source: trunk/source/processes/hadronic/models/neutron_hp/src/G4NeutronHPCaptureFS.cc@ 1199

Last change on this file since 1199 was 962, checked in by garnier, 17 years ago

update processes

File size: 7.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// neutron_hp -- source file
27// J.P. Wellisch, Nov-1996
28// A prototype of the low energy neutron transport model.
29//
30// 12-April-06 Enable IC electron emissions T. Koi
31// 26-January-07 Add G4NEUTRONHP_USE_ONLY_PHOTONEVAPORATION flag
32// 081024 G4NucleiPropertiesTable:: to G4NucleiProperties::
33//
34#include "G4NeutronHPCaptureFS.hh"
35#include "G4Gamma.hh"
36#include "G4ReactionProduct.hh"
37#include "G4Nucleus.hh"
38#include "G4PhotonEvaporation.hh"
39#include "G4Fragment.hh"
40#include "G4ParticleTable.hh"
41#include "G4NeutronHPDataUsed.hh"
42
43 G4HadFinalState * G4NeutronHPCaptureFS::ApplyYourself(const G4HadProjectile & theTrack)
44 {
45 G4int i;
46 theResult.Clear();
47// prepare neutron
48 G4double eKinetic = theTrack.GetKineticEnergy();
49 const G4HadProjectile *incidentParticle = &theTrack;
50 G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>(incidentParticle->GetDefinition()) );
51 theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
52 theNeutron.SetKineticEnergy( eKinetic );
53
54// prepare target
55 G4ReactionProduct theTarget;
56 G4Nucleus aNucleus;
57 G4double eps = 0.0001;
58 if(targetMass<500*MeV)
59 targetMass = ( G4NucleiProperties::GetNuclearMass( static_cast<G4int>(theBaseA+eps) , static_cast<G4int>(theBaseZ+eps) )) /
60 G4Neutron::Neutron()->GetPDGMass();
61 G4ThreeVector neutronVelocity = 1./G4Neutron::Neutron()->GetPDGMass()*theNeutron.GetMomentum();
62 G4double temperature = theTrack.GetMaterial()->GetTemperature();
63 theTarget = aNucleus.GetBiasedThermalNucleus(targetMass, neutronVelocity, temperature);
64
65// go to nucleus rest system
66 theNeutron.Lorentz(theNeutron, -1*theTarget);
67 eKinetic = theNeutron.GetKineticEnergy();
68
69// dice the photons
70
71 G4ReactionProductVector * thePhotons = 0;
72 if ( HasFSData() && !getenv ( "G4NEUTRONHP_USE_ONLY_PHOTONEVAPORATION" ) )
73 {
74 thePhotons = theFinalStatePhotons.GetPhotons(eKinetic);
75 }
76 else
77 {
78 G4ThreeVector aCMSMomentum = theNeutron.GetMomentum()+theTarget.GetMomentum();
79 G4LorentzVector p4(aCMSMomentum, theTarget.GetTotalEnergy() + theNeutron.GetTotalEnergy());
80 G4Fragment nucleus(static_cast<G4int>(theBaseA+1), static_cast<G4int>(theBaseZ) ,p4);
81 G4PhotonEvaporation photonEvaporation;
82 // T. K. add
83 photonEvaporation.SetICM( TRUE );
84 G4FragmentVector* products = photonEvaporation.BreakItUp(nucleus);
85 G4FragmentVector::iterator i;
86 thePhotons = new G4ReactionProductVector;
87 for(i=products->begin(); i!=products->end(); i++)
88 {
89 G4ReactionProduct * theOne = new G4ReactionProduct;
90 // T. K. add
91 if ( (*i)->GetParticleDefinition() != 0 )
92 theOne->SetDefinition( (*i)->GetParticleDefinition() );
93 else
94 theOne->SetDefinition( G4Gamma::Gamma() ); // this definiion will be over writen
95
96 // T. K. comment out below line
97 //theOne->SetDefinition( G4Gamma::Gamma() );
98 G4ParticleTable* theTable = G4ParticleTable::GetParticleTable();
99 if((*i)->GetMomentum().mag() > 10*MeV)
100 theOne->SetDefinition(
101 theTable->FindIon(static_cast<G4int>(theBaseZ), static_cast<G4int>(theBaseA+1), 0, static_cast<G4int>(theBaseZ)) );
102 theOne->SetMomentum( (*i)->GetMomentum().vect() ) ;
103 theOne->SetTotalEnergy( (*i)->GetMomentum().t() );
104 thePhotons->push_back(theOne);
105 delete *i;
106 }
107 delete products;
108 }
109
110// add them to the final state
111
112 G4int nPhotons = 0;
113 if(thePhotons!=0) nPhotons=thePhotons->size();
114 G4int nParticles = nPhotons;
115 if(1==nPhotons) nParticles = 2;
116
117 // back to lab system
118 for(i=0; i<nPhotons; i++)
119 {
120 thePhotons->operator[](i)->Lorentz(*(thePhotons->operator[](i)), theTarget);
121 }
122
123 // Recoil, if only one gamma
124 if (1==nPhotons)
125 {
126 G4DynamicParticle * theOne = new G4DynamicParticle;
127 G4ParticleDefinition * aRecoil = G4ParticleTable::GetParticleTable()
128 ->FindIon(static_cast<G4int>(theBaseZ), static_cast<G4int>(theBaseA+1), 0, static_cast<G4int>(theBaseZ));
129 theOne->SetDefinition(aRecoil);
130 // Now energy;
131 // Can be done slightly better @
132 G4ThreeVector aMomentum = theTrack.Get4Momentum().vect()
133 +theTarget.GetMomentum()
134 -thePhotons->operator[](0)->GetMomentum();
135
136 G4ThreeVector theMomUnit = aMomentum.unit();
137 G4double aKinEnergy = theTrack.GetKineticEnergy()
138 +theTarget.GetKineticEnergy(); // gammas come from Q-value
139 G4double theResMass = aRecoil->GetPDGMass();
140 G4double theResE = aRecoil->GetPDGMass()+aKinEnergy;
141 G4double theAbsMom = std::sqrt(theResE*theResE - theResMass*theResMass);
142 G4ThreeVector theMomentum = theAbsMom*theMomUnit;
143 theOne->SetMomentum(theMomentum);
144 theResult.AddSecondary(theOne);
145 }
146
147 // Now fill in the gammas.
148 for(i=0; i<nPhotons; i++)
149 {
150 // back to lab system
151 G4DynamicParticle * theOne = new G4DynamicParticle;
152 theOne->SetDefinition(thePhotons->operator[](i)->GetDefinition());
153 theOne->SetMomentum(thePhotons->operator[](i)->GetMomentum());
154 theResult.AddSecondary(theOne);
155 delete thePhotons->operator[](i);
156 }
157 delete thePhotons;
158// clean up the primary neutron
159 theResult.SetStatusChange(stopAndKill);
160 return &theResult;
161 }
162
163 void G4NeutronHPCaptureFS::Init (G4double A, G4double Z, G4String & dirName, G4String & )
164 {
165 G4String tString = "/FS/";
166 G4bool dbool;
167 G4NeutronHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), dirName, tString, dbool);
168 G4String filename = aFile.GetName();
169 theBaseA = A;
170 theBaseZ = G4int(Z+.5);
171 if(!dbool || ( Z<2.5 && ( std::abs(theBaseZ - Z)>0.0001 || std::abs(theBaseA - A)>0.0001)))
172 {
173 hasAnyData = false;
174 hasFSData = false;
175 hasXsec = false;
176 return;
177 }
178 std::ifstream theData(filename, std::ios::in);
179
180 hasFSData = theFinalStatePhotons.InitMean(theData);
181 if(hasFSData)
182 {
183 targetMass = theFinalStatePhotons.GetTargetMass();
184 theFinalStatePhotons.InitAngular(theData);
185 theFinalStatePhotons.InitEnergies(theData);
186 }
187 theData.close();
188 }
Note: See TracBrowser for help on using the repository browser.