| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | //
|
|---|
| 28 | // Hadronic Process: PionMinus Inelastic Process
|
|---|
| 29 | // J.L. Chuma, TRIUMF, 19-Nov-1996
|
|---|
| 30 | // Last modified: 27-Mar-1997
|
|---|
| 31 | // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
|
|---|
| 32 |
|
|---|
| 33 | #include "G4LEPionMinusInelastic.hh"
|
|---|
| 34 | #include "Randomize.hh"
|
|---|
| 35 |
|
|---|
| 36 | G4HadFinalState *
|
|---|
| 37 | G4LEPionMinusInelastic::ApplyYourself( const G4HadProjectile &aTrack,
|
|---|
| 38 | G4Nucleus &targetNucleus )
|
|---|
| 39 | {
|
|---|
| 40 | const G4HadProjectile *originalIncident = &aTrack;
|
|---|
| 41 | if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
|
|---|
| 42 | {
|
|---|
| 43 | theParticleChange.SetStatusChange(isAlive);
|
|---|
| 44 | theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
|
|---|
| 45 | theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
|
|---|
| 46 | return &theParticleChange;
|
|---|
| 47 | }
|
|---|
| 48 |
|
|---|
| 49 | // create the target particle
|
|---|
| 50 |
|
|---|
| 51 | G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
|
|---|
| 52 | // G4double targetMass = originalTarget->GetDefinition()->GetPDGMass();
|
|---|
| 53 | G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
|
|---|
| 54 |
|
|---|
| 55 | if( verboseLevel > 1 )
|
|---|
| 56 | {
|
|---|
| 57 | const G4Material *targetMaterial = aTrack.GetMaterial();
|
|---|
| 58 | G4cout << "G4PionMinusInelastic::ApplyYourself called" << G4endl;
|
|---|
| 59 | G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
|
|---|
| 60 | G4cout << "target material = " << targetMaterial->GetName() << ", ";
|
|---|
| 61 | G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
|
|---|
| 62 | << G4endl;
|
|---|
| 63 | }
|
|---|
| 64 | G4ReactionProduct currentParticle(
|
|---|
| 65 | const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition() ) );
|
|---|
| 66 | currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
|
|---|
| 67 | currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
|
|---|
| 68 |
|
|---|
| 69 | // Fermi motion and evaporation
|
|---|
| 70 | // As of Geant3, the Fermi energy calculation had not been Done
|
|---|
| 71 |
|
|---|
| 72 | G4double ek = originalIncident->GetKineticEnergy();
|
|---|
| 73 | G4double amas = originalIncident->GetDefinition()->GetPDGMass();
|
|---|
| 74 |
|
|---|
| 75 | G4double tkin = targetNucleus.Cinema( ek );
|
|---|
| 76 | ek += tkin;
|
|---|
| 77 | currentParticle.SetKineticEnergy( ek );
|
|---|
| 78 | G4double et = ek + amas;
|
|---|
| 79 | G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
|
|---|
| 80 | G4double pp = currentParticle.GetMomentum().mag();
|
|---|
| 81 | if( pp > 0.0 )
|
|---|
| 82 | {
|
|---|
| 83 | G4ThreeVector momentum = currentParticle.GetMomentum();
|
|---|
| 84 | currentParticle.SetMomentum( momentum * (p/pp) );
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | // calculate black track energies
|
|---|
| 88 |
|
|---|
| 89 | tkin = targetNucleus.EvaporationEffects( ek );
|
|---|
| 90 | ek -= tkin;
|
|---|
| 91 | currentParticle.SetKineticEnergy( ek );
|
|---|
| 92 | et = ek + amas;
|
|---|
| 93 | p = std::sqrt( std::abs((et-amas)*(et+amas)) );
|
|---|
| 94 | pp = currentParticle.GetMomentum().mag();
|
|---|
| 95 | if( pp > 0.0 )
|
|---|
| 96 | {
|
|---|
| 97 | G4ThreeVector momentum = currentParticle.GetMomentum();
|
|---|
| 98 | currentParticle.SetMomentum( momentum * (p/pp) );
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | G4ReactionProduct modifiedOriginal = currentParticle;
|
|---|
| 102 |
|
|---|
| 103 | currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
|
|---|
| 104 | targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
|
|---|
| 105 | G4bool incidentHasChanged = false;
|
|---|
| 106 | G4bool targetHasChanged = false;
|
|---|
| 107 | G4bool quasiElastic = false;
|
|---|
| 108 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
|
|---|
| 109 | G4int vecLen = 0;
|
|---|
| 110 | vec.Initialize( 0 );
|
|---|
| 111 |
|
|---|
| 112 | const G4double cutOff = 0.1*MeV;
|
|---|
| 113 | if( currentParticle.GetKineticEnergy() > cutOff )
|
|---|
| 114 | Cascade( vec, vecLen,
|
|---|
| 115 | originalIncident, currentParticle, targetParticle,
|
|---|
| 116 | incidentHasChanged, targetHasChanged, quasiElastic );
|
|---|
| 117 |
|
|---|
| 118 | CalculateMomenta( vec, vecLen,
|
|---|
| 119 | originalIncident, originalTarget, modifiedOriginal,
|
|---|
| 120 | targetNucleus, currentParticle, targetParticle,
|
|---|
| 121 | incidentHasChanged, targetHasChanged, quasiElastic );
|
|---|
| 122 |
|
|---|
| 123 | SetUpChange( vec, vecLen,
|
|---|
| 124 | currentParticle, targetParticle,
|
|---|
| 125 | incidentHasChanged );
|
|---|
| 126 |
|
|---|
| 127 | delete originalTarget;
|
|---|
| 128 | return &theParticleChange;
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | void
|
|---|
| 132 | G4LEPionMinusInelastic::Cascade(
|
|---|
| 133 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 134 | G4int& vecLen,
|
|---|
| 135 | const G4HadProjectile *originalIncident,
|
|---|
| 136 | G4ReactionProduct ¤tParticle,
|
|---|
| 137 | G4ReactionProduct &targetParticle,
|
|---|
| 138 | G4bool &incidentHasChanged,
|
|---|
| 139 | G4bool &targetHasChanged,
|
|---|
| 140 | G4bool &quasiElastic )
|
|---|
| 141 | {
|
|---|
| 142 | // derived from original FORTRAN code CASPIM by H. Fesefeldt (13-Sep-1987)
|
|---|
| 143 | //
|
|---|
| 144 | // pi- undergoes interaction with nucleon within nucleus.
|
|---|
| 145 | // Check if energetically possible to produce pions/kaons.
|
|---|
| 146 | // If not assume nuclear excitation occurs and input particle
|
|---|
| 147 | // is degraded in energy. No other particles produced.
|
|---|
| 148 | // If reaction is possible find correct number of pions/protons/neutrons
|
|---|
| 149 | // produced using an interpolation to multiplicity data.
|
|---|
| 150 | // Replace some pions or protons/neutrons by kaons or strange baryons
|
|---|
| 151 | // according to average multiplicity per inelastic reactions.
|
|---|
| 152 | //
|
|---|
| 153 | const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
|
|---|
| 154 | const G4double etOriginal = originalIncident->GetTotalEnergy();
|
|---|
| 155 | const G4double pOriginal = originalIncident->GetTotalMomentum();
|
|---|
| 156 | const G4double targetMass = targetParticle.GetMass();
|
|---|
| 157 | G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
|
|---|
| 158 | targetMass*targetMass +
|
|---|
| 159 | 2.0*targetMass*etOriginal );
|
|---|
| 160 | G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
|
|---|
| 161 | static G4bool first = true;
|
|---|
| 162 | const G4int numMul = 1200;
|
|---|
| 163 | const G4int numSec = 60;
|
|---|
| 164 | static G4double protmul[numMul], protnorm[numSec]; // proton constants
|
|---|
| 165 | static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
|
|---|
| 166 | // np = number of pi+, nm = number of pi-, nz = number of pi0
|
|---|
| 167 | G4int counter, nt=0, np=0, nm=0, nz=0;
|
|---|
| 168 | const G4double c = 1.25;
|
|---|
| 169 | const G4double b[] = { 0.70, 0.70 };
|
|---|
| 170 | if( first ) // compute normalization constants, this will only be Done once
|
|---|
| 171 | {
|
|---|
| 172 | first = false;
|
|---|
| 173 | G4int i;
|
|---|
| 174 | for( i=0; i<numMul; ++i )protmul[i] = 0.0;
|
|---|
| 175 | for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
|
|---|
| 176 | counter = -1;
|
|---|
| 177 | for( np=0; np<(numSec/3); ++np )
|
|---|
| 178 | {
|
|---|
| 179 | for( nm=std::max(0,np-1); nm<=(np+1); ++nm )
|
|---|
| 180 | {
|
|---|
| 181 | for( nz=0; nz<numSec/3; ++nz )
|
|---|
| 182 | {
|
|---|
| 183 | if( ++counter < numMul )
|
|---|
| 184 | {
|
|---|
| 185 | nt = np+nm+nz;
|
|---|
| 186 | if( nt > 0 )
|
|---|
| 187 | {
|
|---|
| 188 | protmul[counter] = Pmltpc(np,nm,nz,nt,b[0],c);
|
|---|
| 189 | protnorm[nt-1] += protmul[counter];
|
|---|
| 190 | }
|
|---|
| 191 | }
|
|---|
| 192 | }
|
|---|
| 193 | }
|
|---|
| 194 | }
|
|---|
| 195 | for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
|
|---|
| 196 | for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
|
|---|
| 197 | counter = -1;
|
|---|
| 198 | for( np=0; np<numSec/3; ++np )
|
|---|
| 199 | {
|
|---|
| 200 | for( nm=np; nm<=(np+2); ++nm )
|
|---|
| 201 | {
|
|---|
| 202 | for( nz=0; nz<numSec/3; ++nz )
|
|---|
| 203 | {
|
|---|
| 204 | if( ++counter < numMul )
|
|---|
| 205 | {
|
|---|
| 206 | nt = np+nm+nz;
|
|---|
| 207 | if( (nt>0) && (nt<=numSec) )
|
|---|
| 208 | {
|
|---|
| 209 | neutmul[counter] = Pmltpc(np,nm,nz,nt,b[1],c);
|
|---|
| 210 | neutnorm[nt-1] += neutmul[counter];
|
|---|
| 211 | }
|
|---|
| 212 | }
|
|---|
| 213 | }
|
|---|
| 214 | }
|
|---|
| 215 | }
|
|---|
| 216 | for( i=0; i<numSec; ++i )
|
|---|
| 217 | {
|
|---|
| 218 | if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
|
|---|
| 219 | if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
|
|---|
| 220 | }
|
|---|
| 221 | } // end of initialization
|
|---|
| 222 |
|
|---|
| 223 | const G4double expxu = 82.; // upper bound for arg. of exp
|
|---|
| 224 | const G4double expxl = -expxu; // lower bound for arg. of exp
|
|---|
| 225 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 226 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 227 | G4ParticleDefinition *aPiZero = G4PionZero::PionZero();
|
|---|
| 228 | G4int ieab = G4int(availableEnergy*5.0/GeV);
|
|---|
| 229 | const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
|
|---|
| 230 | G4double test, w0, wp, wt, wm;
|
|---|
| 231 | if( (availableEnergy<2.0*GeV) && (G4UniformRand()>=supp[ieab]) )
|
|---|
| 232 | {
|
|---|
| 233 | // suppress high multiplicity events at low momentum
|
|---|
| 234 | // only one pion will be produced
|
|---|
| 235 |
|
|---|
| 236 | // charge exchange reaction is included in inelastic cross section
|
|---|
| 237 |
|
|---|
| 238 | const G4double cech[] = {1.,0.95,0.79,0.32,0.19,0.16,0.14,0.12,0.10,0.08};
|
|---|
| 239 | G4int iplab = G4int(std::min( 9.0, pOriginal/GeV*5.0 ));
|
|---|
| 240 | if( G4UniformRand() <= cech[iplab] )
|
|---|
| 241 | {
|
|---|
| 242 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 243 | {
|
|---|
| 244 | currentParticle.SetDefinitionAndUpdateE( aPiZero ); // charge exchange
|
|---|
| 245 | targetParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 246 | incidentHasChanged = true;
|
|---|
| 247 | targetHasChanged = true;
|
|---|
| 248 | }
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 | if( availableEnergy <= G4PionMinus::PionMinus()->GetPDGMass() )
|
|---|
| 252 | {
|
|---|
| 253 | quasiElastic = true;
|
|---|
| 254 | return;
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 | nm = np = nz = 0;
|
|---|
| 258 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 259 | {
|
|---|
| 260 | test = std::exp( std::min( expxu, std::max( expxl, -(1.0+b[0])*(1.0+b[0])/(2.0*c*c) ) ) );
|
|---|
| 261 | w0 = test;
|
|---|
| 262 | wp = 10.0*test;
|
|---|
| 263 | test = std::exp( std::min( expxu, std::max( expxl, -(-1.0+b[0])*(-1.0+b[0])/(2.0*c*c) ) ) );
|
|---|
| 264 | wm = test;
|
|---|
| 265 | wt = w0+wp+wm;
|
|---|
| 266 | wp += w0;
|
|---|
| 267 | G4double ran = G4UniformRand();
|
|---|
| 268 | if( ran < w0/wt )
|
|---|
| 269 | nz = 1;
|
|---|
| 270 | else if( ran < wp/wt )
|
|---|
| 271 | np = 1;
|
|---|
| 272 | else
|
|---|
| 273 | nm = 1;
|
|---|
| 274 | }
|
|---|
| 275 | else // target is a neutron
|
|---|
| 276 | {
|
|---|
| 277 | test = std::exp( std::min( expxu, std::max( expxl, -(1.0+b[1])*(1.0+b[1])/(2.0*c*c) ) ) );
|
|---|
| 278 | w0 = test;
|
|---|
| 279 | test = std::exp( std::min( expxu, std::max( expxl, -(-1.0+b[1])*(-1.0+b[1])/(2.0*c*c) ) ) );
|
|---|
| 280 | wm = test;
|
|---|
| 281 | G4double ran = G4UniformRand();
|
|---|
| 282 | if( ran < w0/(w0+wm) )
|
|---|
| 283 | nz = 1;
|
|---|
| 284 | else
|
|---|
| 285 | nm = 1;
|
|---|
| 286 | }
|
|---|
| 287 | }
|
|---|
| 288 | else
|
|---|
| 289 | {
|
|---|
| 290 | if( availableEnergy <= G4PionMinus::PionMinus()->GetPDGMass() )
|
|---|
| 291 | {
|
|---|
| 292 | quasiElastic = true;
|
|---|
| 293 | return;
|
|---|
| 294 | }
|
|---|
| 295 | G4double n, anpn;
|
|---|
| 296 | GetNormalizationConstant( availableEnergy, n, anpn );
|
|---|
| 297 | G4double ran = G4UniformRand();
|
|---|
| 298 | G4double dum, excs = 0.0;
|
|---|
| 299 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 300 | {
|
|---|
| 301 | counter = -1;
|
|---|
| 302 | for( np=0; (np<numSec/3) && (ran>=excs); ++np )
|
|---|
| 303 | {
|
|---|
| 304 | for( nm=std::max(0,np-1); (nm<=(np+1)) && (ran>=excs); ++nm )
|
|---|
| 305 | {
|
|---|
| 306 | for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
|
|---|
| 307 | {
|
|---|
| 308 | if( ++counter < numMul )
|
|---|
| 309 | {
|
|---|
| 310 | nt = np+nm+nz;
|
|---|
| 311 | if( nt > 0 )
|
|---|
| 312 | {
|
|---|
| 313 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 314 | dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
|
|---|
| 315 | if( std::fabs(dum) < 1.0 )
|
|---|
| 316 | {
|
|---|
| 317 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 318 | }
|
|---|
| 319 | else
|
|---|
| 320 | excs += dum*test;
|
|---|
| 321 | }
|
|---|
| 322 | }
|
|---|
| 323 | }
|
|---|
| 324 | }
|
|---|
| 325 | }
|
|---|
| 326 | if( ran >= excs ) // 3 previous loops continued to the end
|
|---|
| 327 | {
|
|---|
| 328 | quasiElastic = true;
|
|---|
| 329 | return;
|
|---|
| 330 | }
|
|---|
| 331 | np--; nm--; nz--;
|
|---|
| 332 | }
|
|---|
| 333 | else // target must be a neutron
|
|---|
| 334 | {
|
|---|
| 335 | counter = -1;
|
|---|
| 336 | for( np=0; (np<numSec/3) && (ran>=excs); ++np )
|
|---|
| 337 | {
|
|---|
| 338 | for( nm=np; (nm<=(np+2)) && (ran>=excs); ++nm )
|
|---|
| 339 | {
|
|---|
| 340 | for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
|
|---|
| 341 | {
|
|---|
| 342 | if( ++counter < numMul )
|
|---|
| 343 | {
|
|---|
| 344 | nt = np+nm+nz;
|
|---|
| 345 | if( (nt>=1) && (nt<=numSec) )
|
|---|
| 346 | {
|
|---|
| 347 | test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
|
|---|
| 348 | dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
|
|---|
| 349 | if( std::fabs(dum) < 1.0 )
|
|---|
| 350 | {
|
|---|
| 351 | if( test >= 1.0e-10 )excs += dum*test;
|
|---|
| 352 | }
|
|---|
| 353 | else
|
|---|
| 354 | excs += dum*test;
|
|---|
| 355 | }
|
|---|
| 356 | }
|
|---|
| 357 | }
|
|---|
| 358 | }
|
|---|
| 359 | }
|
|---|
| 360 | if( ran >= excs ) // 3 previous loops continued to the end
|
|---|
| 361 | {
|
|---|
| 362 | quasiElastic = true;
|
|---|
| 363 | return;
|
|---|
| 364 | }
|
|---|
| 365 | np--; nm--; nz--;
|
|---|
| 366 | }
|
|---|
| 367 | }
|
|---|
| 368 | if( targetParticle.GetDefinition() == aProton )
|
|---|
| 369 | {
|
|---|
| 370 | switch( np-nm )
|
|---|
| 371 | {
|
|---|
| 372 | case 0:
|
|---|
| 373 | if( G4UniformRand() >= 0.75 )
|
|---|
| 374 | {
|
|---|
| 375 | currentParticle.SetDefinitionAndUpdateE( aPiZero );
|
|---|
| 376 | targetParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 377 | incidentHasChanged = true;
|
|---|
| 378 | targetHasChanged = true;
|
|---|
| 379 | }
|
|---|
| 380 | break;
|
|---|
| 381 | case 1:
|
|---|
| 382 | targetParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 383 | targetHasChanged = true;
|
|---|
| 384 | break;
|
|---|
| 385 | default:
|
|---|
| 386 | currentParticle.SetDefinitionAndUpdateE( aPiZero );
|
|---|
| 387 | incidentHasChanged = true;
|
|---|
| 388 | break;
|
|---|
| 389 | }
|
|---|
| 390 | }
|
|---|
| 391 | else
|
|---|
| 392 | {
|
|---|
| 393 | switch( np-nm )
|
|---|
| 394 | {
|
|---|
| 395 | case -1:
|
|---|
| 396 | if( G4UniformRand() < 0.5 )
|
|---|
| 397 | {
|
|---|
| 398 | targetParticle.SetDefinitionAndUpdateE( aProton );
|
|---|
| 399 | targetHasChanged = true;
|
|---|
| 400 | } else {
|
|---|
| 401 | currentParticle.SetDefinitionAndUpdateE( aPiZero );
|
|---|
| 402 | incidentHasChanged = true;
|
|---|
| 403 | }
|
|---|
| 404 | break;
|
|---|
| 405 | case 0:
|
|---|
| 406 | break;
|
|---|
| 407 | default:
|
|---|
| 408 | currentParticle.SetDefinitionAndUpdateE( aPiZero );
|
|---|
| 409 | incidentHasChanged = true;
|
|---|
| 410 | break;
|
|---|
| 411 | }
|
|---|
| 412 | }
|
|---|
| 413 | SetUpPions( np, nm, nz, vec, vecLen );
|
|---|
| 414 | return;
|
|---|
| 415 | }
|
|---|
| 416 |
|
|---|
| 417 | /* end of file */
|
|---|
| 418 |
|
|---|