| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // neutron_hp -- source file
|
|---|
| 27 | // J.P. Wellisch, Nov-1996
|
|---|
| 28 | // A prototype of the low energy neutron transport model.
|
|---|
| 29 | //
|
|---|
| 30 | // 070523 bug fix for G4FPE_DEBUG on by A. Howard ( and T. Koi)
|
|---|
| 31 | // 070606 bug fix and migrate to enable to Partial cases by T. Koi
|
|---|
| 32 | //
|
|---|
| 33 | #include "G4NeutronHPInelasticCompFS.hh"
|
|---|
| 34 | #include "G4Nucleus.hh"
|
|---|
| 35 | #include "G4NucleiPropertiesTable.hh"
|
|---|
| 36 | #include "G4He3.hh"
|
|---|
| 37 | #include "G4Alpha.hh"
|
|---|
| 38 | #include "G4Electron.hh"
|
|---|
| 39 | #include "G4NeutronHPDataUsed.hh"
|
|---|
| 40 | #include "G4ParticleTable.hh"
|
|---|
| 41 |
|
|---|
| 42 | void G4NeutronHPInelasticCompFS::InitGammas(G4double AR, G4double ZR)
|
|---|
| 43 | {
|
|---|
| 44 | // char the[100] = {""};
|
|---|
| 45 | // std::ostrstream ost(the, 100, std::ios::out);
|
|---|
| 46 | // ost <<gammaPath<<"z"<<ZR<<".a"<<AR;
|
|---|
| 47 | // G4String * aName = new G4String(the);
|
|---|
| 48 | // std::ifstream from(*aName, std::ios::in);
|
|---|
| 49 |
|
|---|
| 50 | std::ostringstream ost;
|
|---|
| 51 | ost <<gammaPath<<"z"<<ZR<<".a"<<AR;
|
|---|
| 52 | G4String aName = ost.str();
|
|---|
| 53 | std::ifstream from(aName, std::ios::in);
|
|---|
| 54 |
|
|---|
| 55 | if(!from) return; // no data found for this isotope
|
|---|
| 56 | // std::ifstream theGammaData(*aName, std::ios::in);
|
|---|
| 57 | std::ifstream theGammaData(aName, std::ios::in);
|
|---|
| 58 |
|
|---|
| 59 | theGammas.Init(theGammaData);
|
|---|
| 60 | // delete aName;
|
|---|
| 61 | }
|
|---|
| 62 |
|
|---|
| 63 | void G4NeutronHPInelasticCompFS::Init (G4double A, G4double Z, G4String & dirName, G4String & aFSType)
|
|---|
| 64 | {
|
|---|
| 65 | gammaPath = "/Inelastic/Gammas/";
|
|---|
| 66 | if(!getenv("G4NEUTRONHPDATA"))
|
|---|
| 67 | throw G4HadronicException(__FILE__, __LINE__, "Please setenv G4NEUTRONHPDATA to point to the neutron cross-section files.");
|
|---|
| 68 | G4String tBase = getenv("G4NEUTRONHPDATA");
|
|---|
| 69 | gammaPath = tBase+gammaPath;
|
|---|
| 70 | G4String tString = dirName;
|
|---|
| 71 | G4bool dbool;
|
|---|
| 72 | G4NeutronHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), tString, aFSType, dbool);
|
|---|
| 73 | G4String filename = aFile.GetName();
|
|---|
| 74 | theBaseA = aFile.GetA();
|
|---|
| 75 | theBaseZ = aFile.GetZ();
|
|---|
| 76 | if(!dbool || ( Z<2.5 && ( std::abs(theBaseZ - Z)>0.0001 || std::abs(theBaseA - A)>0.0001)))
|
|---|
| 77 | {
|
|---|
| 78 | if(getenv("NeutronHPNamesLogging")) G4cout << "Skipped = "<< filename <<" "<<A<<" "<<Z<<G4endl;
|
|---|
| 79 | hasAnyData = false;
|
|---|
| 80 | hasFSData = false;
|
|---|
| 81 | hasXsec = false;
|
|---|
| 82 | return;
|
|---|
| 83 | }
|
|---|
| 84 | theBaseA = A;
|
|---|
| 85 | theBaseZ = G4int(Z+.5);
|
|---|
| 86 | std::ifstream theData(filename, std::ios::in);
|
|---|
| 87 | if(!theData)
|
|---|
| 88 | {
|
|---|
| 89 | hasAnyData = false;
|
|---|
| 90 | hasFSData = false;
|
|---|
| 91 | hasXsec = false;
|
|---|
| 92 | theData.close();
|
|---|
| 93 | return;
|
|---|
| 94 | }
|
|---|
| 95 | // here we go
|
|---|
| 96 | G4int infoType, dataType, dummy;
|
|---|
| 97 | G4int sfType, it;
|
|---|
| 98 | hasFSData = false;
|
|---|
| 99 | while (theData >> infoType)
|
|---|
| 100 | {
|
|---|
| 101 | hasFSData = true;
|
|---|
| 102 | theData >> dataType;
|
|---|
| 103 | theData >> sfType >> dummy;
|
|---|
| 104 | it = 50;
|
|---|
| 105 | if(sfType>=600||(sfType<100&&sfType>=50)) it = sfType%50;
|
|---|
| 106 | if(dataType==3)
|
|---|
| 107 | {
|
|---|
| 108 | theData >> dummy >> dummy;
|
|---|
| 109 | theXsection[it] = new G4NeutronHPVector;
|
|---|
| 110 | G4int total;
|
|---|
| 111 | theData >> total;
|
|---|
| 112 | theXsection[it]->Init(theData, total, eV);
|
|---|
| 113 | //std::cout << theXsection[it]->GetXsec(1*MeV) << std::endl;
|
|---|
| 114 | }
|
|---|
| 115 | else if(dataType==4)
|
|---|
| 116 | {
|
|---|
| 117 | theAngularDistribution[it] = new G4NeutronHPAngular;
|
|---|
| 118 | theAngularDistribution[it]->Init(theData);
|
|---|
| 119 | }
|
|---|
| 120 | else if(dataType==5)
|
|---|
| 121 | {
|
|---|
| 122 | theEnergyDistribution[it] = new G4NeutronHPEnergyDistribution;
|
|---|
| 123 | theEnergyDistribution[it]->Init(theData);
|
|---|
| 124 | }
|
|---|
| 125 | else if(dataType==6)
|
|---|
| 126 | {
|
|---|
| 127 | theEnergyAngData[it] = new G4NeutronHPEnAngCorrelation;
|
|---|
| 128 | theEnergyAngData[it]->Init(theData);
|
|---|
| 129 | }
|
|---|
| 130 | else if(dataType==12)
|
|---|
| 131 | {
|
|---|
| 132 | theFinalStatePhotons[it] = new G4NeutronHPPhotonDist;
|
|---|
| 133 | theFinalStatePhotons[it]->InitMean(theData);
|
|---|
| 134 | }
|
|---|
| 135 | else if(dataType==13)
|
|---|
| 136 | {
|
|---|
| 137 | theFinalStatePhotons[it] = new G4NeutronHPPhotonDist;
|
|---|
| 138 | theFinalStatePhotons[it]->InitPartials(theData);
|
|---|
| 139 | }
|
|---|
| 140 | else if(dataType==14)
|
|---|
| 141 | {
|
|---|
| 142 | theFinalStatePhotons[it]->InitAngular(theData);
|
|---|
| 143 | }
|
|---|
| 144 | else if(dataType==15)
|
|---|
| 145 | {
|
|---|
| 146 | theFinalStatePhotons[it]->InitEnergies(theData);
|
|---|
| 147 | }
|
|---|
| 148 | else
|
|---|
| 149 | {
|
|---|
| 150 | throw G4HadronicException(__FILE__, __LINE__, "Data-type unknown to G4NeutronHPInelasticCompFS");
|
|---|
| 151 | }
|
|---|
| 152 | }
|
|---|
| 153 | theData.close();
|
|---|
| 154 | }
|
|---|
| 155 |
|
|---|
| 156 | G4int G4NeutronHPInelasticCompFS::SelectExitChannel(G4double eKinetic)
|
|---|
| 157 | {
|
|---|
| 158 |
|
|---|
| 159 | // it = 0 has without Photon
|
|---|
| 160 | G4double running[50];
|
|---|
| 161 | running[0] = 0;
|
|---|
| 162 | unsigned int i;
|
|---|
| 163 | for(i=0; i<50; i++)
|
|---|
| 164 | {
|
|---|
| 165 | if(i!=0) running[i]=running[i-1];
|
|---|
| 166 | if(theXsection[i] != 0)
|
|---|
| 167 | {
|
|---|
| 168 | running[i] += std::max(0., theXsection[i]->GetXsec(eKinetic));
|
|---|
| 169 | }
|
|---|
| 170 | }
|
|---|
| 171 | G4double random = G4UniformRand();
|
|---|
| 172 | G4double sum = running[49];
|
|---|
| 173 | G4int it = 50;
|
|---|
| 174 | if(0!=sum)
|
|---|
| 175 | {
|
|---|
| 176 | G4int i0;
|
|---|
| 177 | for(i0=0; i0<50; i0++)
|
|---|
| 178 | {
|
|---|
| 179 | it = i0;
|
|---|
| 180 | if(random < running[i0]/sum) break;
|
|---|
| 181 | }
|
|---|
| 182 | }
|
|---|
| 183 | //debug: it = 1;
|
|---|
| 184 | return it;
|
|---|
| 185 | }
|
|---|
| 186 |
|
|---|
| 187 | void G4NeutronHPInelasticCompFS::CompositeApply(const G4HadProjectile & theTrack, G4ParticleDefinition * aDefinition)
|
|---|
| 188 | {
|
|---|
| 189 |
|
|---|
| 190 | //G4cout << "G4NeutronHPInelasticCompFS::CompositeApply " << G4endl;
|
|---|
| 191 | // prepare neutron
|
|---|
| 192 | theResult.Clear();
|
|---|
| 193 | G4double eKinetic = theTrack.GetKineticEnergy();
|
|---|
| 194 | const G4HadProjectile *incidentParticle = &theTrack;
|
|---|
| 195 | G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>(incidentParticle->GetDefinition()) );
|
|---|
| 196 | theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
|
|---|
| 197 | theNeutron.SetKineticEnergy( eKinetic );
|
|---|
| 198 |
|
|---|
| 199 | // prepare target
|
|---|
| 200 | G4int i;
|
|---|
| 201 | for(i=0; i<50; i++)
|
|---|
| 202 | { if(theXsection[i] != 0) { break; } }
|
|---|
| 203 | G4double targetMass=0;
|
|---|
| 204 | G4double eps = 0.0001;
|
|---|
| 205 | targetMass = ( G4NucleiPropertiesTable::GetNuclearMass(static_cast<G4int>(theBaseZ+eps), static_cast<G4int>(theBaseA+eps))) /
|
|---|
| 206 | G4Neutron::Neutron()->GetPDGMass();
|
|---|
| 207 | // if(theEnergyAngData[i]!=0)
|
|---|
| 208 | // targetMass = theEnergyAngData[i]->GetTargetMass();
|
|---|
| 209 | // else if(theAngularDistribution[i]!=0)
|
|---|
| 210 | // targetMass = theAngularDistribution[i]->GetTargetMass();
|
|---|
| 211 | // else if(theFinalStatePhotons[50]!=0)
|
|---|
| 212 | // targetMass = theFinalStatePhotons[50]->GetTargetMass();
|
|---|
| 213 | G4Nucleus aNucleus;
|
|---|
| 214 | G4ReactionProduct theTarget;
|
|---|
| 215 | G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
|
|---|
| 216 | theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
|
|---|
| 217 |
|
|---|
| 218 | // prepare the residual mass
|
|---|
| 219 | G4double residualMass=0;
|
|---|
| 220 | G4double residualZ = theBaseZ - aDefinition->GetPDGCharge();
|
|---|
| 221 | G4double residualA = theBaseA - aDefinition->GetBaryonNumber()+1;
|
|---|
| 222 | residualMass = ( G4NucleiPropertiesTable::GetNuclearMass(static_cast<G4int>(residualZ+eps), static_cast<G4int>(residualA+eps)) ) /
|
|---|
| 223 | G4Neutron::Neutron()->GetPDGMass();
|
|---|
| 224 |
|
|---|
| 225 | // prepare energy in target rest frame
|
|---|
| 226 | G4ReactionProduct boosted;
|
|---|
| 227 | boosted.Lorentz(theNeutron, theTarget);
|
|---|
| 228 | eKinetic = boosted.GetKineticEnergy();
|
|---|
| 229 | // G4double momentumInCMS = boosted.GetTotalMomentum();
|
|---|
| 230 |
|
|---|
| 231 | // select exit channel for composite FS class.
|
|---|
| 232 | G4int it = SelectExitChannel(eKinetic);
|
|---|
| 233 |
|
|---|
| 234 | // set target and neutron in the relevant exit channel
|
|---|
| 235 | InitDistributionInitialState(theNeutron, theTarget, it);
|
|---|
| 236 |
|
|---|
| 237 | G4ReactionProductVector * thePhotons = 0;
|
|---|
| 238 | G4ReactionProductVector * theParticles = 0;
|
|---|
| 239 | G4ReactionProduct aHadron;
|
|---|
| 240 | aHadron.SetDefinition(aDefinition); // what if only cross-sections exist ==> Na 23 11 @@@@
|
|---|
| 241 | G4double availableEnergy = theNeutron.GetKineticEnergy() + theNeutron.GetMass() - aHadron.GetMass() +
|
|---|
| 242 | (targetMass - residualMass)*G4Neutron::Neutron()->GetPDGMass();
|
|---|
| 243 | G4int nothingWasKnownOnHadron = 0;
|
|---|
| 244 | G4int dummy;
|
|---|
| 245 | G4double eGamm = 0;
|
|---|
| 246 | G4int iLevel=it-1;
|
|---|
| 247 | // TK debug 070530 (without photon has it = 0)
|
|---|
| 248 | //if(50==it)
|
|---|
| 249 | if( 0 == it )
|
|---|
| 250 | {
|
|---|
| 251 | iLevel=-1;
|
|---|
| 252 | aHadron.SetKineticEnergy(availableEnergy*residualMass*G4Neutron::Neutron()->GetPDGMass()/
|
|---|
| 253 | (aHadron.GetMass()+residualMass*G4Neutron::Neutron()->GetPDGMass()));
|
|---|
| 254 |
|
|---|
| 255 | //aHadron.SetMomentum(theNeutron.GetMomentum()*(1./theNeutron.GetTotalMomentum())*
|
|---|
| 256 | // std::sqrt(aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy()-
|
|---|
| 257 | // aHadron.GetMass()*aHadron.GetMass()));
|
|---|
| 258 |
|
|---|
| 259 | G4double p2 = ( aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy()-aHadron.GetMass()*aHadron.GetMass() );
|
|---|
| 260 | G4double p = 0.0;
|
|---|
| 261 | if ( p2 > 0.0 )
|
|---|
| 262 | {
|
|---|
| 263 | p = std::sqrt( p );
|
|---|
| 264 | }
|
|---|
| 265 | aHadron.SetMomentum(theNeutron.GetMomentum()*(1./theNeutron.GetTotalMomentum())*p );
|
|---|
| 266 |
|
|---|
| 267 | }
|
|---|
| 268 | else
|
|---|
| 269 | {
|
|---|
| 270 | while( iLevel!=-1 && theGammas.GetLevel(iLevel)==0 ) { iLevel--; }
|
|---|
| 271 | }
|
|---|
| 272 | if(theAngularDistribution[it]!= 0)
|
|---|
| 273 | {
|
|---|
| 274 | if(theEnergyDistribution[it]!=0)
|
|---|
| 275 | {
|
|---|
| 276 | aHadron.SetKineticEnergy(theEnergyDistribution[it]->Sample(eKinetic, dummy));
|
|---|
| 277 | G4double eSecN = aHadron.GetKineticEnergy();
|
|---|
| 278 | eGamm = eKinetic-eSecN;
|
|---|
| 279 | for(iLevel=theGammas.GetNumberOfLevels()-1; iLevel>=0; iLevel--)
|
|---|
| 280 | {
|
|---|
| 281 | if(theGammas.GetLevelEnergy(iLevel)<eGamm) break;
|
|---|
| 282 | }
|
|---|
| 283 | G4double random = 2*G4UniformRand();
|
|---|
| 284 | iLevel+=G4int(random);
|
|---|
| 285 | if(iLevel>theGammas.GetNumberOfLevels()-1)iLevel = theGammas.GetNumberOfLevels()-1;
|
|---|
| 286 | }
|
|---|
| 287 | else
|
|---|
| 288 | {
|
|---|
| 289 | G4double eExcitation = 0;
|
|---|
| 290 | if(iLevel>=0) eExcitation = theGammas.GetLevel(iLevel)->GetLevelEnergy();
|
|---|
| 291 | while (eKinetic-eExcitation < 0 && iLevel>0)
|
|---|
| 292 | {
|
|---|
| 293 | iLevel--;
|
|---|
| 294 | eExcitation = theGammas.GetLevel(iLevel)->GetLevelEnergy();
|
|---|
| 295 | }
|
|---|
| 296 |
|
|---|
| 297 | if(getenv("InelasticCompFSLogging") && eKinetic-eExcitation < 0)
|
|---|
| 298 | {
|
|---|
| 299 | throw G4HadronicException(__FILE__, __LINE__, "SEVERE: InelasticCompFS: Consistency of data not good enough, please file report");
|
|---|
| 300 | }
|
|---|
| 301 | if(eKinetic-eExcitation < 0) eExcitation = 0;
|
|---|
| 302 | if(iLevel!= -1) aHadron.SetKineticEnergy(eKinetic - eExcitation);
|
|---|
| 303 |
|
|---|
| 304 | }
|
|---|
| 305 | theAngularDistribution[it]->SampleAndUpdate(aHadron);
|
|---|
| 306 | if(theFinalStatePhotons[it] == 0)
|
|---|
| 307 | {
|
|---|
| 308 | // TK comment Most n,n* eneter to this
|
|---|
| 309 | thePhotons = theGammas.GetDecayGammas(iLevel);
|
|---|
| 310 | eGamm -= theGammas.GetLevelEnergy(iLevel);
|
|---|
| 311 | if(eGamm>0) // @ ok for now, but really needs an efficient way of correllated sampling @
|
|---|
| 312 | {
|
|---|
| 313 | G4ReactionProduct * theRestEnergy = new G4ReactionProduct;
|
|---|
| 314 | theRestEnergy->SetDefinition(G4Gamma::Gamma());
|
|---|
| 315 | theRestEnergy->SetKineticEnergy(eGamm);
|
|---|
| 316 | G4double costh = 2.*G4UniformRand()-1.;
|
|---|
| 317 | G4double phi = twopi*G4UniformRand();
|
|---|
| 318 | theRestEnergy->SetMomentum(eGamm*std::sin(std::acos(costh))*std::cos(phi),
|
|---|
| 319 | eGamm*std::sin(std::acos(costh))*std::sin(phi),
|
|---|
| 320 | eGamm*costh);
|
|---|
| 321 | if(thePhotons == 0) { thePhotons = new G4ReactionProductVector; }
|
|---|
| 322 | thePhotons->push_back(theRestEnergy);
|
|---|
| 323 | }
|
|---|
| 324 | }
|
|---|
| 325 | }
|
|---|
| 326 | else if(theEnergyAngData[it] != 0)
|
|---|
| 327 | {
|
|---|
| 328 | theParticles = theEnergyAngData[it]->Sample(eKinetic);
|
|---|
| 329 | }
|
|---|
| 330 | else
|
|---|
| 331 | {
|
|---|
| 332 | // @@@ what to do, if we have photon data, but no info on the hadron itself
|
|---|
| 333 | nothingWasKnownOnHadron = 1;
|
|---|
| 334 | }
|
|---|
| 335 | //G4cout << "theFinalStatePhotons it " << it << G4endl;
|
|---|
| 336 | //G4cout << "theFinalStatePhotons[it] " << theFinalStatePhotons[it] << G4endl;
|
|---|
| 337 | // TK 070530
|
|---|
| 338 | if ( it != 0 ) it = 50; // it 50 has final state data for photon MF13 cross and MF14 ang
|
|---|
| 339 | //G4cout << "theFinalStatePhotons it " << it << G4endl;
|
|---|
| 340 | //G4cout << "theFinalStatePhotons[it] " << theFinalStatePhotons[it] << G4endl;
|
|---|
| 341 | //G4cout << "thePhotons " << thePhotons << G4endl;
|
|---|
| 342 | if(theFinalStatePhotons[it]!=0)
|
|---|
| 343 | {
|
|---|
| 344 | // the photon distributions are in the Nucleus rest frame.
|
|---|
| 345 | G4ReactionProduct boosted;
|
|---|
| 346 | boosted.Lorentz(theNeutron, theTarget);
|
|---|
| 347 | G4double anEnergy = boosted.GetKineticEnergy();
|
|---|
| 348 | thePhotons = theFinalStatePhotons[it]->GetPhotons(anEnergy);
|
|---|
| 349 | G4double aBaseEnergy = theFinalStatePhotons[it]->GetLevelEnergy();
|
|---|
| 350 | G4double testEnergy = 0;
|
|---|
| 351 | if(thePhotons!=0 && thePhotons->size()!=0)
|
|---|
| 352 | { aBaseEnergy-=thePhotons->operator[](0)->GetTotalEnergy(); }
|
|---|
| 353 | if(theFinalStatePhotons[it]->NeedsCascade())
|
|---|
| 354 | {
|
|---|
| 355 | while(aBaseEnergy>0.01*keV)
|
|---|
| 356 | {
|
|---|
| 357 | // cascade down the levels
|
|---|
| 358 | G4bool foundMatchingLevel = false;
|
|---|
| 359 | G4int closest = 2;
|
|---|
| 360 | G4double deltaEold = -1;
|
|---|
| 361 | for(G4int i=1; i<it; i++)
|
|---|
| 362 | {
|
|---|
| 363 | if(theFinalStatePhotons[i]!=0)
|
|---|
| 364 | {
|
|---|
| 365 | testEnergy = theFinalStatePhotons[i]->GetLevelEnergy();
|
|---|
| 366 | }
|
|---|
| 367 | else
|
|---|
| 368 | {
|
|---|
| 369 | testEnergy = 0;
|
|---|
| 370 | }
|
|---|
| 371 | G4double deltaE = std::abs(testEnergy-aBaseEnergy);
|
|---|
| 372 | if(deltaE<0.1*keV)
|
|---|
| 373 | {
|
|---|
| 374 | G4ReactionProductVector * theNext =
|
|---|
| 375 | theFinalStatePhotons[i]->GetPhotons(anEnergy);
|
|---|
| 376 | thePhotons->push_back(theNext->operator[](0));
|
|---|
| 377 | aBaseEnergy = testEnergy-theNext->operator[](0)->GetTotalEnergy();
|
|---|
| 378 | delete theNext;
|
|---|
| 379 | foundMatchingLevel = true;
|
|---|
| 380 | break; // ===>
|
|---|
| 381 | }
|
|---|
| 382 | if(theFinalStatePhotons[i]!=0 && ( deltaE<deltaEold||deltaEold<0.) )
|
|---|
| 383 | {
|
|---|
| 384 | closest = i;
|
|---|
| 385 | deltaEold = deltaE;
|
|---|
| 386 | }
|
|---|
| 387 | } // <=== the break goes here.
|
|---|
| 388 | if(!foundMatchingLevel)
|
|---|
| 389 | {
|
|---|
| 390 | G4ReactionProductVector * theNext =
|
|---|
| 391 | theFinalStatePhotons[closest]->GetPhotons(anEnergy);
|
|---|
| 392 | thePhotons->push_back(theNext->operator[](0));
|
|---|
| 393 | aBaseEnergy = aBaseEnergy-theNext->operator[](0)->GetTotalEnergy();
|
|---|
| 394 | delete theNext;
|
|---|
| 395 | }
|
|---|
| 396 | }
|
|---|
| 397 | }
|
|---|
| 398 | }
|
|---|
| 399 | unsigned int i0;
|
|---|
| 400 | if(thePhotons!=0)
|
|---|
| 401 | {
|
|---|
| 402 | for(i0=0; i0<thePhotons->size(); i0++)
|
|---|
| 403 | {
|
|---|
| 404 | // back to lab
|
|---|
| 405 | thePhotons->operator[](i0)->Lorentz(*(thePhotons->operator[](i0)), -1.*theTarget);
|
|---|
| 406 | }
|
|---|
| 407 | }
|
|---|
| 408 | //G4cout << "nothingWasKnownOnHadron " << nothingWasKnownOnHadron << G4endl;
|
|---|
| 409 | if(nothingWasKnownOnHadron)
|
|---|
| 410 | {
|
|---|
| 411 | G4double totalPhotonEnergy = 0;
|
|---|
| 412 | if(thePhotons!=0)
|
|---|
| 413 | {
|
|---|
| 414 | unsigned int nPhotons = thePhotons->size();
|
|---|
| 415 | unsigned int i0;
|
|---|
| 416 | for(i0=0; i0<nPhotons; i0++)
|
|---|
| 417 | {
|
|---|
| 418 | totalPhotonEnergy += thePhotons->operator[](i0)->GetTotalEnergy();
|
|---|
| 419 | }
|
|---|
| 420 | }
|
|---|
| 421 | availableEnergy -= totalPhotonEnergy;
|
|---|
| 422 | residualMass += totalPhotonEnergy/G4Neutron::Neutron()->GetPDGMass();
|
|---|
| 423 | aHadron.SetKineticEnergy(availableEnergy*residualMass*G4Neutron::Neutron()->GetPDGMass()/
|
|---|
| 424 | (aHadron.GetMass()+residualMass*G4Neutron::Neutron()->GetPDGMass()));
|
|---|
| 425 | G4double CosTheta = 1.0 - 2.0*G4UniformRand();
|
|---|
| 426 | G4double SinTheta = std::sqrt(1.0 - CosTheta*CosTheta);
|
|---|
| 427 | G4double Phi = twopi*G4UniformRand();
|
|---|
| 428 | G4ThreeVector Vector(std::cos(Phi)*SinTheta, std::sin(Phi)*SinTheta, CosTheta);
|
|---|
| 429 | //aHadron.SetMomentum(Vector* std::sqrt(aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy()-
|
|---|
| 430 | // aHadron.GetMass()*aHadron.GetMass()));
|
|---|
| 431 | G4double p2 = aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy()- aHadron.GetMass()*aHadron.GetMass();
|
|---|
| 432 |
|
|---|
| 433 | G4double p = 0.0;
|
|---|
| 434 | if ( p2 > 0.0 )
|
|---|
| 435 | p = std::sqrt ( p2 );
|
|---|
| 436 |
|
|---|
| 437 | aHadron.SetMomentum( Vector*p );
|
|---|
| 438 |
|
|---|
| 439 | }
|
|---|
| 440 |
|
|---|
| 441 | // fill the result
|
|---|
| 442 | // Beware - the recoil is not necessarily in the particles...
|
|---|
| 443 | // Can be calculated from momentum conservation?
|
|---|
| 444 | // The idea is that the particles ar emitted forst, and the gammas only once the
|
|---|
| 445 | // recoil is on the residual; assumption is that gammas do not contribute to
|
|---|
| 446 | // the recoil.
|
|---|
| 447 | // This needs more design @@@
|
|---|
| 448 |
|
|---|
| 449 | G4int nSecondaries = 2; // the hadron and the recoil
|
|---|
| 450 | G4bool needsSeparateRecoil = false;
|
|---|
| 451 | G4int totalBaryonNumber = 0;
|
|---|
| 452 | G4int totalCharge = 0;
|
|---|
| 453 | G4ThreeVector totalMomentum(0);
|
|---|
| 454 | if(theParticles != 0)
|
|---|
| 455 | {
|
|---|
| 456 | nSecondaries = theParticles->size();
|
|---|
| 457 | G4ParticleDefinition * aDef;
|
|---|
| 458 | unsigned int i0;
|
|---|
| 459 | for(i0=0; i0<theParticles->size(); i0++)
|
|---|
| 460 | {
|
|---|
| 461 | aDef = theParticles->operator[](i0)->GetDefinition();
|
|---|
| 462 | totalBaryonNumber+=aDef->GetBaryonNumber();
|
|---|
| 463 | totalCharge+=G4int(aDef->GetPDGCharge()+eps);
|
|---|
| 464 | totalMomentum += theParticles->operator[](i0)->GetMomentum();
|
|---|
| 465 | }
|
|---|
| 466 | if(totalBaryonNumber!=G4int(theBaseA+eps+incidentParticle->GetDefinition()->GetBaryonNumber()))
|
|---|
| 467 | {
|
|---|
| 468 | needsSeparateRecoil = true;
|
|---|
| 469 | nSecondaries++;
|
|---|
| 470 | residualA = G4int(theBaseA+eps+incidentParticle->GetDefinition()->GetBaryonNumber()
|
|---|
| 471 | -totalBaryonNumber);
|
|---|
| 472 | residualZ = G4int(theBaseZ+eps+incidentParticle->GetDefinition()->GetPDGCharge()
|
|---|
| 473 | -totalCharge);
|
|---|
| 474 | }
|
|---|
| 475 | }
|
|---|
| 476 |
|
|---|
| 477 | G4int nPhotons = 0;
|
|---|
| 478 | if(thePhotons!=0) { nPhotons = thePhotons->size(); }
|
|---|
| 479 | nSecondaries += nPhotons;
|
|---|
| 480 |
|
|---|
| 481 | G4DynamicParticle * theSec;
|
|---|
| 482 |
|
|---|
| 483 | if( theParticles==0 )
|
|---|
| 484 | {
|
|---|
| 485 | theSec = new G4DynamicParticle;
|
|---|
| 486 | theSec->SetDefinition(aHadron.GetDefinition());
|
|---|
| 487 | theSec->SetMomentum(aHadron.GetMomentum());
|
|---|
| 488 | theResult.AddSecondary(theSec);
|
|---|
| 489 |
|
|---|
| 490 | aHadron.Lorentz(aHadron, theTarget);
|
|---|
| 491 | G4ReactionProduct theResidual;
|
|---|
| 492 | theResidual.SetDefinition(G4ParticleTable::GetParticleTable()
|
|---|
| 493 | ->GetIon(static_cast<G4int>(residualZ), static_cast<G4int>(residualA), 0));
|
|---|
| 494 | theResidual.SetKineticEnergy(aHadron.GetKineticEnergy()*aHadron.GetMass()/theResidual.GetMass());
|
|---|
| 495 | theResidual.SetMomentum(-1.*aHadron.GetMomentum());
|
|---|
| 496 | theResidual.Lorentz(theResidual, -1.*theTarget);
|
|---|
| 497 | G4ThreeVector totalPhotonMomentum(0,0,0);
|
|---|
| 498 | if(thePhotons!=0)
|
|---|
| 499 | {
|
|---|
| 500 | for(i=0; i<nPhotons; i++)
|
|---|
| 501 | {
|
|---|
| 502 | totalPhotonMomentum += thePhotons->operator[](i)->GetMomentum();
|
|---|
| 503 | }
|
|---|
| 504 | }
|
|---|
| 505 | theSec = new G4DynamicParticle;
|
|---|
| 506 | theSec->SetDefinition(theResidual.GetDefinition());
|
|---|
| 507 | theSec->SetMomentum(theResidual.GetMomentum()-totalPhotonMomentum);
|
|---|
| 508 | theResult.AddSecondary(theSec);
|
|---|
| 509 | }
|
|---|
| 510 | else
|
|---|
| 511 | {
|
|---|
| 512 | for(i0=0; i0<theParticles->size(); i0++)
|
|---|
| 513 | {
|
|---|
| 514 | theSec = new G4DynamicParticle;
|
|---|
| 515 | theSec->SetDefinition(theParticles->operator[](i0)->GetDefinition());
|
|---|
| 516 | theSec->SetMomentum(theParticles->operator[](i0)->GetMomentum());
|
|---|
| 517 | theResult.AddSecondary(theSec);
|
|---|
| 518 | delete theParticles->operator[](i0);
|
|---|
| 519 | }
|
|---|
| 520 | delete theParticles;
|
|---|
| 521 | if(needsSeparateRecoil && residualZ!=0)
|
|---|
| 522 | {
|
|---|
| 523 | G4ReactionProduct theResidual;
|
|---|
| 524 | theResidual.SetDefinition(G4ParticleTable::GetParticleTable()
|
|---|
| 525 | ->GetIon(static_cast<G4int>(residualZ), static_cast<G4int>(residualA), 0));
|
|---|
| 526 | G4double resiualKineticEnergy = theResidual.GetMass()*theResidual.GetMass();
|
|---|
| 527 | resiualKineticEnergy += totalMomentum*totalMomentum;
|
|---|
| 528 | resiualKineticEnergy = std::sqrt(resiualKineticEnergy) - theResidual.GetMass();
|
|---|
| 529 | // cout << "Kinetic energy of the residual = "<<resiualKineticEnergy<<endl;
|
|---|
| 530 | theResidual.SetKineticEnergy(resiualKineticEnergy);
|
|---|
| 531 | theResidual.SetMomentum(-1.*totalMomentum);
|
|---|
| 532 | theSec = new G4DynamicParticle;
|
|---|
| 533 | theSec->SetDefinition(theResidual.GetDefinition());
|
|---|
| 534 | theSec->SetMomentum(theResidual.GetMomentum());
|
|---|
| 535 | theResult.AddSecondary(theSec);
|
|---|
| 536 | }
|
|---|
| 537 | }
|
|---|
| 538 | if(thePhotons!=0)
|
|---|
| 539 | {
|
|---|
| 540 | for(i=0; i<nPhotons; i++)
|
|---|
| 541 | {
|
|---|
| 542 | theSec = new G4DynamicParticle;
|
|---|
| 543 | theSec->SetDefinition(G4Gamma::Gamma());
|
|---|
| 544 | theSec->SetMomentum(thePhotons->operator[](i)->GetMomentum());
|
|---|
| 545 | theResult.AddSecondary(theSec);
|
|---|
| 546 | delete thePhotons->operator[](i);
|
|---|
| 547 | }
|
|---|
| 548 | // some garbage collection
|
|---|
| 549 | delete thePhotons;
|
|---|
| 550 | }
|
|---|
| 551 | // clean up the primary neutron
|
|---|
| 552 | theResult.SetStatusChange(stopAndKill);
|
|---|
| 553 | }
|
|---|