| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // neutron_hp -- source file
|
|---|
| 27 | // J.P. Wellisch, Nov-1996
|
|---|
| 28 | // A prototype of the low energy neutron transport model.
|
|---|
| 29 | //
|
|---|
| 30 | // 070523 Try to limit sum of secondary photon energy while keeping distribution shape
|
|---|
| 31 | // in the of nDiscrete = 1 an nPartial = 1. Most case are satisfied.
|
|---|
| 32 | // T. Koi
|
|---|
| 33 | // 070606 Add Partial case by T. Koi
|
|---|
| 34 | // 070618 fix memory leaking by T. Koi
|
|---|
| 35 | //
|
|---|
| 36 | // there is a lot of unused (and undebugged) code in this file. Kept for the moment just in case. @@
|
|---|
| 37 |
|
|---|
| 38 | #include "G4NeutronHPPhotonDist.hh"
|
|---|
| 39 | #include "G4NeutronHPLegendreStore.hh"
|
|---|
| 40 | #include "G4Electron.hh"
|
|---|
| 41 | #include "G4Poisson.hh"
|
|---|
| 42 |
|
|---|
| 43 | #include <numeric>
|
|---|
| 44 |
|
|---|
| 45 | G4bool G4NeutronHPPhotonDist::InitMean(std::ifstream & aDataFile)
|
|---|
| 46 | {
|
|---|
| 47 | G4bool result = true;
|
|---|
| 48 | if(aDataFile >> repFlag)
|
|---|
| 49 | {
|
|---|
| 50 | aDataFile >> targetMass;
|
|---|
| 51 | if(repFlag==1)
|
|---|
| 52 | {
|
|---|
| 53 | // multiplicities
|
|---|
| 54 | aDataFile >> nDiscrete;
|
|---|
| 55 | disType = new G4int[nDiscrete];
|
|---|
| 56 | energy = new G4double[nDiscrete];
|
|---|
| 57 | actualMult = new G4int[nDiscrete];
|
|---|
| 58 | theYield = new G4NeutronHPVector[nDiscrete];
|
|---|
| 59 | for (G4int i=0; i<nDiscrete; i++)
|
|---|
| 60 | {
|
|---|
| 61 | aDataFile >> disType[i]>>energy[i];
|
|---|
| 62 | energy[i]*=eV;
|
|---|
| 63 | theYield[i].Init(aDataFile, eV);
|
|---|
| 64 | }
|
|---|
| 65 | }
|
|---|
| 66 | else if(repFlag == 2)
|
|---|
| 67 | {
|
|---|
| 68 | aDataFile >> theInternalConversionFlag;
|
|---|
| 69 | aDataFile >> theBaseEnergy;
|
|---|
| 70 | theBaseEnergy*=eV;
|
|---|
| 71 | aDataFile >> theInternalConversionFlag;
|
|---|
| 72 | aDataFile >> nGammaEnergies;
|
|---|
| 73 | theLevelEnergies = new G4double[nGammaEnergies];
|
|---|
| 74 | theTransitionProbabilities = new G4double[nGammaEnergies];
|
|---|
| 75 | if(theInternalConversionFlag == 2) thePhotonTransitionFraction = new G4double[nGammaEnergies];
|
|---|
| 76 | for(G4int ii=0; ii<nGammaEnergies; ii++)
|
|---|
| 77 | {
|
|---|
| 78 | if(theInternalConversionFlag == 1)
|
|---|
| 79 | {
|
|---|
| 80 | aDataFile >> theLevelEnergies[ii] >> theTransitionProbabilities[ii];
|
|---|
| 81 | theLevelEnergies[ii]*=eV;
|
|---|
| 82 | }
|
|---|
| 83 | else if(theInternalConversionFlag == 2)
|
|---|
| 84 | {
|
|---|
| 85 | aDataFile >> theLevelEnergies[ii] >> theTransitionProbabilities[ii] >> thePhotonTransitionFraction[ii];
|
|---|
| 86 | theLevelEnergies[ii]*=eV;
|
|---|
| 87 | }
|
|---|
| 88 | else
|
|---|
| 89 | {
|
|---|
| 90 | throw G4HadronicException(__FILE__, __LINE__, "G4NeutronHPPhotonDist: Unknown conversion flag");
|
|---|
| 91 | }
|
|---|
| 92 | }
|
|---|
| 93 | // Note, that this is equivalent to using the 'Gamma' classes.
|
|---|
| 94 | // throw G4HadronicException(__FILE__, __LINE__, "G4NeutronHPPhotonDist: Transition probability array not sampled for the moment.");
|
|---|
| 95 | }
|
|---|
| 96 | else
|
|---|
| 97 | {
|
|---|
| 98 | G4cout << "Data representation in G4NeutronHPPhotonDist: "<<repFlag<<G4endl;
|
|---|
| 99 | throw G4HadronicException(__FILE__, __LINE__, "G4NeutronHPPhotonDist: This data representation is not implemented.");
|
|---|
| 100 | }
|
|---|
| 101 | }
|
|---|
| 102 | else
|
|---|
| 103 | {
|
|---|
| 104 | result = false;
|
|---|
| 105 | }
|
|---|
| 106 | return result;
|
|---|
| 107 | }
|
|---|
| 108 |
|
|---|
| 109 | void G4NeutronHPPhotonDist::InitAngular(std::ifstream & aDataFile)
|
|---|
| 110 | {
|
|---|
| 111 | G4int i, ii;
|
|---|
| 112 | //angular distributions
|
|---|
| 113 | aDataFile >> isoFlag;
|
|---|
| 114 | if (isoFlag != 1)
|
|---|
| 115 | {
|
|---|
| 116 | aDataFile >> tabulationType >> nDiscrete2 >> nIso;
|
|---|
| 117 | theShells = new G4double[nDiscrete2];
|
|---|
| 118 | theGammas = new G4double[nDiscrete2];
|
|---|
| 119 | for (i=0; i< nIso; i++) // isotropic photons
|
|---|
| 120 | {
|
|---|
| 121 | aDataFile >> theGammas[i] >> theShells[i];
|
|---|
| 122 | theGammas[i]*=eV;
|
|---|
| 123 | theShells[i]*=eV;
|
|---|
| 124 | }
|
|---|
| 125 | nNeu = new G4int [nDiscrete2-nIso];
|
|---|
| 126 | if(tabulationType==1)theLegendre=new G4NeutronHPLegendreTable *[nDiscrete2-nIso];
|
|---|
| 127 | if(tabulationType==2)theAngular =new G4NeutronHPAngularP *[nDiscrete2-nIso];
|
|---|
| 128 | for(i=nIso; i< nDiscrete2; i++)
|
|---|
| 129 | {
|
|---|
| 130 | if(tabulationType==1)
|
|---|
| 131 | {
|
|---|
| 132 | aDataFile >> theGammas[i] >> theShells[i] >> nNeu[i-nIso];
|
|---|
| 133 | theGammas[i]*=eV;
|
|---|
| 134 | theShells[i]*=eV;
|
|---|
| 135 | theLegendre[i-nIso]=new G4NeutronHPLegendreTable[nNeu[i-nIso]];
|
|---|
| 136 | theLegendreManager.Init(aDataFile);
|
|---|
| 137 | for (ii=0; ii<nNeu[i-nIso]; ii++)
|
|---|
| 138 | {
|
|---|
| 139 | theLegendre[i-nIso][ii].Init(aDataFile);
|
|---|
| 140 | }
|
|---|
| 141 | }
|
|---|
| 142 | else if(tabulationType==2)
|
|---|
| 143 | {
|
|---|
| 144 | aDataFile >> theGammas[i] >> theShells[i] >> nNeu[i-nIso];
|
|---|
| 145 | theGammas[i]*=eV;
|
|---|
| 146 | theShells[i]*=eV;
|
|---|
| 147 | theAngular[i-nIso]=new G4NeutronHPAngularP[nNeu[i-nIso]];
|
|---|
| 148 | for (ii=0; ii<nNeu[i-nIso]; ii++)
|
|---|
| 149 | {
|
|---|
| 150 | theAngular[i-nIso][ii].Init(aDataFile);
|
|---|
| 151 | }
|
|---|
| 152 | }
|
|---|
| 153 | else
|
|---|
| 154 | {
|
|---|
| 155 | G4cout << "tabulation type: tabulationType"<<G4endl;
|
|---|
| 156 | throw G4HadronicException(__FILE__, __LINE__, "cannot deal with this tabulation type for angular distributions.");
|
|---|
| 157 | }
|
|---|
| 158 | }
|
|---|
| 159 | }
|
|---|
| 160 | }
|
|---|
| 161 |
|
|---|
| 162 |
|
|---|
| 163 | void G4NeutronHPPhotonDist::InitEnergies(std::ifstream & aDataFile)
|
|---|
| 164 | {
|
|---|
| 165 | G4int i, energyDistributionsNeeded = 0;
|
|---|
| 166 | for (i=0; i<nDiscrete; i++)
|
|---|
| 167 | {
|
|---|
| 168 | if( disType[i]==1) energyDistributionsNeeded =1;
|
|---|
| 169 | }
|
|---|
| 170 | if(!energyDistributionsNeeded) return;
|
|---|
| 171 | aDataFile >> nPartials;
|
|---|
| 172 | distribution = new G4int[nPartials];
|
|---|
| 173 | probs = new G4NeutronHPVector[nPartials];
|
|---|
| 174 | partials = new G4NeutronHPPartial * [nPartials];
|
|---|
| 175 | G4int nen;
|
|---|
| 176 | G4int dummy;
|
|---|
| 177 | for (i=0; i<nPartials; i++)
|
|---|
| 178 | {
|
|---|
| 179 | aDataFile >> dummy;
|
|---|
| 180 | probs[i].Init(aDataFile, eV);
|
|---|
| 181 | aDataFile >> nen;
|
|---|
| 182 | partials[i] = new G4NeutronHPPartial(nen);
|
|---|
| 183 | partials[i]->InitInterpolation(aDataFile);
|
|---|
| 184 | partials[i]->Init(aDataFile);
|
|---|
| 185 | }
|
|---|
| 186 | }
|
|---|
| 187 |
|
|---|
| 188 | void G4NeutronHPPhotonDist::InitPartials(std::ifstream & aDataFile)
|
|---|
| 189 | {
|
|---|
| 190 | //G4cout << "G4NeutronHPPhotonDist::InitPartials " << G4endl;
|
|---|
| 191 | aDataFile >> nDiscrete >> targetMass;
|
|---|
| 192 | if(nDiscrete != 1)
|
|---|
| 193 | {
|
|---|
| 194 | theTotalXsec.Init(aDataFile, eV);
|
|---|
| 195 | }
|
|---|
| 196 | G4int i;
|
|---|
| 197 | theGammas = new G4double[nDiscrete];
|
|---|
| 198 | theShells = new G4double[nDiscrete];
|
|---|
| 199 | isPrimary = new G4int[nDiscrete];
|
|---|
| 200 | disType = new G4int[nDiscrete];
|
|---|
| 201 | thePartialXsec = new G4NeutronHPVector[nDiscrete];
|
|---|
| 202 | for(i=0; i<nDiscrete; i++)
|
|---|
| 203 | {
|
|---|
| 204 | aDataFile>>theGammas[i]>>theShells[i]>>isPrimary[i]>>disType[i];
|
|---|
| 205 | theGammas[i]*=eV;
|
|---|
| 206 | theShells[i]*=eV;
|
|---|
| 207 | thePartialXsec[i].Init(aDataFile, eV);
|
|---|
| 208 | }
|
|---|
| 209 |
|
|---|
| 210 | //G4cout << "G4NeutronHPPhotonDist::InitPartials Test " << G4endl;
|
|---|
| 211 | //G4cout << "G4NeutronHPPhotonDist::InitPartials nDiscrete " << nDiscrete << G4endl;
|
|---|
| 212 | //G4NeutronHPVector* aHP = new G4NeutronHPVector;
|
|---|
| 213 | //aHP->Check(1);
|
|---|
| 214 | }
|
|---|
| 215 |
|
|---|
| 216 | G4ReactionProductVector * G4NeutronHPPhotonDist::GetPhotons(G4double anEnergy)
|
|---|
| 217 | {
|
|---|
| 218 |
|
|---|
| 219 | //G4cout << "G4NeutronHPPhotonDist::GetPhotons repFlag " << repFlag << G4endl;
|
|---|
| 220 | // the partial cross-section case is not in this yet. @@@@ << 070601 TK add partial
|
|---|
| 221 | G4int i, ii, iii;
|
|---|
| 222 | G4int nSecondaries = 0;
|
|---|
| 223 | G4ReactionProductVector * thePhotons = new G4ReactionProductVector;
|
|---|
| 224 | if(repFlag==1)
|
|---|
| 225 | {
|
|---|
| 226 | G4double current=0;
|
|---|
| 227 | for(i=0; i<nDiscrete; i++)
|
|---|
| 228 | {
|
|---|
| 229 | current = theYield[i].GetY(anEnergy);
|
|---|
| 230 | actualMult[i] = G4Poisson(current); // max cut-off still missing @@@
|
|---|
| 231 | if(nDiscrete==1&¤t<1.0001)
|
|---|
| 232 | {
|
|---|
| 233 | actualMult[i] = static_cast<G4int>(current);
|
|---|
| 234 | if(current<1)
|
|---|
| 235 | {
|
|---|
| 236 | actualMult[i] = 0;
|
|---|
| 237 | if(G4UniformRand()<current) actualMult[i] = 1;
|
|---|
| 238 | }
|
|---|
| 239 | }
|
|---|
| 240 | nSecondaries += actualMult[i];
|
|---|
| 241 | }
|
|---|
| 242 | //G4cout << "nSecondaries " << nSecondaries << " anEnergy " << anEnergy/eV << G4endl;
|
|---|
| 243 | for(i=0;i<nSecondaries;i++)
|
|---|
| 244 | {
|
|---|
| 245 | G4ReactionProduct * theOne = new G4ReactionProduct;
|
|---|
| 246 | theOne->SetDefinition(G4Gamma::Gamma());
|
|---|
| 247 | thePhotons->push_back(theOne);
|
|---|
| 248 | }
|
|---|
| 249 | G4int count=0;
|
|---|
| 250 |
|
|---|
| 251 | /*
|
|---|
| 252 | G4double totalCascadeEnergy = 0.;
|
|---|
| 253 | G4double lastCascadeEnergy = 0.;
|
|---|
| 254 | G4double eGamm = 0;
|
|---|
| 255 | G4int maxEnergyIndex = 0;
|
|---|
| 256 | */
|
|---|
| 257 | //Gcout << "nDiscrete " << nDiscrete << " nPartials " << nPartials << G4endl;
|
|---|
| 258 | //3456
|
|---|
| 259 | if ( nDiscrete == 1 && nPartials == 1 )
|
|---|
| 260 | {
|
|---|
| 261 | if ( actualMult[ 0 ] > 0 )
|
|---|
| 262 | {
|
|---|
| 263 | if ( disType[0] == 1 ) // continuum
|
|---|
| 264 | {
|
|---|
| 265 |
|
|---|
| 266 | /*
|
|---|
| 267 | for(ii=0; ii< actualMult[0]; ii++)
|
|---|
| 268 | {
|
|---|
| 269 |
|
|---|
| 270 | G4double sum=0, run=0;
|
|---|
| 271 | for(iii=0; iii<nPartials; iii++) sum+=probs[iii].GetY(anEnergy);
|
|---|
| 272 | G4double random = G4UniformRand();
|
|---|
| 273 | G4int theP = 0;
|
|---|
| 274 | for(iii=0; iii<nPartials; iii++)
|
|---|
| 275 | {
|
|---|
| 276 | run+=probs[iii].GetY(anEnergy);
|
|---|
| 277 | theP = iii;
|
|---|
| 278 | if(random<run/sum) break;
|
|---|
| 279 | }
|
|---|
| 280 | if(theP==nPartials) theP=nPartials-1; // das sortiert J aus.
|
|---|
| 281 | sum=0;
|
|---|
| 282 | G4NeutronHPVector * temp;
|
|---|
| 283 | temp = partials[theP]->GetY(anEnergy); //@@@ look at, seems fishy
|
|---|
| 284 | // Looking for TotalCascdeEnergy or LastMaxEnergy
|
|---|
| 285 | if (ii == 0)
|
|---|
| 286 | {
|
|---|
| 287 | maxEnergyIndex = temp->GetVectorLength()-1;
|
|---|
| 288 | totalCascadeEnergy = temp->GetX(maxEnergyIndex);
|
|---|
| 289 | lastCascadeEnergy = totalCascadeEnergy;
|
|---|
| 290 | }
|
|---|
| 291 | lastCascadeEnergy -= eGamm;
|
|---|
| 292 | if (ii != actualMult[i]-1) eGamm = temp->SampleWithMax(lastCascadeEnergy);
|
|---|
| 293 | else eGamm = lastCascadeEnergy;
|
|---|
| 294 | thePhotons->operator[](count)->SetKineticEnergy(eGamm);
|
|---|
| 295 | delete temp;
|
|---|
| 296 |
|
|---|
| 297 | }
|
|---|
| 298 | */
|
|---|
| 299 | G4NeutronHPVector * temp;
|
|---|
| 300 | temp = partials[ 0 ]->GetY(anEnergy); //@@@ look at, seems fishy
|
|---|
| 301 | G4double maximumE = temp->GetX( temp->GetVectorLength()-1 ); // This is an assumption.
|
|---|
| 302 |
|
|---|
| 303 | //G4cout << "start " << actualMult[ 0 ] << " maximumE " << maximumE/eV << G4endl;
|
|---|
| 304 |
|
|---|
| 305 | std::vector< G4double > photons_e_best( actualMult[ 0 ] , 0.0 );
|
|---|
| 306 | G4double best = DBL_MAX;
|
|---|
| 307 | G4int maxTry = 1000;
|
|---|
| 308 | for ( G4int j = 0 ; j < maxTry ; j++ )
|
|---|
| 309 | {
|
|---|
| 310 | std::vector< G4double > photons_e( actualMult[ 0 ] , 0.0 );
|
|---|
| 311 | for ( std::vector< G4double >::iterator
|
|---|
| 312 | it = photons_e.begin() ; it < photons_e.end() ; it++ )
|
|---|
| 313 | {
|
|---|
| 314 | *it = temp->Sample();
|
|---|
| 315 | }
|
|---|
| 316 | if ( std::accumulate( photons_e.begin() , photons_e.end() , 0.0 ) > maximumE )
|
|---|
| 317 | {
|
|---|
| 318 | if ( std::accumulate( photons_e.begin() , photons_e.end() , 0.0 ) < best )
|
|---|
| 319 | photons_e_best = photons_e;
|
|---|
| 320 | continue;
|
|---|
| 321 | }
|
|---|
| 322 | else
|
|---|
| 323 | {
|
|---|
| 324 | for ( std::vector< G4double >::iterator
|
|---|
| 325 | it = photons_e.begin() ; it < photons_e.end() ; it++ )
|
|---|
| 326 | {
|
|---|
| 327 | thePhotons->operator[](count)->SetKineticEnergy( *it );
|
|---|
| 328 | }
|
|---|
| 329 | //G4cout << "OK " << actualMult[0] << " j " << j << " total photons E "
|
|---|
| 330 | // << std::accumulate( photons_e.begin() , photons_e.end() , 0.0 )/eV << " ratio " << std::accumulate( photons_e.begin() , photons_e.end() , 0.0 ) / maximumE
|
|---|
| 331 | // << G4endl;
|
|---|
| 332 |
|
|---|
| 333 | break;
|
|---|
| 334 | }
|
|---|
| 335 | G4cout << "NeutronHPPhotonDist could not find fitted energy set for multiplicity of " << actualMult[0] << "." << G4endl;
|
|---|
| 336 | G4cout << "NeutronHPPhotonDist will use the best set." << G4endl;
|
|---|
| 337 | for ( std::vector< G4double >::iterator
|
|---|
| 338 | it = photons_e_best.begin() ; it < photons_e_best.end() ; it++ )
|
|---|
| 339 | {
|
|---|
| 340 | thePhotons->operator[](count)->SetKineticEnergy( *it );
|
|---|
| 341 | }
|
|---|
| 342 | //G4cout << "Not Good " << actualMult[0] << " j " << j << " total photons E "
|
|---|
| 343 | // << best/eV << " ratio " << best / maximumE
|
|---|
| 344 | // << G4endl;
|
|---|
| 345 | }
|
|---|
| 346 | // TKDB
|
|---|
| 347 | delete temp;
|
|---|
| 348 | }
|
|---|
| 349 | else // discrete
|
|---|
| 350 | {
|
|---|
| 351 | thePhotons->operator[](count)->SetKineticEnergy(energy[i]);
|
|---|
| 352 | }
|
|---|
| 353 | count++;
|
|---|
| 354 | if(count > nSecondaries) throw G4HadronicException(__FILE__, __LINE__, "G4NeutronHPPhotonDist::GetPhotons inconsistancy");
|
|---|
| 355 | }
|
|---|
| 356 |
|
|---|
| 357 | }
|
|---|
| 358 | else
|
|---|
| 359 | {
|
|---|
| 360 | for(i=0; i<nDiscrete; i++)
|
|---|
| 361 | {
|
|---|
| 362 | for(ii=0; ii< actualMult[i]; ii++)
|
|---|
| 363 | {
|
|---|
| 364 | if(disType[i]==1) // continuum
|
|---|
| 365 | {
|
|---|
| 366 | G4double sum=0, run=0;
|
|---|
| 367 | for(iii=0; iii<nPartials; iii++) sum+=probs[iii].GetY(anEnergy);
|
|---|
| 368 | G4double random = G4UniformRand();
|
|---|
| 369 | G4int theP = 0;
|
|---|
| 370 | for(iii=0; iii<nPartials; iii++)
|
|---|
| 371 | {
|
|---|
| 372 | run+=probs[iii].GetY(anEnergy);
|
|---|
| 373 | theP = iii;
|
|---|
| 374 | if(random<run/sum) break;
|
|---|
| 375 | }
|
|---|
| 376 | if(theP==nPartials) theP=nPartials-1; // das sortiert J aus.
|
|---|
| 377 | sum=0;
|
|---|
| 378 | G4NeutronHPVector * temp;
|
|---|
| 379 | temp = partials[theP]->GetY(anEnergy); //@@@ look at, seems fishy
|
|---|
| 380 | G4double eGamm = temp->Sample();
|
|---|
| 381 | thePhotons->operator[](count)->SetKineticEnergy(eGamm);
|
|---|
| 382 | delete temp;
|
|---|
| 383 | }
|
|---|
| 384 | else // discrete
|
|---|
| 385 | {
|
|---|
| 386 | thePhotons->operator[](count)->SetKineticEnergy(energy[i]);
|
|---|
| 387 | }
|
|---|
| 388 | count++;
|
|---|
| 389 | if(count > nSecondaries) throw G4HadronicException(__FILE__, __LINE__, "G4NeutronHPPhotonDist::GetPhotons inconsistancy");
|
|---|
| 390 | }
|
|---|
| 391 | }
|
|---|
| 392 | }
|
|---|
| 393 | // now do the angular distributions...
|
|---|
| 394 | if( isoFlag == 1)
|
|---|
| 395 | {
|
|---|
| 396 | for (i=0; i< nSecondaries; i++)
|
|---|
| 397 | {
|
|---|
| 398 | G4double costheta = 2.*G4UniformRand()-1;
|
|---|
| 399 | G4double theta = std::acos(costheta);
|
|---|
| 400 | G4double phi = twopi*G4UniformRand();
|
|---|
| 401 | G4double sinth = std::sin(theta);
|
|---|
| 402 | G4double en = thePhotons->operator[](i)->GetTotalEnergy();
|
|---|
| 403 | G4ThreeVector temp(en*sinth*std::cos(phi), en*sinth*std::sin(phi), en*std::cos(theta) );
|
|---|
| 404 | thePhotons->operator[](i)->SetMomentum( temp ) ;
|
|---|
| 405 | // G4cout << "Isotropic distribution in PhotonDist"<<temp<<G4endl;
|
|---|
| 406 | }
|
|---|
| 407 | }
|
|---|
| 408 | else
|
|---|
| 409 | {
|
|---|
| 410 | for(i=0; i<nSecondaries; i++)
|
|---|
| 411 | {
|
|---|
| 412 | G4double currentEnergy = thePhotons->operator[](i)->GetTotalEnergy();
|
|---|
| 413 | for(ii=0; ii<nDiscrete2; ii++)
|
|---|
| 414 | {
|
|---|
| 415 | if (std::abs(currentEnergy-theGammas[ii])<0.1*keV) break;
|
|---|
| 416 | }
|
|---|
| 417 | if(ii==nDiscrete2) ii--; // fix for what seems an (file12 vs file 14) inconsistancy found in the ENDF 7N14 data. @@
|
|---|
| 418 | if(ii<nIso)
|
|---|
| 419 | {
|
|---|
| 420 | // isotropic distribution
|
|---|
| 421 | G4double theta = pi*G4UniformRand();
|
|---|
| 422 | G4double phi = twopi*G4UniformRand();
|
|---|
| 423 | G4double sinth = std::sin(theta);
|
|---|
| 424 | G4double en = thePhotons->operator[](i)->GetTotalEnergy();
|
|---|
| 425 | G4ThreeVector tempVector(en*sinth*std::cos(phi), en*sinth*std::sin(phi), en*std::cos(theta) );
|
|---|
| 426 | thePhotons->operator[](i)->SetMomentum( tempVector ) ;
|
|---|
| 427 | }
|
|---|
| 428 | else if(tabulationType==1)
|
|---|
| 429 | {
|
|---|
| 430 | // legendre polynomials
|
|---|
| 431 | G4int it(0);
|
|---|
| 432 | for (iii=0; iii<nNeu[ii-nIso]; iii++) // find the neutron energy
|
|---|
| 433 | {
|
|---|
| 434 | it = iii;
|
|---|
| 435 | if(theLegendre[ii-nIso][iii].GetEnergy()>anEnergy)
|
|---|
| 436 | break;
|
|---|
| 437 | }
|
|---|
| 438 | G4NeutronHPLegendreStore aStore(2);
|
|---|
| 439 | aStore.SetCoeff(1, &(theLegendre[ii-nIso][it]));
|
|---|
| 440 | aStore.SetCoeff(0, &(theLegendre[ii-nIso][it-1]));
|
|---|
| 441 | G4double cosTh = aStore.SampleMax(anEnergy);
|
|---|
| 442 | G4double theta = std::acos(cosTh);
|
|---|
| 443 | G4double phi = twopi*G4UniformRand();
|
|---|
| 444 | G4double sinth = std::sin(theta);
|
|---|
| 445 | G4double en = thePhotons->operator[](i)->GetTotalEnergy();
|
|---|
| 446 | G4ThreeVector tempVector(en*sinth*std::cos(phi), en*sinth*std::sin(phi), en*std::cos(theta) );
|
|---|
| 447 | thePhotons->operator[](i)->SetMomentum( tempVector ) ;
|
|---|
| 448 | }
|
|---|
| 449 | else
|
|---|
| 450 | {
|
|---|
| 451 | // tabulation of probabilities.
|
|---|
| 452 | G4int it(0);
|
|---|
| 453 | for (iii=0; iii<nNeu[ii-nIso]; iii++) // find the neutron energy
|
|---|
| 454 | {
|
|---|
| 455 | it = iii;
|
|---|
| 456 | if(theAngular[ii-nIso][iii].GetEnergy()>anEnergy)
|
|---|
| 457 | break;
|
|---|
| 458 | }
|
|---|
| 459 | G4double costh = theAngular[ii-nIso][it].GetCosTh(); // no interpolation yet @@
|
|---|
| 460 | G4double theta = std::acos(costh);
|
|---|
| 461 | G4double phi = twopi*G4UniformRand();
|
|---|
| 462 | G4double sinth = std::sin(theta);
|
|---|
| 463 | G4double en = thePhotons->operator[](i)->GetTotalEnergy();
|
|---|
| 464 | G4ThreeVector tmpVector(en*sinth*std::cos(phi), en*sinth*std::sin(phi), en*costh );
|
|---|
| 465 | thePhotons->operator[](i)->SetMomentum( tmpVector ) ;
|
|---|
| 466 | }
|
|---|
| 467 | }
|
|---|
| 468 | }
|
|---|
| 469 | }
|
|---|
| 470 | else if(repFlag == 2)
|
|---|
| 471 | {
|
|---|
| 472 | G4double * running = new G4double[nGammaEnergies];
|
|---|
| 473 | running[0]=theTransitionProbabilities[0];
|
|---|
| 474 | G4int i;
|
|---|
| 475 | for(i=1; i<nGammaEnergies; i++)
|
|---|
| 476 | {
|
|---|
| 477 | running[i]=running[i-1]+theTransitionProbabilities[i];
|
|---|
| 478 | }
|
|---|
| 479 | G4double random = G4UniformRand();
|
|---|
| 480 | G4int it=0;
|
|---|
| 481 | for(i=0; i<nGammaEnergies; i++)
|
|---|
| 482 | {
|
|---|
| 483 | it = i;
|
|---|
| 484 | if(random < running[i]/running[nGammaEnergies-1]) break;
|
|---|
| 485 | }
|
|---|
| 486 | delete [] running;
|
|---|
| 487 | G4double totalEnergy = theBaseEnergy - theLevelEnergies[it];
|
|---|
| 488 | G4ReactionProduct * theOne = new G4ReactionProduct;
|
|---|
| 489 | theOne->SetDefinition(G4Gamma::Gamma());
|
|---|
| 490 | random = G4UniformRand();
|
|---|
| 491 | if(theInternalConversionFlag==2 && random>thePhotonTransitionFraction[it])
|
|---|
| 492 | {
|
|---|
| 493 | theOne->SetDefinition(G4Electron::Electron());
|
|---|
| 494 | }
|
|---|
| 495 | theOne->SetTotalEnergy(totalEnergy);
|
|---|
| 496 | if( isoFlag == 1)
|
|---|
| 497 | {
|
|---|
| 498 | G4double costheta = 2.*G4UniformRand()-1;
|
|---|
| 499 | G4double theta = std::acos(costheta);
|
|---|
| 500 | G4double phi = twopi*G4UniformRand();
|
|---|
| 501 | G4double sinth = std::sin(theta);
|
|---|
| 502 | G4double en = theOne->GetTotalEnergy();
|
|---|
| 503 | G4ThreeVector temp(en*sinth*std::cos(phi), en*sinth*std::sin(phi), en*std::cos(theta) );
|
|---|
| 504 | theOne->SetMomentum( temp ) ;
|
|---|
| 505 | }
|
|---|
| 506 | else
|
|---|
| 507 | {
|
|---|
| 508 | G4double currentEnergy = theOne->GetTotalEnergy();
|
|---|
| 509 | for(ii=0; ii<nDiscrete2; ii++)
|
|---|
| 510 | {
|
|---|
| 511 | if (std::abs(currentEnergy-theGammas[ii])<0.1*keV) break;
|
|---|
| 512 | }
|
|---|
| 513 | if(ii==nDiscrete2) ii--; // fix for what seems an (file12 vs file 14) inconsistancy found in the ENDF 7N14 data. @@
|
|---|
| 514 | if(ii<nIso)
|
|---|
| 515 | {
|
|---|
| 516 | // isotropic distribution
|
|---|
| 517 | G4double theta = pi*G4UniformRand();
|
|---|
| 518 | G4double phi = twopi*G4UniformRand();
|
|---|
| 519 | G4double sinth = std::sin(theta);
|
|---|
| 520 | G4double en = theOne->GetTotalEnergy();
|
|---|
| 521 | G4ThreeVector tempVector(en*sinth*std::cos(phi), en*sinth*std::sin(phi), en*std::cos(theta) );
|
|---|
| 522 | theOne->SetMomentum( tempVector ) ;
|
|---|
| 523 | }
|
|---|
| 524 | else if(tabulationType==1)
|
|---|
| 525 | {
|
|---|
| 526 | // legendre polynomials
|
|---|
| 527 | G4int it(0);
|
|---|
| 528 | for (iii=0; iii<nNeu[ii-nIso]; iii++) // find the neutron energy
|
|---|
| 529 | {
|
|---|
| 530 | it = iii;
|
|---|
| 531 | if(theLegendre[ii-nIso][iii].GetEnergy()>anEnergy)
|
|---|
| 532 | break;
|
|---|
| 533 | }
|
|---|
| 534 | G4NeutronHPLegendreStore aStore(2);
|
|---|
| 535 | aStore.SetCoeff(1, &(theLegendre[ii-nIso][it]));
|
|---|
| 536 | aStore.SetCoeff(0, &(theLegendre[ii-nIso][it-1]));
|
|---|
| 537 | G4double cosTh = aStore.SampleMax(anEnergy);
|
|---|
| 538 | G4double theta = std::acos(cosTh);
|
|---|
| 539 | G4double phi = twopi*G4UniformRand();
|
|---|
| 540 | G4double sinth = std::sin(theta);
|
|---|
| 541 | G4double en = theOne->GetTotalEnergy();
|
|---|
| 542 | G4ThreeVector tempVector(en*sinth*std::cos(phi), en*sinth*std::sin(phi), en*std::cos(theta) );
|
|---|
| 543 | theOne->SetMomentum( tempVector ) ;
|
|---|
| 544 | }
|
|---|
| 545 | else
|
|---|
| 546 | {
|
|---|
| 547 | // tabulation of probabilities.
|
|---|
| 548 | G4int it(0);
|
|---|
| 549 | for (iii=0; iii<nNeu[ii-nIso]; iii++) // find the neutron energy
|
|---|
| 550 | {
|
|---|
| 551 | it = iii;
|
|---|
| 552 | if(theAngular[ii-nIso][iii].GetEnergy()>anEnergy)
|
|---|
| 553 | break;
|
|---|
| 554 | }
|
|---|
| 555 | G4double costh = theAngular[ii-nIso][it].GetCosTh(); // no interpolation yet @@
|
|---|
| 556 | G4double theta = std::acos(costh);
|
|---|
| 557 | G4double phi = twopi*G4UniformRand();
|
|---|
| 558 | G4double sinth = std::sin(theta);
|
|---|
| 559 | G4double en = theOne->GetTotalEnergy();
|
|---|
| 560 | G4ThreeVector tmpVector(en*sinth*std::cos(phi), en*sinth*std::sin(phi), en*costh );
|
|---|
| 561 | theOne->SetMomentum( tmpVector ) ;
|
|---|
| 562 | }
|
|---|
| 563 | }
|
|---|
| 564 | thePhotons->push_back(theOne);
|
|---|
| 565 | }
|
|---|
| 566 | else if( repFlag==0 )
|
|---|
| 567 | {
|
|---|
| 568 |
|
|---|
| 569 | // TK add
|
|---|
| 570 | if ( thePartialXsec == 0 )
|
|---|
| 571 | {
|
|---|
| 572 | //G4cout << "repFlag is 0, but no PartialXsec data" << G4endl;
|
|---|
| 573 | //G4cout << "This is not support yet." << G4endl;
|
|---|
| 574 | return thePhotons;
|
|---|
| 575 | }
|
|---|
| 576 |
|
|---|
| 577 | // Partial Case
|
|---|
| 578 |
|
|---|
| 579 | G4ReactionProduct * theOne = new G4ReactionProduct;
|
|---|
| 580 | theOne->SetDefinition( G4Gamma::Gamma() );
|
|---|
| 581 | thePhotons->push_back( theOne );
|
|---|
| 582 |
|
|---|
| 583 | // Energy
|
|---|
| 584 |
|
|---|
| 585 | //G4cout << "Partial Case nDiscrete " << nDiscrete << G4endl;
|
|---|
| 586 | G4double sum = 0.0;
|
|---|
| 587 | std::vector < G4double > dif( nDiscrete , 0.0 );
|
|---|
| 588 | for ( G4int i = 0 ; i < nDiscrete ; i++ )
|
|---|
| 589 | {
|
|---|
| 590 | G4double x = thePartialXsec[ i ].GetXsec( anEnergy ); // x in barn
|
|---|
| 591 | if ( x > 0 )
|
|---|
| 592 | {
|
|---|
| 593 | sum += x;
|
|---|
| 594 | }
|
|---|
| 595 | dif [ i ] = sum;
|
|---|
| 596 | //G4cout << "i " << i << ", x " << x << ", dif " << dif [ i ] << G4endl;
|
|---|
| 597 | }
|
|---|
| 598 |
|
|---|
| 599 | G4double rand = G4UniformRand();
|
|---|
| 600 |
|
|---|
| 601 | G4int iphoton = 0;
|
|---|
| 602 | for ( G4int i = 0 ; i < nDiscrete ; i++ )
|
|---|
| 603 | {
|
|---|
| 604 | G4double y = rand*sum;
|
|---|
| 605 | if ( dif [ i ] > y )
|
|---|
| 606 | {
|
|---|
| 607 | iphoton = i;
|
|---|
| 608 | break;
|
|---|
| 609 | }
|
|---|
| 610 | }
|
|---|
| 611 | //G4cout << "iphoton " << iphoton << G4endl;
|
|---|
| 612 | //G4cout << "photon energy " << theGammas[ iphoton ] /eV << G4endl;
|
|---|
| 613 |
|
|---|
| 614 | // Angle
|
|---|
| 615 | G4double cosTheta = 0.0; // mu
|
|---|
| 616 |
|
|---|
| 617 | if ( isoFlag == 1 )
|
|---|
| 618 | {
|
|---|
| 619 |
|
|---|
| 620 | // Isotropic Case
|
|---|
| 621 |
|
|---|
| 622 | cosTheta = 2.*G4UniformRand()-1;
|
|---|
| 623 |
|
|---|
| 624 | }
|
|---|
| 625 | else
|
|---|
| 626 | {
|
|---|
| 627 |
|
|---|
| 628 | if ( iphoton < nIso )
|
|---|
| 629 | {
|
|---|
| 630 |
|
|---|
| 631 | // still Isotropic
|
|---|
| 632 |
|
|---|
| 633 | cosTheta = 2.*G4UniformRand()-1;
|
|---|
| 634 |
|
|---|
| 635 | }
|
|---|
| 636 | else
|
|---|
| 637 | {
|
|---|
| 638 |
|
|---|
| 639 | //G4cout << "Not Isotropic and isoFlag " << isoFlag << G4endl;
|
|---|
| 640 | //G4cout << "tabulationType " << tabulationType << G4endl;
|
|---|
| 641 | //G4cout << "nDiscrete2 " << nDiscrete2 << G4endl;
|
|---|
| 642 | //G4cout << "nIso " << nIso << G4endl;
|
|---|
| 643 | //G4cout << "size of nNeu " << nDiscrete2-nIso << G4endl;
|
|---|
| 644 | //G4cout << "nNeu[iphoton-nIso] " << nNeu[iphoton-nIso] << G4endl;
|
|---|
| 645 |
|
|---|
| 646 | if ( tabulationType == 1 )
|
|---|
| 647 | {
|
|---|
| 648 | // legendre polynomials
|
|---|
| 649 |
|
|---|
| 650 | G4int iangle = 0;
|
|---|
| 651 | for ( G4int j = 0 ; j < nNeu [ iphoton - nIso ] ; j++ )
|
|---|
| 652 | {
|
|---|
| 653 | iangle = j;
|
|---|
| 654 | if ( theLegendre[ iphoton - nIso ][ j ].GetEnergy() > anEnergy ) break;
|
|---|
| 655 | }
|
|---|
| 656 |
|
|---|
| 657 | G4NeutronHPLegendreStore aStore( 2 );
|
|---|
| 658 | aStore.SetCoeff( 1 , &( theLegendre[ iphoton - nIso ][ iangle ] ) );
|
|---|
| 659 | aStore.SetCoeff( 0 , &( theLegendre[ iphoton - nIso ][ iangle - 1 ] ) );
|
|---|
| 660 |
|
|---|
| 661 | cosTheta = aStore.SampleMax( anEnergy );
|
|---|
| 662 |
|
|---|
| 663 | }
|
|---|
| 664 | else if ( tabulationType == 2 )
|
|---|
| 665 | {
|
|---|
| 666 |
|
|---|
| 667 | // tabulation of probabilities.
|
|---|
| 668 |
|
|---|
| 669 | G4int iangle = 0;
|
|---|
| 670 | for ( G4int j = 0 ; j < nNeu [ iphoton - nIso ] ; j++ )
|
|---|
| 671 | {
|
|---|
| 672 | iangle = j;
|
|---|
| 673 | if ( theAngular[ iphoton - nIso ][ j ].GetEnergy() > anEnergy ) break;
|
|---|
| 674 | }
|
|---|
| 675 |
|
|---|
| 676 | cosTheta = theAngular[iphoton-nIso][ iangle ].GetCosTh(); // no interpolation yet @@
|
|---|
| 677 |
|
|---|
| 678 | }
|
|---|
| 679 | }
|
|---|
| 680 | }
|
|---|
| 681 |
|
|---|
| 682 | // Set
|
|---|
| 683 | G4double phi = twopi*G4UniformRand();
|
|---|
| 684 | G4double theta = std::acos( cosTheta );
|
|---|
| 685 | G4double sinTheta = std::sin( theta );
|
|---|
| 686 |
|
|---|
| 687 | G4double photonE = theGammas[ iphoton ];
|
|---|
| 688 | G4ThreeVector direction ( sinTheta*std::cos( phi ) , sinTheta * std::sin( phi ) , cosTheta );
|
|---|
| 689 | G4ThreeVector photonP = photonE * direction;
|
|---|
| 690 | thePhotons->operator[]( 0 )->SetMomentum( photonP ) ;
|
|---|
| 691 |
|
|---|
| 692 | }
|
|---|
| 693 | else
|
|---|
| 694 | {
|
|---|
| 695 | delete thePhotons;
|
|---|
| 696 | thePhotons = 0; // no gamma data available; some work needed @@@@@@@
|
|---|
| 697 | }
|
|---|
| 698 | return thePhotons;
|
|---|
| 699 | }
|
|---|
| 700 |
|
|---|