source: trunk/source/processes/hadronic/models/neutron_hp/src/G4NeutronHPInelasticCompFS.cc @ 1315

Last change on this file since 1315 was 1315, checked in by garnier, 14 years ago

update geant4-09-04-beta-cand-01 interfaces-V09-03-09 vis-V09-03-08

File size: 27.0 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// neutron_hp -- source file
27// J.P. Wellisch, Nov-1996
28// A prototype of the low energy neutron transport model.
29//
30// 070523 bug fix for G4FPE_DEBUG on by A. Howard ( and T. Koi)
31// 070606 bug fix and migrate to enable to Partial cases by T. Koi
32// 080603 bug fix for Hadron Hyper News #932 by T. Koi
33// 080612 bug fix contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #4,6
34// 080717 bug fix of calculation of residual momentum by T. Koi
35// 080801 protect negative avalable energy by T. Koi
36//        introduce theNDLDataA,Z which has A and Z of NDL data by T. Koi
37// 081024 G4NucleiPropertiesTable:: to G4NucleiProperties::
38// 090514 Fix bug in IC electron emission case
39//        Contribution from Chao Zhang (Chao.Zhang@usd.edu) and Dongming Mei(Dongming.Mei@usd.edu)
40// 100406 "nothingWasKnownOnHadron=1" then sample mu isotropic in CM
41//        add two_body_reaction
42//
43#include "G4NeutronHPInelasticCompFS.hh"
44#include "G4Nucleus.hh"
45#include "G4NucleiProperties.hh"
46#include "G4He3.hh"
47#include "G4Alpha.hh"
48#include "G4Electron.hh"
49#include "G4NeutronHPDataUsed.hh"
50#include "G4ParticleTable.hh"
51
52void G4NeutronHPInelasticCompFS::InitGammas(G4double AR, G4double ZR)
53{
54  //   char the[100] = {""};
55  //   std::ostrstream ost(the, 100, std::ios::out);
56  //   ost <<gammaPath<<"z"<<ZR<<".a"<<AR;
57  //   G4String * aName = new G4String(the);
58  //   std::ifstream from(*aName, std::ios::in);
59
60   std::ostringstream ost;
61   ost <<gammaPath<<"z"<<ZR<<".a"<<AR;
62   G4String aName = ost.str();
63   std::ifstream from(aName, std::ios::in);
64
65   if(!from) return; // no data found for this isotope
66   //   std::ifstream theGammaData(*aName, std::ios::in);
67   std::ifstream theGammaData(aName, std::ios::in);
68   
69   theGammas.Init(theGammaData);
70   //   delete aName;
71}
72
73void G4NeutronHPInelasticCompFS::Init (G4double A, G4double Z, G4String & dirName, G4String & aFSType)
74{
75
76  gammaPath = "/Inelastic/Gammas/";
77    if(!getenv("G4NEUTRONHPDATA")) 
78       throw G4HadronicException(__FILE__, __LINE__, "Please setenv G4NEUTRONHPDATA to point to the neutron cross-section files.");
79  G4String tBase = getenv("G4NEUTRONHPDATA");
80  gammaPath = tBase+gammaPath;
81  G4String tString = dirName;
82  G4bool dbool;
83  G4NeutronHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), tString, aFSType, dbool);
84  G4String filename = aFile.GetName();
85  theBaseA = aFile.GetA();
86  theBaseZ = aFile.GetZ();
87   theNDLDataA = (int)aFile.GetA();
88   theNDLDataZ = aFile.GetZ();
89  if(!dbool || ( Z<2.5 && ( std::abs(theBaseZ - Z)>0.0001 || std::abs(theBaseA - A)>0.0001)))
90  {
91    if(getenv("NeutronHPNamesLogging")) G4cout << "Skipped = "<< filename <<" "<<A<<" "<<Z<<G4endl;
92    hasAnyData = false;
93    hasFSData = false; 
94    hasXsec = false;
95    return;
96  }
97  theBaseA = A;
98  theBaseZ = G4int(Z+.5);
99  std::ifstream theData(filename, std::ios::in);
100  if(!theData)
101  {
102    hasAnyData = false;
103    hasFSData = false; 
104    hasXsec = false;
105    theData.close();
106    return;
107  }
108  // here we go
109  G4int infoType, dataType, dummy;
110  G4int sfType, it;
111  hasFSData = false; 
112  while (theData >> infoType)
113  {
114    hasFSData = true; 
115    theData >> dataType;
116    theData >> sfType >> dummy;
117    it = 50;
118    if(sfType>=600||(sfType<100&&sfType>=50)) it = sfType%50;
119    if(dataType==3) 
120    {
121      theData >> dummy >> dummy;
122      theXsection[it] = new G4NeutronHPVector;
123      G4int total;
124      theData >> total;
125      theXsection[it]->Init(theData, total, eV);
126      //std::cout << theXsection[it]->GetXsec(1*MeV) << std::endl;
127    }
128    else if(dataType==4)
129    {
130      theAngularDistribution[it] = new G4NeutronHPAngular;
131      theAngularDistribution[it]->Init(theData);
132    }
133    else if(dataType==5)
134    {
135      theEnergyDistribution[it] = new G4NeutronHPEnergyDistribution;
136      theEnergyDistribution[it]->Init(theData); 
137    }
138    else if(dataType==6)
139    {
140      theEnergyAngData[it] = new G4NeutronHPEnAngCorrelation;
141      theEnergyAngData[it]->Init(theData);
142    }
143    else if(dataType==12)
144    {
145      theFinalStatePhotons[it] = new G4NeutronHPPhotonDist;
146      theFinalStatePhotons[it]->InitMean(theData);
147    }
148    else if(dataType==13)
149    {
150      theFinalStatePhotons[it] = new G4NeutronHPPhotonDist;
151      theFinalStatePhotons[it]->InitPartials(theData);
152    }
153    else if(dataType==14)
154    {
155      theFinalStatePhotons[it]->InitAngular(theData);
156    }
157    else if(dataType==15)
158    {
159      theFinalStatePhotons[it]->InitEnergies(theData);
160    }
161    else
162    {
163      throw G4HadronicException(__FILE__, __LINE__, "Data-type unknown to G4NeutronHPInelasticCompFS");
164    }
165  }
166  theData.close();
167}
168
169G4int G4NeutronHPInelasticCompFS::SelectExitChannel(G4double eKinetic)
170{
171
172// it = 0 has without Photon
173  G4double running[50];
174  running[0] = 0;
175  unsigned int i;
176  for(i=0; i<50; i++)
177  {
178    if(i!=0) running[i]=running[i-1];
179    if(theXsection[i] != 0) 
180    {
181      running[i] += std::max(0., theXsection[i]->GetXsec(eKinetic));
182    }
183  }
184  G4double random = G4UniformRand();
185  G4double sum = running[49];
186  G4int it = 50;
187  if(0!=sum)
188  {
189    G4int i0;
190    for(i0=0; i0<50; i0++)
191    {
192      it = i0;
193      if(random < running[i0]/sum) break;
194    }
195  }
196//debug:  it = 1;
197  return it;
198}
199
200
201                                                                                                       //n,p,d,t,he3,a
202void G4NeutronHPInelasticCompFS::CompositeApply(const G4HadProjectile & theTrack, G4ParticleDefinition * aDefinition)
203{
204
205// prepare neutron
206    theResult.Clear();
207    G4double eKinetic = theTrack.GetKineticEnergy();
208    const G4HadProjectile *incidentParticle = &theTrack;
209    G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>(incidentParticle->GetDefinition()) );
210    theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
211    theNeutron.SetKineticEnergy( eKinetic );
212
213// prepare target
214    G4int i;
215    for(i=0; i<50; i++)
216    { if(theXsection[i] != 0) { break; } } 
217
218    G4double targetMass=0;
219    G4double eps = 0.0001;
220    targetMass = ( G4NucleiProperties::GetNuclearMass(static_cast<G4int>(theBaseA+eps), static_cast<G4int>(theBaseZ+eps))) /
221                   G4Neutron::Neutron()->GetPDGMass();
222//    if(theEnergyAngData[i]!=0)
223//        targetMass = theEnergyAngData[i]->GetTargetMass();
224//    else if(theAngularDistribution[i]!=0)
225//        targetMass = theAngularDistribution[i]->GetTargetMass();
226//    else if(theFinalStatePhotons[50]!=0)
227//        targetMass = theFinalStatePhotons[50]->GetTargetMass();
228    G4Nucleus aNucleus;
229    G4ReactionProduct theTarget; 
230    G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
231    theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
232
233// prepare the residual mass
234    G4double residualMass=0;
235    G4double residualZ = theBaseZ - aDefinition->GetPDGCharge();
236    G4double residualA = theBaseA - aDefinition->GetBaryonNumber()+1;
237    residualMass = ( G4NucleiProperties::GetNuclearMass(static_cast<G4int>(residualA+eps), static_cast<G4int>(residualZ+eps)) ) /
238                     G4Neutron::Neutron()->GetPDGMass();
239
240// prepare energy in target rest frame
241    G4ReactionProduct boosted;
242    boosted.Lorentz(theNeutron, theTarget);
243    eKinetic = boosted.GetKineticEnergy();
244//    G4double momentumInCMS = boosted.GetTotalMomentum();
245 
246// select exit channel for composite FS class.
247    G4int it = SelectExitChannel( eKinetic );
248   
249// set target and neutron in the relevant exit channel
250    InitDistributionInitialState(theNeutron, theTarget, it);   
251
252    G4ReactionProductVector * thePhotons = 0;
253    G4ReactionProductVector * theParticles = 0;
254    G4ReactionProduct aHadron;
255    aHadron.SetDefinition(aDefinition); // what if only cross-sections exist ==> Na 23 11 @@@@   
256    G4double availableEnergy = theNeutron.GetKineticEnergy() + theNeutron.GetMass() - aHadron.GetMass() +
257                             (targetMass - residualMass)*G4Neutron::Neutron()->GetPDGMass();
258//080730c
259    if ( availableEnergy < 0 )
260    {
261       //G4cout << "080730c Adjust availavleEnergy " << G4endl;
262       availableEnergy = 0; 
263    }
264    G4int nothingWasKnownOnHadron = 0;
265    G4int dummy;
266    G4double eGamm = 0;
267    G4int iLevel=it-1;
268
269//  TK without photon has it = 0
270    if( 50 == it ) 
271    {
272
273//    TK Excitation level is not determined
274      iLevel=-1;
275      aHadron.SetKineticEnergy(availableEnergy*residualMass*G4Neutron::Neutron()->GetPDGMass()/
276                               (aHadron.GetMass()+residualMass*G4Neutron::Neutron()->GetPDGMass()));
277
278      aHadron.SetMomentum(theNeutron.GetMomentum()*(1./theNeutron.GetTotalMomentum())*
279                        std::sqrt(aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy()-
280                                  aHadron.GetMass()*aHadron.GetMass()));
281
282/*
283      G4double p2 = ( aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy()-aHadron.GetMass()*aHadron.GetMass() );
284      G4double p = 0.0;
285      if ( p2 > 0.0 )
286      {
287         p = std::sqrt( p );
288      }
289      aHadron.SetMomentum(theNeutron.GetMomentum()*(1./theNeutron.GetTotalMomentum())*p );
290*/
291
292    }
293    else
294    {
295      while( iLevel!=-1 && theGammas.GetLevel(iLevel)==0 ) { iLevel--; }
296    }
297
298
299    if ( theAngularDistribution[it] != 0 ) // MF4
300    {
301      if(theEnergyDistribution[it]!=0) // MF5
302      {
303        aHadron.SetKineticEnergy(theEnergyDistribution[it]->Sample(eKinetic, dummy));
304        G4double eSecN = aHadron.GetKineticEnergy();
305        eGamm = eKinetic-eSecN;
306        for(iLevel=theGammas.GetNumberOfLevels()-1; iLevel>=0; iLevel--)
307        {
308          if(theGammas.GetLevelEnergy(iLevel)<eGamm) break;
309        }
310        G4double random = 2*G4UniformRand();
311        iLevel+=G4int(random);
312        if(iLevel>theGammas.GetNumberOfLevels()-1)iLevel = theGammas.GetNumberOfLevels()-1;
313      }
314      else
315      {
316        G4double eExcitation = 0;
317        if(iLevel>=0) eExcitation = theGammas.GetLevel(iLevel)->GetLevelEnergy();   
318        while (eKinetic-eExcitation < 0 && iLevel>0)
319        {
320          iLevel--;
321          eExcitation = theGammas.GetLevel(iLevel)->GetLevelEnergy();   
322        }
323       
324        if(getenv("InelasticCompFSLogging") && eKinetic-eExcitation < 0) 
325        {
326          throw G4HadronicException(__FILE__, __LINE__, "SEVERE: InelasticCompFS: Consistency of data not good enough, please file report");
327        }
328        if(eKinetic-eExcitation < 0) eExcitation = 0;
329        if(iLevel!= -1) aHadron.SetKineticEnergy(eKinetic - eExcitation);
330       
331      }
332      theAngularDistribution[it]->SampleAndUpdate(aHadron);
333
334      if( theFinalStatePhotons[it] == 0 )
335      {
336// TK comment Most n,n* eneter to this 
337        thePhotons = theGammas.GetDecayGammas(iLevel);
338        eGamm -= theGammas.GetLevelEnergy(iLevel);
339        if(eGamm>0) // @ ok for now, but really needs an efficient way of correllated sampling @
340        {
341          G4ReactionProduct * theRestEnergy = new G4ReactionProduct;
342          theRestEnergy->SetDefinition(G4Gamma::Gamma());
343          theRestEnergy->SetKineticEnergy(eGamm);
344          G4double costh = 2.*G4UniformRand()-1.;
345          G4double phi = twopi*G4UniformRand();
346          theRestEnergy->SetMomentum(eGamm*std::sin(std::acos(costh))*std::cos(phi), 
347                                     eGamm*std::sin(std::acos(costh))*std::sin(phi),
348                                     eGamm*costh);
349          if(thePhotons == 0) { thePhotons = new G4ReactionProductVector; }
350          thePhotons->push_back(theRestEnergy);
351        }
352      }
353    }
354    else if(theEnergyAngData[it] != 0) // MF6 
355    {
356      theParticles = theEnergyAngData[it]->Sample(eKinetic);
357    }
358    else
359    {
360      // @@@ what to do, if we have photon data, but no info on the hadron itself
361      nothingWasKnownOnHadron = 1;
362    }
363
364    //G4cout << "theFinalStatePhotons it " << it << G4endl;
365    //G4cout << "theFinalStatePhotons[it] " << theFinalStatePhotons[it] << G4endl;
366    //G4cout << "theFinalStatePhotons it " << it << G4endl;
367    //G4cout << "theFinalStatePhotons[it] " << theFinalStatePhotons[it] << G4endl;
368    //G4cout << "thePhotons " << thePhotons << G4endl;
369
370    if ( theFinalStatePhotons[it] != 0 ) 
371    {
372       // the photon distributions are in the Nucleus rest frame.
373       // TK residual rest frame
374      G4ReactionProduct boosted;
375      boosted.Lorentz(theNeutron, theTarget);
376      G4double anEnergy = boosted.GetKineticEnergy();
377      thePhotons = theFinalStatePhotons[it]->GetPhotons(anEnergy);
378      G4double aBaseEnergy = theFinalStatePhotons[it]->GetLevelEnergy();
379      G4double testEnergy = 0;
380      if(thePhotons!=0 && thePhotons->size()!=0)
381      { aBaseEnergy-=thePhotons->operator[](0)->GetTotalEnergy(); }
382      if(theFinalStatePhotons[it]->NeedsCascade())
383      {
384        while(aBaseEnergy>0.01*keV)
385        {
386          // cascade down the levels
387          G4bool foundMatchingLevel = false;
388          G4int closest = 2;
389          G4double deltaEold = -1;
390          for(G4int i=1; i<it; i++)
391          {
392            if(theFinalStatePhotons[i]!=0) 
393            {
394              testEnergy = theFinalStatePhotons[i]->GetLevelEnergy();
395            }
396            else
397            {
398              testEnergy = 0;
399            }
400            G4double deltaE = std::abs(testEnergy-aBaseEnergy);
401            if(deltaE<0.1*keV)
402            {
403              G4ReactionProductVector * theNext = 
404                theFinalStatePhotons[i]->GetPhotons(anEnergy);
405              thePhotons->push_back(theNext->operator[](0));
406              aBaseEnergy = testEnergy-theNext->operator[](0)->GetTotalEnergy();
407              delete theNext;
408              foundMatchingLevel = true;
409              break; // ===>
410            }
411            if(theFinalStatePhotons[i]!=0 && ( deltaE<deltaEold||deltaEold<0.) )
412            {
413              closest = i;
414              deltaEold = deltaE;     
415            }
416          } // <=== the break goes here.
417          if(!foundMatchingLevel)
418          {
419            G4ReactionProductVector * theNext = 
420               theFinalStatePhotons[closest]->GetPhotons(anEnergy);
421            thePhotons->push_back(theNext->operator[](0));
422            aBaseEnergy = aBaseEnergy-theNext->operator[](0)->GetTotalEnergy();
423            delete theNext;
424          }
425        } 
426      }
427    }
428    unsigned int i0;
429    if(thePhotons!=0)
430    {
431      for(i0=0; i0<thePhotons->size(); i0++)
432      {
433        // back to lab
434        thePhotons->operator[](i0)->Lorentz(*(thePhotons->operator[](i0)), -1.*theTarget);
435      }
436    }
437    //G4cout << "nothingWasKnownOnHadron " << nothingWasKnownOnHadron << G4endl;
438    if(nothingWasKnownOnHadron)
439    {
440//    TKDB 100405
441//    In this case, hadron should be isotropic in CM
442//    mu and p should be correlated
443//
444      G4double totalPhotonEnergy = 0.0;
445      if ( thePhotons != 0 )
446      {
447         unsigned int nPhotons = thePhotons->size();
448         unsigned int i0;
449         for ( i0=0; i0<nPhotons; i0++)
450         {
451            //thePhotons has energies at LAB system
452            totalPhotonEnergy += thePhotons->operator[](i0)->GetTotalEnergy();
453         }
454      }
455
456      //isotropic distribution in CM
457      G4double mu = 1.0 - 2 * G4UniformRand();
458
459      // need momentums in target rest frame;
460      G4LorentzVector target_in_LAB ( theTarget.GetMomentum() , theTarget.GetTotalEnergy() );
461      G4ThreeVector boostToTargetRest = -target_in_LAB.boostVector();
462      G4LorentzVector proj_in_LAB = incidentParticle->Get4Momentum();
463
464      G4DynamicParticle* proj = new G4DynamicParticle( G4Neutron::Neutron() , proj_in_LAB.boost( boostToTargetRest ) ); 
465      G4DynamicParticle* targ = new G4DynamicParticle( G4ParticleTable::GetParticleTable()->GetIon ( (G4int)theBaseZ , (G4int)theBaseA , totalPhotonEnergy )  , G4ThreeVector(0) );
466      G4DynamicParticle* hadron = new G4DynamicParticle( aHadron.GetDefinition() , G4ThreeVector(0) );  // will be fill momentum
467
468      two_body_reaction ( proj , targ , hadron , mu );
469
470      G4LorentzVector hadron_in_trag_rest = hadron->Get4Momentum();
471      G4LorentzVector hadron_in_LAB = hadron_in_trag_rest.boost ( -boostToTargetRest );
472      aHadron.SetMomentum( hadron_in_LAB.v() );
473      aHadron.SetKineticEnergy ( hadron_in_LAB.e() - hadron_in_LAB.m() );
474
475      delete proj;
476      delete targ; 
477      delete hadron;
478
479//TKDB 100405
480/*
481      G4double totalPhotonEnergy = 0;
482      if(thePhotons!=0)
483      {
484        unsigned int nPhotons = thePhotons->size();
485        unsigned int i0;
486        for(i0=0; i0<nPhotons; i0++)
487        {
488          totalPhotonEnergy += thePhotons->operator[](i0)->GetTotalEnergy();
489        }
490      }
491      availableEnergy -= totalPhotonEnergy;
492      residualMass += totalPhotonEnergy/G4Neutron::Neutron()->GetPDGMass();
493      aHadron.SetKineticEnergy(availableEnergy*residualMass*G4Neutron::Neutron()->GetPDGMass()/
494                               (aHadron.GetMass()+residualMass*G4Neutron::Neutron()->GetPDGMass()));
495      G4double CosTheta = 1.0 - 2.0*G4UniformRand();
496      G4double SinTheta = std::sqrt(1.0 - CosTheta*CosTheta);
497      G4double Phi = twopi*G4UniformRand();
498      G4ThreeVector Vector(std::cos(Phi)*SinTheta, std::sin(Phi)*SinTheta, CosTheta);
499      //aHadron.SetMomentum(Vector* std::sqrt(aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy()-
500      //                                 aHadron.GetMass()*aHadron.GetMass()));
501      G4double p2 = aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy()- aHadron.GetMass()*aHadron.GetMass();
502
503      G4double p = 0.0;
504      if ( p2 > 0.0 )
505         p = std::sqrt ( p2 );
506
507      aHadron.SetMomentum( Vector*p );
508*/
509
510    }
511
512// fill the result
513// Beware - the recoil is not necessarily in the particles...
514// Can be calculated from momentum conservation?
515// The idea is that the particles ar emitted forst, and the gammas only once the
516// recoil is on the residual; assumption is that gammas do not contribute to
517// the recoil.
518// This needs more design @@@
519
520    G4int nSecondaries = 2; // the hadron and the recoil
521    G4bool needsSeparateRecoil = false;
522    G4int totalBaryonNumber = 0;
523    G4int totalCharge = 0;
524    G4ThreeVector totalMomentum(0);
525    if(theParticles != 0) 
526    {
527      nSecondaries = theParticles->size();
528      G4ParticleDefinition * aDef;
529      unsigned int i0;
530      for(i0=0; i0<theParticles->size(); i0++)
531      {
532        aDef = theParticles->operator[](i0)->GetDefinition();
533        totalBaryonNumber+=aDef->GetBaryonNumber();
534        totalCharge+=G4int(aDef->GetPDGCharge()+eps);
535        totalMomentum += theParticles->operator[](i0)->GetMomentum();
536      } 
537      if(totalBaryonNumber!=G4int(theBaseA+eps+incidentParticle->GetDefinition()->GetBaryonNumber())) 
538      {
539        needsSeparateRecoil = true;
540        nSecondaries++;
541        residualA = G4int(theBaseA+eps+incidentParticle->GetDefinition()->GetBaryonNumber()
542                          -totalBaryonNumber);
543        residualZ = G4int(theBaseZ+eps+incidentParticle->GetDefinition()->GetPDGCharge()
544                          -totalCharge);
545      }
546    }
547   
548    G4int nPhotons = 0;
549    if(thePhotons!=0) { nPhotons = thePhotons->size(); }
550    nSecondaries += nPhotons;
551       
552    G4DynamicParticle * theSec;
553   
554    if( theParticles==0 )
555    {
556      theSec = new G4DynamicParticle;   
557      theSec->SetDefinition(aHadron.GetDefinition());
558      theSec->SetMomentum(aHadron.GetMomentum());
559      theResult.AddSecondary(theSec);   
560 
561        aHadron.Lorentz(aHadron, theTarget);
562        G4ReactionProduct theResidual;   
563        theResidual.SetDefinition(G4ParticleTable::GetParticleTable()
564                                  ->GetIon(static_cast<G4int>(residualZ), static_cast<G4int>(residualA), 0)); 
565        theResidual.SetKineticEnergy(aHadron.GetKineticEnergy()*aHadron.GetMass()/theResidual.GetMass());
566
567        //080612TK contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #6
568        //theResidual.SetMomentum(-1.*aHadron.GetMomentum());
569        G4ThreeVector incidentNeutronMomentum = theNeutron.GetMomentum();
570        theResidual.SetMomentum(incidentNeutronMomentum - aHadron.GetMomentum());
571
572        theResidual.Lorentz(theResidual, -1.*theTarget);
573        G4ThreeVector totalPhotonMomentum(0,0,0);
574        if(thePhotons!=0)
575        {
576          for(i=0; i<nPhotons; i++)
577          {
578            totalPhotonMomentum += thePhotons->operator[](i)->GetMomentum();
579          }
580        }
581        theSec = new G4DynamicParticle;   
582        theSec->SetDefinition(theResidual.GetDefinition());
583        theSec->SetMomentum(theResidual.GetMomentum()-totalPhotonMomentum);
584        theResult.AddSecondary(theSec);   
585    }
586    else
587    {
588      for(i0=0; i0<theParticles->size(); i0++)
589      {
590        theSec = new G4DynamicParticle; 
591        theSec->SetDefinition(theParticles->operator[](i0)->GetDefinition());
592        theSec->SetMomentum(theParticles->operator[](i0)->GetMomentum());
593        theResult.AddSecondary(theSec); 
594        delete theParticles->operator[](i0); 
595      } 
596      delete theParticles;
597      if(needsSeparateRecoil && residualZ!=0)
598      {
599        G4ReactionProduct theResidual;   
600        theResidual.SetDefinition(G4ParticleTable::GetParticleTable()
601                                  ->GetIon(static_cast<G4int>(residualZ), static_cast<G4int>(residualA), 0)); 
602        G4double resiualKineticEnergy  = theResidual.GetMass()*theResidual.GetMass();
603                 resiualKineticEnergy += totalMomentum*totalMomentum;
604                 resiualKineticEnergy  = std::sqrt(resiualKineticEnergy) - theResidual.GetMass();
605//        cout << "Kinetic energy of the residual = "<<resiualKineticEnergy<<endl;
606        theResidual.SetKineticEnergy(resiualKineticEnergy);
607
608        //080612TK contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #4
609        //theResidual.SetMomentum(-1.*totalMomentum);
610        //G4ThreeVector incidentNeutronMomentum = theNeutron.GetMomentum();
611        //theResidual.SetMomentum(incidentNeutronMomentum - aHadron.GetMomentum());
612//080717 TK Comment still do NOT include photon's mometum which produce by thePhotons
613        theResidual.SetMomentum( theNeutron.GetMomentum() + theTarget.GetMomentum() - totalMomentum );
614
615        theSec = new G4DynamicParticle;   
616        theSec->SetDefinition(theResidual.GetDefinition());
617        theSec->SetMomentum(theResidual.GetMomentum());
618        theResult.AddSecondary(theSec); 
619      } 
620    }
621    if(thePhotons!=0)
622    {
623      for(i=0; i<nPhotons; i++)
624      {
625        theSec = new G4DynamicParticle;   
626        //Bug reported Chao Zhang (Chao.Zhang@usd.edu), Dongming Mei(Dongming.Mei@usd.edu) Feb. 25, 2009
627        //theSec->SetDefinition(G4Gamma::Gamma());
628        theSec->SetDefinition( thePhotons->operator[](i)->GetDefinition() );
629        //But never cause real effect at least with G4NDL3.13 TK
630        theSec->SetMomentum(thePhotons->operator[](i)->GetMomentum());
631        theResult.AddSecondary(theSec); 
632        delete thePhotons->operator[](i);
633      }
634// some garbage collection
635      delete thePhotons;
636    }
637
638//080721
639   G4ParticleDefinition* targ_pd = G4ParticleTable::GetParticleTable()->GetIon ( (G4int)theBaseZ , (G4int)theBaseA , 0.0 );
640   G4LorentzVector targ_4p_lab ( theTarget.GetMomentum() , std::sqrt( targ_pd->GetPDGMass()*targ_pd->GetPDGMass() + theTarget.GetMomentum().mag2() ) );
641   G4LorentzVector proj_4p_lab = theTrack.Get4Momentum();
642   G4LorentzVector init_4p_lab = proj_4p_lab + targ_4p_lab;
643   adjust_final_state ( init_4p_lab ); 
644
645// clean up the primary neutron
646    theResult.SetStatusChange(stopAndKill);
647}
648
649
650
651#include "G4RotationMatrix.hh"
652void G4NeutronHPInelasticCompFS::two_body_reaction ( G4DynamicParticle* proj, G4DynamicParticle* targ, G4DynamicParticle* hadron, G4double mu ) 
653{
654
655// Target rest flame
656// 4vector in targ rest frame;
657// targ could have excitation energy (photon energy will be emiited) tricky but,,,
658
659   G4LorentzVector before = proj->Get4Momentum() + targ->Get4Momentum();
660
661   G4ThreeVector p3_proj = proj->GetMomentum();
662   G4ThreeVector d = p3_proj.unit();
663   G4RotationMatrix rot; 
664   G4RotationMatrix rot1; 
665   rot1.setPhi( pi/2 + d.phi() );
666   G4RotationMatrix rot2; 
667   rot2.setTheta( d.theta() );
668   rot=rot2*rot1;
669   proj->SetMomentum( rot*p3_proj );
670
671// Now proj only has pz component;
672
673// mu in CM system
674
675   //Valid only for neutron incidence
676   G4DynamicParticle* residual = new G4DynamicParticle ( G4ParticleTable::GetParticleTable()->GetIon ( (G4int)( targ->GetDefinition()->GetPDGCharge() - hadron->GetDefinition()->GetPDGCharge() ) , (G4int)(targ->GetDefinition()->GetBaryonNumber() - hadron->GetDefinition()->GetBaryonNumber()+1) , 0 ) , G4ThreeVector(0) ); 
677
678   G4double Q = proj->GetDefinition()->GetPDGMass() + targ->GetDefinition()->GetPDGMass() 
679              - ( hadron->GetDefinition()->GetPDGMass() + residual->GetDefinition()->GetPDGMass() );
680
681   // Non Relativistic Case
682   G4double A = targ->GetDefinition()->GetPDGMass() / proj->GetDefinition()->GetPDGMass();
683   G4double AA = hadron->GetDefinition()->GetPDGMass() / proj->GetDefinition()->GetPDGMass(); 
684   G4double E1 = proj->GetKineticEnergy();
685   G4double beta = std::sqrt ( A*(A+1-AA)/AA*(1+(1+A)/A*Q/E1) );
686   G4double gamma = AA/(A+1-AA)*beta;
687   G4double E3 = AA/std::pow((1+A),2)*(beta*beta+1+2*beta*mu)*E1;
688   G4double omega3 = (1+beta*mu)/std::sqrt(beta*beta+1+2*beta*mu);
689
690   G4double E4 = (A+1-AA)/std::pow((1+A),2)*(gamma*gamma+1-2*gamma*mu)*E1;
691   G4double omega4 = (1-gamma*mu)/std::sqrt(gamma*gamma+1-2*gamma*mu);
692
693   hadron->SetKineticEnergy ( E3 );
694   
695   G4double M = hadron->GetDefinition()->GetPDGMass();
696   G4double pmag = std::sqrt ((E3+M)*(E3+M)-M*M) ;
697   G4ThreeVector p ( 0 , pmag*sqrt(1-omega3*omega3), pmag*omega3 );
698
699   G4double M4 = residual->GetDefinition()->GetPDGMass();
700   G4double pmag4 = std::sqrt ((E4+M4)*(E4+M4)-M4*M4) ;
701   G4ThreeVector p4 ( 0 , -pmag4*sqrt(1-omega4*omega4), pmag4*omega4 );
702
703// Rotate to orginal target rest flame.
704   p *= rot.inverse();
705   hadron->SetMomentum( p );
706// Now hadron had 4 momentum in target rest flame
707
708// TypeA
709   p4 *= rot.inverse();
710   residual->SetMomentum ( p4 );
711
712//TypeB1
713   //residual->Set4Momentum ( p4_residual );
714//TypeB2
715   //residual->SetMomentum ( p4_residual.v() );
716
717// Type A make difference in Momenutum
718// Type B1 make difference in Mass of residual
719// Type B2 make difference in total energy.
720
721   delete residual;
722
723}
Note: See TracBrowser for help on using the repository browser.