source: trunk/source/processes/hadronic/models/neutron_hp/src/G4NeutronHPCaptureFS.cc@ 893

Last change on this file since 893 was 819, checked in by garnier, 17 years ago

import all except CVS

File size: 7.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// neutron_hp -- source file
27// J.P. Wellisch, Nov-1996
28// A prototype of the low energy neutron transport model.
29//
30// 12-April-06 Enable IC electron emissions T. Koi
31// 26-January-07 Add G4NEUTRONHP_USE_ONLY_PHOTONEVAPORATION flag
32//
33#include "G4NeutronHPCaptureFS.hh"
34#include "G4Gamma.hh"
35#include "G4ReactionProduct.hh"
36#include "G4Nucleus.hh"
37#include "G4PhotonEvaporation.hh"
38#include "G4Fragment.hh"
39#include "G4ParticleTable.hh"
40#include "G4NeutronHPDataUsed.hh"
41
42 G4HadFinalState * G4NeutronHPCaptureFS::ApplyYourself(const G4HadProjectile & theTrack)
43 {
44 G4int i;
45 theResult.Clear();
46// prepare neutron
47 G4double eKinetic = theTrack.GetKineticEnergy();
48 const G4HadProjectile *incidentParticle = &theTrack;
49 G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>(incidentParticle->GetDefinition()) );
50 theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
51 theNeutron.SetKineticEnergy( eKinetic );
52
53// prepare target
54 G4ReactionProduct theTarget;
55 G4Nucleus aNucleus;
56 G4double eps = 0.0001;
57 if(targetMass<500*MeV)
58 targetMass = ( G4NucleiPropertiesTable::GetNuclearMass(static_cast<G4int>(theBaseZ+eps), static_cast<G4int>(theBaseA+eps))) /
59 G4Neutron::Neutron()->GetPDGMass();
60 G4ThreeVector neutronVelocity = 1./G4Neutron::Neutron()->GetPDGMass()*theNeutron.GetMomentum();
61 G4double temperature = theTrack.GetMaterial()->GetTemperature();
62 theTarget = aNucleus.GetBiasedThermalNucleus(targetMass, neutronVelocity, temperature);
63
64// go to nucleus rest system
65 theNeutron.Lorentz(theNeutron, -1*theTarget);
66 eKinetic = theNeutron.GetKineticEnergy();
67
68// dice the photons
69
70 G4ReactionProductVector * thePhotons = 0;
71 if ( HasFSData() && !getenv ( "G4NEUTRONHP_USE_ONLY_PHOTONEVAPORATION" ) )
72 {
73 thePhotons = theFinalStatePhotons.GetPhotons(eKinetic);
74 }
75 else
76 {
77 G4ThreeVector aCMSMomentum = theNeutron.GetMomentum()+theTarget.GetMomentum();
78 G4LorentzVector p4(aCMSMomentum, theTarget.GetTotalEnergy() + theNeutron.GetTotalEnergy());
79 G4Fragment nucleus(static_cast<G4int>(theBaseA+1), static_cast<G4int>(theBaseZ) ,p4);
80 G4PhotonEvaporation photonEvaporation;
81 // T. K. add
82 photonEvaporation.SetICM( TRUE );
83 G4FragmentVector* products = photonEvaporation.BreakItUp(nucleus);
84 G4FragmentVector::iterator i;
85 thePhotons = new G4ReactionProductVector;
86 for(i=products->begin(); i!=products->end(); i++)
87 {
88 G4ReactionProduct * theOne = new G4ReactionProduct;
89 // T. K. add
90 if ( (*i)->GetParticleDefinition() != 0 )
91 theOne->SetDefinition( (*i)->GetParticleDefinition() );
92 else
93 theOne->SetDefinition( G4Gamma::Gamma() ); // this definiion will be over writen
94
95 // T. K. comment out below line
96 //theOne->SetDefinition( G4Gamma::Gamma() );
97 G4ParticleTable* theTable = G4ParticleTable::GetParticleTable();
98 if((*i)->GetMomentum().mag() > 10*MeV)
99 theOne->SetDefinition(
100 theTable->FindIon(static_cast<G4int>(theBaseZ), static_cast<G4int>(theBaseA+1), 0, static_cast<G4int>(theBaseZ)) );
101 theOne->SetMomentum( (*i)->GetMomentum().vect() ) ;
102 theOne->SetTotalEnergy( (*i)->GetMomentum().t() );
103 thePhotons->push_back(theOne);
104 delete *i;
105 }
106 delete products;
107 }
108
109// add them to the final state
110
111 G4int nPhotons = 0;
112 if(thePhotons!=0) nPhotons=thePhotons->size();
113 G4int nParticles = nPhotons;
114 if(1==nPhotons) nParticles = 2;
115
116 // back to lab system
117 for(i=0; i<nPhotons; i++)
118 {
119 thePhotons->operator[](i)->Lorentz(*(thePhotons->operator[](i)), theTarget);
120 }
121
122 // Recoil, if only one gamma
123 if (1==nPhotons)
124 {
125 G4DynamicParticle * theOne = new G4DynamicParticle;
126 G4ParticleDefinition * aRecoil = G4ParticleTable::GetParticleTable()
127 ->FindIon(static_cast<G4int>(theBaseZ), static_cast<G4int>(theBaseA+1), 0, static_cast<G4int>(theBaseZ));
128 theOne->SetDefinition(aRecoil);
129 // Now energy;
130 // Can be done slightly better @
131 G4ThreeVector aMomentum = theTrack.Get4Momentum().vect()
132 +theTarget.GetMomentum()
133 -thePhotons->operator[](0)->GetMomentum();
134
135 G4ThreeVector theMomUnit = aMomentum.unit();
136 G4double aKinEnergy = theTrack.GetKineticEnergy()
137 +theTarget.GetKineticEnergy(); // gammas come from Q-value
138 G4double theResMass = aRecoil->GetPDGMass();
139 G4double theResE = aRecoil->GetPDGMass()+aKinEnergy;
140 G4double theAbsMom = std::sqrt(theResE*theResE - theResMass*theResMass);
141 G4ThreeVector theMomentum = theAbsMom*theMomUnit;
142 theOne->SetMomentum(theMomentum);
143 theResult.AddSecondary(theOne);
144 }
145
146 // Now fill in the gammas.
147 for(i=0; i<nPhotons; i++)
148 {
149 // back to lab system
150 G4DynamicParticle * theOne = new G4DynamicParticle;
151 theOne->SetDefinition(thePhotons->operator[](i)->GetDefinition());
152 theOne->SetMomentum(thePhotons->operator[](i)->GetMomentum());
153 theResult.AddSecondary(theOne);
154 delete thePhotons->operator[](i);
155 }
156 delete thePhotons;
157// clean up the primary neutron
158 theResult.SetStatusChange(stopAndKill);
159 return &theResult;
160 }
161
162 void G4NeutronHPCaptureFS::Init (G4double A, G4double Z, G4String & dirName, G4String & )
163 {
164 G4String tString = "/FS/";
165 G4bool dbool;
166 G4NeutronHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), dirName, tString, dbool);
167 G4String filename = aFile.GetName();
168 theBaseA = A;
169 theBaseZ = G4int(Z+.5);
170 if(!dbool || ( Z<2.5 && ( std::abs(theBaseZ - Z)>0.0001 || std::abs(theBaseA - A)>0.0001)))
171 {
172 hasAnyData = false;
173 hasFSData = false;
174 hasXsec = false;
175 return;
176 }
177 std::ifstream theData(filename, std::ios::in);
178
179 hasFSData = theFinalStatePhotons.InitMean(theData);
180 if(hasFSData)
181 {
182 targetMass = theFinalStatePhotons.GetTargetMass();
183 theFinalStatePhotons.InitAngular(theData);
184 theFinalStatePhotons.InitEnergies(theData);
185 }
186 theData.close();
187 }
Note: See TracBrowser for help on using the repository browser.