| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4LEKaonPlusInelastic.cc,v 1.13 2006/06/29 20:45:01 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02 $
|
|---|
| 29 | //
|
|---|
| 30 | // Hadronic Process: Low Energy KaonPlus Inelastic Process
|
|---|
| 31 | // J.L. Chuma, TRIUMF, 05-Feb-1997
|
|---|
| 32 | // Last modified: 27-Mar-1997
|
|---|
| 33 | // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
|
|---|
| 34 |
|
|---|
| 35 | #include "G4LEKaonPlusInelastic.hh"
|
|---|
| 36 | #include "Randomize.hh"
|
|---|
| 37 |
|
|---|
| 38 | G4HadFinalState *
|
|---|
| 39 | G4LEKaonPlusInelastic::ApplyYourself( const G4HadProjectile &aTrack,
|
|---|
| 40 | G4Nucleus &targetNucleus )
|
|---|
| 41 | {
|
|---|
| 42 | const G4HadProjectile *originalIncident = &aTrack;
|
|---|
| 43 | if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
|
|---|
| 44 | {
|
|---|
| 45 | theParticleChange.SetStatusChange(isAlive);
|
|---|
| 46 | theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
|
|---|
| 47 | theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
|
|---|
| 48 | return &theParticleChange;
|
|---|
| 49 | }
|
|---|
| 50 |
|
|---|
| 51 | // create the target particle
|
|---|
| 52 |
|
|---|
| 53 | G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
|
|---|
| 54 | G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
|
|---|
| 55 |
|
|---|
| 56 | if( verboseLevel > 1 )
|
|---|
| 57 | {
|
|---|
| 58 | const G4Material *targetMaterial = aTrack.GetMaterial();
|
|---|
| 59 | G4cout << "G4LEKaonPlusInelastic::ApplyYourself called" << G4endl;
|
|---|
| 60 | G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
|
|---|
| 61 | G4cout << "target material = " << targetMaterial->GetName() << ", ";
|
|---|
| 62 | G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
|
|---|
| 63 | << G4endl;
|
|---|
| 64 | }
|
|---|
| 65 | G4ReactionProduct currentParticle( const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition()));
|
|---|
| 66 | currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
|
|---|
| 67 | currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
|
|---|
| 68 |
|
|---|
| 69 | // Fermi motion and evaporation
|
|---|
| 70 | // As of Geant3, the Fermi energy calculation had not been Done
|
|---|
| 71 |
|
|---|
| 72 | G4double ek = originalIncident->GetKineticEnergy();
|
|---|
| 73 | G4double amas = originalIncident->GetDefinition()->GetPDGMass();
|
|---|
| 74 |
|
|---|
| 75 | G4double tkin = targetNucleus.Cinema( ek );
|
|---|
| 76 | ek += tkin;
|
|---|
| 77 | currentParticle.SetKineticEnergy( ek );
|
|---|
| 78 | G4double et = ek + amas;
|
|---|
| 79 | G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
|
|---|
| 80 | G4double pp = currentParticle.GetMomentum().mag();
|
|---|
| 81 | if( pp > 0.0 )
|
|---|
| 82 | {
|
|---|
| 83 | G4ThreeVector momentum = currentParticle.GetMomentum();
|
|---|
| 84 | currentParticle.SetMomentum( momentum * (p/pp) );
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | // calculate black track energies
|
|---|
| 88 |
|
|---|
| 89 | tkin = targetNucleus.EvaporationEffects( ek );
|
|---|
| 90 | ek -= tkin;
|
|---|
| 91 | currentParticle.SetKineticEnergy( ek );
|
|---|
| 92 | et = ek + amas;
|
|---|
| 93 | p = std::sqrt( std::abs((et-amas)*(et+amas)) );
|
|---|
| 94 | pp = currentParticle.GetMomentum().mag();
|
|---|
| 95 | if( pp > 0.0 )
|
|---|
| 96 | {
|
|---|
| 97 | G4ThreeVector momentum = currentParticle.GetMomentum();
|
|---|
| 98 | currentParticle.SetMomentum( momentum * (p/pp) );
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | G4ReactionProduct modifiedOriginal = currentParticle;
|
|---|
| 102 |
|
|---|
| 103 | currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
|
|---|
| 104 | targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
|
|---|
| 105 | G4bool incidentHasChanged = false;
|
|---|
| 106 | G4bool targetHasChanged = false;
|
|---|
| 107 | G4bool quasiElastic = false;
|
|---|
| 108 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
|
|---|
| 109 | G4int vecLen = 0;
|
|---|
| 110 | vec.Initialize( 0 );
|
|---|
| 111 |
|
|---|
| 112 | const G4double cutOff = 0.1*MeV;
|
|---|
| 113 | if( currentParticle.GetKineticEnergy() > cutOff )
|
|---|
| 114 | Cascade( vec, vecLen,
|
|---|
| 115 | originalIncident, currentParticle, targetParticle,
|
|---|
| 116 | incidentHasChanged, targetHasChanged, quasiElastic );
|
|---|
| 117 |
|
|---|
| 118 | CalculateMomenta( vec, vecLen,
|
|---|
| 119 | originalIncident, originalTarget, modifiedOriginal,
|
|---|
| 120 | targetNucleus, currentParticle, targetParticle,
|
|---|
| 121 | incidentHasChanged, targetHasChanged, quasiElastic );
|
|---|
| 122 |
|
|---|
| 123 | SetUpChange( vec, vecLen,
|
|---|
| 124 | currentParticle, targetParticle,
|
|---|
| 125 | incidentHasChanged );
|
|---|
| 126 |
|
|---|
| 127 | delete originalTarget;
|
|---|
| 128 |
|
|---|
| 129 | return &theParticleChange;
|
|---|
| 130 | }
|
|---|
| 131 |
|
|---|
| 132 | void
|
|---|
| 133 | G4LEKaonPlusInelastic::Cascade(
|
|---|
| 134 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 135 | G4int &vecLen,
|
|---|
| 136 | const G4HadProjectile *originalIncident,
|
|---|
| 137 | G4ReactionProduct ¤tParticle,
|
|---|
| 138 | G4ReactionProduct &targetParticle,
|
|---|
| 139 | G4bool &incidentHasChanged,
|
|---|
| 140 | G4bool &targetHasChanged,
|
|---|
| 141 | G4bool &quasiElastic )
|
|---|
| 142 | {
|
|---|
| 143 | // derived from original FORTRAN code CASKP by H. Fesefeldt (13-Sep-1987)
|
|---|
| 144 | //
|
|---|
| 145 | // K+ undergoes interaction with nucleon within a nucleus. Check if it is
|
|---|
| 146 | // energetically possible to produce pions/kaons. In not, assume nuclear excitation
|
|---|
| 147 | // occurs and input particle is degraded in energy. No other particles are produced.
|
|---|
| 148 | // If reaction is possible, find the correct number of pions/protons/neutrons
|
|---|
| 149 | // produced using an interpolation to multiplicity data. Replace some pions or
|
|---|
| 150 | // protons/neutrons by kaons or strange baryons according to the average
|
|---|
| 151 | // multiplicity per Inelastic reaction.
|
|---|
| 152 | //
|
|---|
| 153 | const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
|
|---|
| 154 | const G4double etOriginal = originalIncident->GetTotalEnergy();
|
|---|
| 155 | const G4double targetMass = targetParticle.GetMass();
|
|---|
| 156 | G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
|
|---|
| 157 | targetMass*targetMass +
|
|---|
| 158 | 2.0*targetMass*etOriginal );
|
|---|
| 159 | G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
|
|---|
| 160 | if( availableEnergy < G4PionPlus::PionPlus()->GetPDGMass() )
|
|---|
| 161 | {
|
|---|
| 162 | quasiElastic = true;
|
|---|
| 163 | return;
|
|---|
| 164 | }
|
|---|
| 165 | static G4bool first = true;
|
|---|
| 166 | const G4int numMul = 1200;
|
|---|
| 167 | const G4int numSec = 60;
|
|---|
| 168 | static G4double protmul[numMul], protnorm[numSec]; // proton constants
|
|---|
| 169 | static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
|
|---|
| 170 | // np = number of pi+, nm = number of pi-, nz = number of pi0
|
|---|
| 171 | G4int nt=0, np=0, nm=0, nz=0;
|
|---|
| 172 | const G4double c = 1.25;
|
|---|
| 173 | const G4double b[] = { 0.70, 0.70 };
|
|---|
| 174 | if( first ) // compute normalization constants, this will only be Done once
|
|---|
| 175 | {
|
|---|
| 176 | first = false;
|
|---|
| 177 | G4int i;
|
|---|
| 178 | for( i=0; i<numMul; ++i )protmul[i] = 0.0;
|
|---|
| 179 | for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
|
|---|
| 180 | G4int counter = -1;
|
|---|
| 181 | for( np=0; np<(numSec/3); ++np )
|
|---|
| 182 | {
|
|---|
| 183 | for( nm=std::max(0,np-2); nm<=np; ++nm )
|
|---|
| 184 | {
|
|---|
| 185 | for( nz=0; nz<numSec/3; ++nz )
|
|---|
| 186 | {
|
|---|
| 187 | if( ++counter < numMul )
|
|---|
| 188 | {
|
|---|
| 189 | nt = np+nm+nz;
|
|---|
| 190 | if( nt > 0 )
|
|---|
| 191 | {
|
|---|
| 192 | protmul[counter] = Pmltpc(np,nm,nz,nt,b[0],c);
|
|---|
| 193 | protnorm[nt-1] += protmul[counter];
|
|---|
| 194 | }
|
|---|
| 195 | }
|
|---|
| 196 | }
|
|---|
| 197 | }
|
|---|
| 198 | }
|
|---|
| 199 | for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
|
|---|
| 200 | for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
|
|---|
| 201 | counter = -1;
|
|---|
| 202 | for( np=0; np<numSec/3; ++np )
|
|---|
| 203 | {
|
|---|
| 204 | for( nm=std::max(0,np-1); nm<=(np+1); ++nm )
|
|---|
| 205 | {
|
|---|
| 206 | for( nz=0; nz<numSec/3; ++nz )
|
|---|
| 207 | {
|
|---|
| 208 | if( ++counter < numMul )
|
|---|
| 209 | {
|
|---|
| 210 | nt = np+nm+nz;
|
|---|
| 211 | if( (nt>0) && (nt<=numSec) )
|
|---|
| 212 | {
|
|---|
| 213 | neutmul[counter] = Pmltpc(np,nm,nz,nt,b[1],c);
|
|---|
| 214 | neutnorm[nt-1] += neutmul[counter];
|
|---|
| 215 | }
|
|---|
| 216 | }
|
|---|
| 217 | }
|
|---|
| 218 | }
|
|---|
| 219 | }
|
|---|
| 220 | for( i=0; i<numSec; ++i )
|
|---|
| 221 | {
|
|---|
| 222 | if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
|
|---|
| 223 | if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
|
|---|
| 224 | }
|
|---|
| 225 | } // end of initialization
|
|---|
| 226 |
|
|---|
| 227 | const G4double expxu = 82.; // upper bound for arg. of exp
|
|---|
| 228 | const G4double expxl = -expxu; // lower bound for arg. of exp
|
|---|
| 229 | G4ParticleDefinition *aKaonZS = G4KaonZeroShort::KaonZeroShort();
|
|---|
| 230 | G4ParticleDefinition *aKaonZL = G4KaonZeroLong::KaonZeroLong();
|
|---|
| 231 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 232 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 233 | G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
|
|---|
| 234 | const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
|
|---|
| 235 | G4double test, w0, wp, wt, wm;
|
|---|
| 236 | if( (availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) )
|
|---|
| 237 | {
|
|---|
| 238 | // suppress high multiplicity events at low momentum
|
|---|
| 239 | // only one pion will be produced
|
|---|
| 240 |
|
|---|
| 241 | nm = np = nz = 0;
|
|---|
| 242 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 243 | {
|
|---|
| 244 | test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[0])/(2.0*c*c) ) ) );
|
|---|
| 245 | w0 = test;
|
|---|
| 246 | wp = test*2.0;
|
|---|
| 247 | if( G4UniformRand() < w0/(w0+wp) )
|
|---|
| 248 | nz = 1;
|
|---|
| 249 | else
|
|---|
| 250 | np = 1;
|
|---|
| 251 | }
|
|---|
| 252 | else // target is a neutron
|
|---|
| 253 | {
|
|---|
| 254 | test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[1])/(2.0*c*c) ) ) );
|
|---|
| 255 | w0 = test;
|
|---|
| 256 | wp = test;
|
|---|
| 257 | test = std::exp( std::min( expxu, std::max( expxl, -sqr(-1.0+b[1])/(2.0*c*c) ) ) );
|
|---|
| 258 | wm = test;
|
|---|
| 259 | wt = w0+wp+wm;
|
|---|
| 260 | wp += w0;
|
|---|
| 261 | G4double ran = G4UniformRand();
|
|---|
| 262 | if( ran < w0/wt )
|
|---|
| 263 | nz = 1;
|
|---|
| 264 | else if( ran < wp/wt )
|
|---|
| 265 | np = 1;
|
|---|
| 266 | else
|
|---|
| 267 | nm = 1;
|
|---|
| 268 | }
|
|---|
| 269 | }
|
|---|
| 270 | else
|
|---|
| 271 | {
|
|---|
| 272 | G4double n, anpn;
|
|---|
| 273 | GetNormalizationConstant( availableEnergy, n, anpn );
|
|---|
| 274 | G4double ran = G4UniformRand();
|
|---|
| 275 | G4double dum, excs = 0.0;
|
|---|
| 276 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 277 | {
|
|---|
| 278 | G4int counter = -1;
|
|---|
| 279 | for( np=0; (np<numSec/3) && (ran>=excs); ++np )
|
|---|
| 280 | {
|
|---|
| 281 | for( nm=std::max(0,np-2); (nm<=np) && (ran>=excs); ++nm )
|
|---|
| 282 | {
|
|---|
| 283 | for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
|
|---|
| 284 | {
|
|---|
| 285 | if( ++counter < numMul )
|
|---|
| 286 | {
|
|---|
| 287 | nt = np+nm+nz;
|
|---|
| 288 | if( nt > 0 )
|
|---|
| 289 | {
|
|---|
| 290 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 291 | dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
|
|---|
| 292 | if( std::fabs(dum) < 1.0 )
|
|---|
| 293 | {
|
|---|
| 294 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 295 | }
|
|---|
| 296 | else
|
|---|
| 297 | excs += dum*test;
|
|---|
| 298 | }
|
|---|
| 299 | }
|
|---|
| 300 | }
|
|---|
| 301 | }
|
|---|
| 302 | }
|
|---|
| 303 | if( ran >= excs )return; // 3 previous loops continued to the end
|
|---|
| 304 | np--; nm--; nz--;
|
|---|
| 305 | }
|
|---|
| 306 | else // target must be a neutron
|
|---|
| 307 | {
|
|---|
| 308 | G4int counter = -1;
|
|---|
| 309 | for( np=0; (np<numSec/3) && (ran>=excs); ++np )
|
|---|
| 310 | {
|
|---|
| 311 | for( nm=std::max(0,np-1); (nm<=(np+1)) && (ran>=excs); ++nm )
|
|---|
| 312 | {
|
|---|
| 313 | for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
|
|---|
| 314 | {
|
|---|
| 315 | if( ++counter < numMul )
|
|---|
| 316 | {
|
|---|
| 317 | nt = np+nm+nz;
|
|---|
| 318 | if( (nt>=1) && (nt<=numSec) )
|
|---|
| 319 | {
|
|---|
| 320 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 321 | dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
|
|---|
| 322 | if( std::fabs(dum) < 1.0 )
|
|---|
| 323 | {
|
|---|
| 324 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 325 | }
|
|---|
| 326 | else
|
|---|
| 327 | excs += dum*test;
|
|---|
| 328 | }
|
|---|
| 329 | }
|
|---|
| 330 | }
|
|---|
| 331 | }
|
|---|
| 332 | }
|
|---|
| 333 | if( ran >= excs )return; // 3 previous loops continued to the end
|
|---|
| 334 | np--; nm--; nz--;
|
|---|
| 335 | }
|
|---|
| 336 | }
|
|---|
| 337 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 338 | {
|
|---|
| 339 | switch( np-nm )
|
|---|
| 340 | {
|
|---|
| 341 | case 1:
|
|---|
| 342 | if( G4UniformRand() < 0.5 )
|
|---|
| 343 | {
|
|---|
| 344 | if( G4UniformRand() < 0.5 )
|
|---|
| 345 | currentParticle.SetDefinitionAndUpdateE( aKaonZS );
|
|---|
| 346 | else
|
|---|
| 347 | currentParticle.SetDefinitionAndUpdateE( aKaonZL );
|
|---|
| 348 | incidentHasChanged = true;
|
|---|
| 349 | }
|
|---|
| 350 | else
|
|---|
| 351 | {
|
|---|
| 352 | targetParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 353 | targetHasChanged = true;
|
|---|
| 354 | }
|
|---|
| 355 | break;
|
|---|
| 356 | case 2:
|
|---|
| 357 | if( G4UniformRand() < 0.5 )
|
|---|
| 358 | currentParticle.SetDefinitionAndUpdateE( aKaonZS );
|
|---|
| 359 | else
|
|---|
| 360 | currentParticle.SetDefinitionAndUpdateE( aKaonZL );
|
|---|
| 361 | incidentHasChanged = true;
|
|---|
| 362 | targetParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 363 | incidentHasChanged = true;
|
|---|
| 364 | targetHasChanged = true;
|
|---|
| 365 | break;
|
|---|
| 366 | default:
|
|---|
| 367 | break;
|
|---|
| 368 | }
|
|---|
| 369 | }
|
|---|
| 370 | else // target is a neutron
|
|---|
| 371 | {
|
|---|
| 372 | switch( np-nm )
|
|---|
| 373 | {
|
|---|
| 374 | case 0:
|
|---|
| 375 | if( G4UniformRand() < 0.25 )
|
|---|
| 376 | {
|
|---|
| 377 | if( G4UniformRand() < 0.5 )
|
|---|
| 378 | currentParticle.SetDefinitionAndUpdateE( aKaonZS );
|
|---|
| 379 | else
|
|---|
| 380 | currentParticle.SetDefinitionAndUpdateE( aKaonZL );
|
|---|
| 381 | targetParticle.SetDefinitionAndUpdateE( aProton );
|
|---|
| 382 | incidentHasChanged = true;
|
|---|
| 383 | targetHasChanged = true;
|
|---|
| 384 | }
|
|---|
| 385 | break;
|
|---|
| 386 | case 1:
|
|---|
| 387 | if( G4UniformRand() < 0.5 )
|
|---|
| 388 | currentParticle.SetDefinitionAndUpdateE( aKaonZS );
|
|---|
| 389 | else
|
|---|
| 390 | currentParticle.SetDefinitionAndUpdateE( aKaonZL );
|
|---|
| 391 | incidentHasChanged = true;
|
|---|
| 392 | break;
|
|---|
| 393 | default: // assumes nm = np+1 so charge is conserved
|
|---|
| 394 | targetParticle.SetDefinitionAndUpdateE( aProton );
|
|---|
| 395 | targetHasChanged = true;
|
|---|
| 396 | break;
|
|---|
| 397 | }
|
|---|
| 398 | }
|
|---|
| 399 | SetUpPions( np, nm, nz, vec, vecLen );
|
|---|
| 400 | return;
|
|---|
| 401 | }
|
|---|
| 402 |
|
|---|
| 403 | /* end of file */
|
|---|
| 404 |
|
|---|