|
|---|
| 98 | targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
|
|---|
| 99 | G4bool incidentHasChanged = false;
|
|---|
| 100 | G4bool targetHasChanged = false;
|
|---|
| 101 | G4bool quasiElastic = false;
|
|---|
| 102 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
|
|---|
| 103 | G4int vecLen = 0;
|
|---|
| 104 | vec.Initialize( 0 );
|
|---|
| 105 |
|
|---|
| 106 | const G4double cutOff = 0.1*MeV;
|
|---|
| 107 | const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
|
|---|
| 108 |
|
|---|
| 109 | if( (currentParticle.GetKineticEnergy()/MeV > cutOff) ||
|
|---|
| 110 | (G4UniformRand() > anni) )
|
|---|
| 111 | Cascade( vec, vecLen,
|
|---|
| 112 | originalIncident, currentParticle, targetParticle,
|
|---|
| 113 | incidentHasChanged, targetHasChanged, quasiElastic );
|
|---|
| 114 | else
|
|---|
| 115 | quasiElastic = true;
|
|---|
| 116 |
|
|---|
| 117 | CalculateMomenta( vec, vecLen,
|
|---|
| 118 | originalIncident, originalTarget, modifiedOriginal,
|
|---|
| 119 | targetNucleus, currentParticle, targetParticle,
|
|---|
| 120 | incidentHasChanged, targetHasChanged, quasiElastic );
|
|---|
| 121 |
|
|---|
| 122 | SetUpChange( vec, vecLen,
|
|---|
| 123 | currentParticle, targetParticle,
|
|---|
| 124 | incidentHasChanged );
|
|---|
| 125 |
|
|---|
| 126 | delete originalTarget;
|
|---|
| 127 | return &theParticleChange;
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | void
|
|---|
| 131 | G4LEAntiNeutronInelastic::Cascade(
|
|---|
| 132 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 133 | G4int& vecLen,
|
|---|
| 134 | const G4HadProjectile *originalIncident,
|
|---|
| 135 | G4ReactionProduct ¤tParticle,
|
|---|
| 136 | G4ReactionProduct &targetParticle,
|
|---|
| 137 | G4bool &incidentHasChanged,
|
|---|
| 138 | G4bool &targetHasChanged,
|
|---|
| 139 | G4bool &quasiElastic )
|
|---|
| 140 | {
|
|---|
| 141 | // derived from original FORTRAN code CASNB by H. Fesefeldt (13-Sep-1987)
|
|---|
| 142 | //
|
|---|
| 143 | // AntiNeutron undergoes interaction with nucleon within a nucleus. Check if it is
|
|---|
| 144 | // energetically possible to produce pions/kaons. In not, assume nuclear excitation
|
|---|
| 145 | // occurs and input particle is degraded in energy. No other particles are produced.
|
|---|
| 146 | // If reaction is possible, find the correct number of pions/protons/neutrons
|
|---|
| 147 | // produced using an interpolation to multiplicity data. Replace some pions or
|
|---|
| 148 | // protons/neutrons by kaons or strange baryons according to the average
|
|---|
| 149 | // multiplicity per Inelastic reaction.
|
|---|
| 150 | //
|
|---|
| 151 | const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
|
|---|
| 152 | const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
|
|---|
| 153 | const G4double pOriginal = originalIncident->GetTotalMomentum()/MeV;
|
|---|
| 154 | const G4double targetMass = targetParticle.GetMass()/MeV;
|
|---|
| 155 | G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
|
|---|
| 156 | targetMass*targetMass +
|
|---|
| 157 | 2.0*targetMass*etOriginal );
|
|---|
| 158 | G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
|
|---|
| 159 |
|
|---|
| 160 | static G4bool first = true;
|
|---|
| 161 | const G4int numMul = 1200;
|
|---|
| 162 | const G4int numMulA = 400;
|
|---|
| 163 | const G4int numSec = 60;
|
|---|
| 164 | static G4double protmul[numMul], protnorm[numSec]; // proton constants
|
|---|
| 165 | static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
|
|---|
| 166 | static G4double protmulA[numMulA], protnormA[numSec]; // proton constants
|
|---|
| 167 | static G4double neutmulA[numMulA], neutnormA[numSec]; // neutron constants
|
|---|
| 168 | // np = number of pi+, nm = number of pi-, nz = number of pi0
|
|---|
| 169 | G4int counter, nt=0, np=0, nm=0, nz=0;
|
|---|
| 170 | G4double test;
|
|---|
| 171 | const G4double c = 1.25;
|
|---|
| 172 | const G4double b[] = { 0.70, 0.70 };
|
|---|
| 173 | if( first ) // compute normalization constants, this will only be Done once
|
|---|
| 174 | {
|
|---|
| 175 | first = false;
|
|---|
| 176 | G4int i;
|
|---|
| 177 | for( i=0; i<numMul; ++i )protmul[i] = 0.0;
|
|---|
| 178 | for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
|
|---|
| 179 | counter = -1;
|
|---|
| 180 | for( np=0; np<(numSec/3); ++np )
|
|---|
| 181 | {
|
|---|
| 182 | for( nm=std::max(0,np-2); nm<=np; ++nm )
|
|---|
| 183 | {
|
|---|
| 184 | for( nz=0; nz<numSec/3; ++nz )
|
|---|
| 185 | {
|
|---|
| 186 | if( ++counter < numMul )
|
|---|
| 187 | {
|
|---|
| 188 | nt = np+nm+nz;
|
|---|
| 189 | if( nt>0 && nt<=numSec )
|
|---|
| 190 | {
|
|---|
| 191 | protmul[counter] = Pmltpc(np,nm,nz,nt,b[0],c);
|
|---|
| 192 | protnorm[nt-1] += protmul[counter];
|
|---|
| 193 | }
|
|---|
| 194 | }
|
|---|
| 195 | }
|
|---|
| 196 | }
|
|---|
| 197 | }
|
|---|
| 198 | for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
|
|---|
| 199 | for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
|
|---|
| 200 | counter = -1;
|
|---|
| 201 | for( np=0; np<numSec/3; ++np )
|
|---|
| 202 | {
|
|---|
| 203 | for( nm=std::max(0,np-1); nm<=(np+1); ++nm )
|
|---|
| 204 | {
|
|---|
| 205 | for( nz=0; nz<numSec/3; ++nz )
|
|---|
| 206 | {
|
|---|
| 207 | if( ++counter < numMul )
|
|---|
| 208 | {
|
|---|
| 209 | nt = np+nm+nz;
|
|---|
| 210 | if( (nt>0) && (nt<=numSec) )
|
|---|
| 211 | {
|
|---|
| 212 | neutmul[counter] = Pmltpc(np,nm,nz,nt,b[1],c);
|
|---|
| 213 | neutnorm[nt-1] += neutmul[counter];
|
|---|
| 214 | }
|
|---|
| 215 | }
|
|---|
| 216 | }
|
|---|
| 217 | }
|
|---|
| 218 | }
|
|---|
| 219 | for( i=0; i<numSec; ++i )
|
|---|
| 220 | {
|
|---|
| 221 | if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
|
|---|
| 222 | if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
|
|---|
| 223 | }
|
|---|
| 224 | //
|
|---|
| 225 | // do the same for annihilation channels
|
|---|
| 226 | //
|
|---|
| 227 | for( i=0; i<numMulA; ++i )protmulA[i] = 0.0;
|
|---|
| 228 | for( i=0; i<numSec; ++i )protnormA[i] = 0.0;
|
|---|
| 229 | counter = -1;
|
|---|
| 230 | for( np=1; np<(numSec/3); ++np )
|
|---|
| 231 | {
|
|---|
| 232 | nm = np-1;
|
|---|
| 233 | for( nz=0; nz<numSec/3; ++nz )
|
|---|
| 234 | {
|
|---|
| 235 | if( ++counter < numMulA )
|
|---|
| 236 | {
|
|---|
| 237 | nt = np+nm+nz;
|
|---|
| 238 | if( nt>1 && nt<=numSec )
|
|---|
| 239 | {
|
|---|
| 240 | protmulA[counter] = Pmltpc(np,nm,nz,nt,b[0],c);
|
|---|
| 241 | protnormA[nt-1] += protmulA[counter];
|
|---|
| 242 | }
|
|---|
| 243 | }
|
|---|
| 244 | }
|
|---|
| 245 | }
|
|---|
| 246 | for( i=0; i<numMulA; ++i )neutmulA[i] = 0.0;
|
|---|
| 247 | for( i=0; i<numSec; ++i )neutnormA[i] = 0.0;
|
|---|
| 248 | counter = -1;
|
|---|
| 249 | for( np=0; np<numSec/3; ++np )
|
|---|
| 250 | {
|
|---|
| 251 | nm = np;
|
|---|
| 252 | for( nz=0; nz<numSec/3; ++nz )
|
|---|
| 253 | {
|
|---|
| 254 | if( ++counter < numMulA )
|
|---|
| 255 | {
|
|---|
| 256 | nt = np+nm+nz;
|
|---|
| 257 | if( nt>1 && nt<=numSec )
|
|---|
| 258 | {
|
|---|
| 259 | neutmulA[counter] = Pmltpc(np,nm,nz,nt,b[1],c);
|
|---|
| 260 | neutnormA[nt-1] += neutmulA[counter];
|
|---|
| 261 | }
|
|---|
| 262 | }
|
|---|
| 263 | }
|
|---|
| 264 | }
|
|---|
| 265 | for( i=0; i<numSec; ++i )
|
|---|
| 266 | {
|
|---|
| 267 | if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
|
|---|
| 268 | if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
|
|---|
| 269 | }
|
|---|
| 270 | } // end of initialization
|
|---|
| 271 | const G4double expxu = 82.; // upper bound for arg. of exp
|
|---|
| 272 | const G4double expxl = -expxu; // lower bound for arg. of exp
|
|---|
| 273 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 274 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 275 | G4ParticleDefinition *anAntiProton = G4AntiProton::AntiProton();
|
|---|
| 276 | G4ParticleDefinition *aPiPlus = G4PionPlus::PionPlus();
|
|---|
| 277 |
|
|---|
| 278 | // energetically possible to produce pion(s) --> inelastic scattering
|
|---|
| 279 | // otherwise quasi-elastic scattering
|
|---|
| 280 |
|
|---|
| 281 | const G4double anhl[] = {1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,0.97,0.88,
|
|---|
| 282 | 0.85,0.81,0.75,0.64,0.64,0.55,0.55,0.45,0.47,0.40,
|
|---|
| 283 | 0.39,0.36,0.33,0.10,0.01};
|
|---|
| 284 | G4int iplab = G4int( pOriginal/GeV*10.0 );
|
|---|
| 285 | if( iplab > 9 )iplab = G4int( (pOriginal/GeV- 1.0)*5.0 ) + 10;
|
|---|
| 286 | if( iplab > 14 )iplab = G4int( pOriginal/GeV- 2.0 ) + 15;
|
|---|
| 287 | if( iplab > 22 )iplab = G4int( (pOriginal/GeV-10.0)/10.0 ) + 23;
|
|---|
| 288 | if( iplab > 24 )iplab = 24;
|
|---|
| 289 | if( G4UniformRand() > anhl[iplab] )
|
|---|
| 290 | {
|
|---|
| 291 | if( availableEnergy <= aPiPlus->GetPDGMass()/MeV )
|
|---|
| 292 | {
|
|---|
| 293 | quasiElastic = true;
|
|---|
| 294 | return;
|
|---|
| 295 | }
|
|---|
| 296 | G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
|
|---|
| 297 | const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
|
|---|
| 298 | G4double w0, wp, wt, wm;
|
|---|
| 299 | if( (availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) )
|
|---|
| 300 | {
|
|---|
| 301 | // suppress high multiplicity events at low momentum
|
|---|
| 302 | // only one pion will be produced
|
|---|
| 303 | //
|
|---|
| 304 | np = nm = nz = 0;
|
|---|
| 305 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 306 | {
|
|---|
| 307 | test = std::exp( std::min( expxu, std::max( expxl, -(1.0+b[0])*(1.0+b[0])/(2.0*c*c) ) ) );
|
|---|
| 308 | w0 = test;
|
|---|
| 309 | wp = test;
|
|---|
| 310 | if( G4UniformRand() < w0/(w0+wp) )
|
|---|
| 311 | nz = 1;
|
|---|
| 312 | else
|
|---|
| 313 | np = 1;
|
|---|
| 314 | }
|
|---|
| 315 | else // target is a neutron
|
|---|
| 316 | {
|
|---|
| 317 | test = std::exp( std::min( expxu, std::max( expxl, -(1.0+b[1])*(1.0+b[1])/(2.0*c*c) ) ) );
|
|---|
| 318 | w0 = test;
|
|---|
| 319 | wp = test;
|
|---|
| 320 | test = std::exp( std::min( expxu, std::max( expxl, -(-1.0+b[1])*(-1.0+b[1])/(2.0*c*c) ) ) );
|
|---|
| 321 | wm = test;
|
|---|
| 322 | wt = w0+wp+wm;
|
|---|
| 323 | wp += w0;
|
|---|
| 324 | G4double ran = G4UniformRand();
|
|---|
| 325 | if( ran < w0/wt )
|
|---|
| 326 | nz = 1;
|
|---|
| 327 | else if( ran < wp/wt )
|
|---|
| 328 | np = 1;
|
|---|
| 329 | else
|
|---|
| 330 | nm = 1;
|
|---|
| 331 | }
|
|---|
| 332 | }
|
|---|
| 333 | else // (availableEnergy >= 2.0*GeV) || (random number < supp[ieab])
|
|---|
| 334 | {
|
|---|
| 335 | G4double n, anpn;
|
|---|
| 336 | GetNormalizationConstant( availableEnergy, n, anpn );
|
|---|
| 337 | G4double ran = G4UniformRand();
|
|---|
| 338 | G4double dum, excs = 0.0;
|
|---|
| 339 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 340 | {
|
|---|
| 341 | counter = -1;
|
|---|
| 342 | for( np=0; np<numSec/3 && ran>=excs; ++np )
|
|---|
| 343 | {
|
|---|
| 344 | for( nm=std::max(0,np-2); nm<=np && ran>=excs; ++nm )
|
|---|
| 345 | {
|
|---|
| 346 | for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
|
|---|
| 347 | {
|
|---|
| 348 | if( ++counter < numMul )
|
|---|
| 349 | {
|
|---|
| 350 | nt = np+nm+nz;
|
|---|
| 351 | if( nt > 0 )
|
|---|
| 352 | {
|
|---|
| 353 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 354 | dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
|
|---|
| 355 | if( std::fabs(dum) < 1.0 )
|
|---|
| 356 | {
|
|---|
| 357 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 358 | }
|
|---|
| 359 | else
|
|---|
| 360 | excs += dum*test;
|
|---|
| 361 | }
|
|---|
| 362 | }
|
|---|
| 363 | }
|
|---|
| 364 | }
|
|---|
| 365 | }
|
|---|
| 366 | if( ran >= excs ) // 3 previous loops continued to the end
|
|---|
| 367 | {
|
|---|
| 368 | quasiElastic = true;
|
|---|
| 369 | return;
|
|---|
| 370 | }
|
|---|
| 371 | np--; nm--; nz--;
|
|---|
| 372 | }
|
|---|
| 373 | else // target must be a neutron
|
|---|
| 374 | {
|
|---|
| 375 | counter = -1;
|
|---|
| 376 | for( np=0; np<numSec/3 && ran>=excs; ++np )
|
|---|
| 377 | {
|
|---|
| 378 | for( nm=std::max(0,np-1); nm<=(np+1) && ran>=excs; ++nm )
|
|---|
| 379 | {
|
|---|
| 380 | for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
|
|---|
| 381 | {
|
|---|
| 382 | if( ++counter < numMul )
|
|---|
| 383 | {
|
|---|
| 384 | nt = np+nm+nz;
|
|---|
| 385 | if( (nt>=1) && (nt<=numSec) )
|
|---|
| 386 | {
|
|---|
| 387 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 388 | dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
|
|---|
| 389 | if( std::fabs(dum) < 1.0 )
|
|---|
| 390 | {
|
|---|
| 391 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 392 | }
|
|---|
| 393 | else
|
|---|
| 394 | excs += dum*test;
|
|---|
| 395 | }
|
|---|
| 396 | }
|
|---|
| 397 | }
|
|---|
| 398 | }
|
|---|
| 399 | }
|
|---|
| 400 | if( ran >= excs ) // 3 previous loops continued to the end
|
|---|
| 401 | {
|
|---|
| 402 | quasiElastic = true;
|
|---|
| 403 | return;
|
|---|
| 404 | }
|
|---|
| 405 | np--; nm--; nz--;
|
|---|
| 406 | }
|
|---|
| 407 | }
|
|---|
| 408 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 409 | {
|
|---|
| 410 | switch( np-nm )
|
|---|
| 411 | {
|
|---|
| 412 | case 1:
|
|---|
| 413 | if( G4UniformRand() < 0.5 )
|
|---|
| 414 | {
|
|---|
| 415 | currentParticle.SetDefinitionAndUpdateE( anAntiProton );
|
|---|
| 416 | incidentHasChanged = true;
|
|---|
| 417 | }
|
|---|
| 418 | else
|
|---|
| 419 | {
|
|---|
| 420 | targetParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 421 | targetHasChanged = true;
|
|---|
| 422 | }
|
|---|
| 423 | break;
|
|---|
| 424 | case 2:
|
|---|
| 425 | currentParticle.SetDefinitionAndUpdateE( anAntiProton );
|
|---|
| 426 | targetParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 427 | incidentHasChanged = true;
|
|---|
| 428 | targetHasChanged = true;
|
|---|
| 429 | break;
|
|---|
| 430 | default:
|
|---|
| 431 | break;
|
|---|
| 432 | }
|
|---|
| 433 | }
|
|---|
| 434 | else // target must be a neutron
|
|---|
| 435 | {
|
|---|
| 436 | switch( np-nm )
|
|---|
| 437 | {
|
|---|
| 438 | case 0:
|
|---|
| 439 | if( G4UniformRand() < 0.33 )
|
|---|
| 440 | {
|
|---|
| 441 | currentParticle.SetDefinitionAndUpdateE( anAntiProton );
|
|---|
| 442 | targetParticle.SetDefinitionAndUpdateE( aProton );
|
|---|
| 443 | incidentHasChanged = true;
|
|---|
| 444 | targetHasChanged = true;
|
|---|
| 445 | }
|
|---|
| 446 | break;
|
|---|
| 447 | case 1:
|
|---|
| 448 | currentParticle.SetDefinitionAndUpdateE( anAntiProton );
|
|---|
| 449 | incidentHasChanged = true;
|
|---|
| 450 | break;
|
|---|
| 451 | default:
|
|---|
| 452 | targetParticle.SetDefinitionAndUpdateE( aProton );
|
|---|
| 453 | targetHasChanged = true;
|
|---|
| 454 | break;
|
|---|
| 455 | }
|
|---|
| 456 | }
|
|---|
| 457 | }
|
|---|
| 458 | else // random number <= anhl[iplab]
|
|---|
| 459 | {
|
|---|
| 460 | if( centerofmassEnergy <= 2*aPiPlus->GetPDGMass()/MeV )
|
|---|
| 461 | {
|
|---|
| 462 | quasiElastic = true;
|
|---|
| 463 | return;
|
|---|
| 464 | }
|
|---|
| 465 | //
|
|---|
| 466 | // annihilation channels
|
|---|
| 467 | //
|
|---|
| 468 | G4double n, anpn;
|
|---|
| 469 | GetNormalizationConstant( -centerofmassEnergy, n, anpn );
|
|---|
| 470 | G4double ran = G4UniformRand();
|
|---|
| 471 | G4double dum, excs = 0.0;
|
|---|
| 472 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 473 | {
|
|---|
| 474 | counter = -1;
|
|---|
| 475 | for( np=1; (np<numSec/3) && (ran>=excs); ++np )
|
|---|
| 476 | {
|
|---|
| 477 | nm = np-1;
|
|---|
| 478 | for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
|
|---|
| 479 | {
|
|---|
| 480 | if( ++counter < numMulA )
|
|---|
| 481 | {
|
|---|
| 482 | nt = np+nm+nz;
|
|---|
| 483 | if( nt>1 && nt<=numSec )
|
|---|
| 484 | {
|
|---|
| 485 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 486 | dum = (pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
|
|---|
| 487 | if( std::fabs(dum) < 1.0 )
|
|---|
| 488 | {
|
|---|
| 489 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 490 | }
|
|---|
| 491 | else
|
|---|
| 492 | excs += dum*test;
|
|---|
| 493 | }
|
|---|
| 494 | }
|
|---|
| 495 | }
|
|---|
| 496 | }
|
|---|
| 497 | }
|
|---|
| 498 | else // target must be a neutron
|
|---|
| 499 | {
|
|---|
| 500 | counter = -1;
|
|---|
| 501 | for( np=0; (np<numSec/3) && (ran>=excs); ++np )
|
|---|
| 502 | {
|
|---|
| 503 | nm = np;
|
|---|
| 504 | for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
|
|---|
| 505 | {
|
|---|
| 506 | if( ++counter < numMulA )
|
|---|
| 507 | {
|
|---|
| 508 | nt = np+nm+nz;
|
|---|
| 509 | if( (nt>1) && (nt<=numSec) )
|
|---|
| 510 | {
|
|---|
| 511 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 512 | dum = (pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
|
|---|
| 513 | if( std::fabs(dum) < 1.0 )
|
|---|
| 514 | {
|
|---|
| 515 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 516 | }
|
|---|
| 517 | else
|
|---|
| 518 | excs += dum*test;
|
|---|
| 519 | }
|
|---|
| 520 | }
|
|---|
| 521 | }
|
|---|
| 522 | }
|
|---|
| 523 | }
|
|---|
| 524 | if( ran >= excs ) // 3 previous loops continued to the end
|
|---|
| 525 | {
|
|---|
| 526 | quasiElastic = true;
|
|---|
| 527 | return;
|
|---|
| 528 | }
|
|---|
| 529 | np--; nz--;
|
|---|
| 530 | currentParticle.SetMass( 0.0 );
|
|---|
| 531 | targetParticle.SetMass( 0.0 );
|
|---|
| 532 | }
|
|---|
| 533 | while(np+nm+nz<3) nz++;
|
|---|
| 534 | SetUpPions( np, nm, nz, vec, vecLen );
|
|---|
| 535 | return;
|
|---|
| 536 | }
|
|---|
| 537 |
|
|---|
| 538 | /* end of file */
|
|---|
| 539 |
|
|---|