| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4FTFParameters.cc,v 1.13 2009/12/16 17:51:15 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-03 $
|
|---|
| 29 | //
|
|---|
| 30 |
|
|---|
| 31 | #include "G4FTFParameters.hh"
|
|---|
| 32 |
|
|---|
| 33 | #include "G4ios.hh"
|
|---|
| 34 | #include <utility>
|
|---|
| 35 |
|
|---|
| 36 | G4FTFParameters::G4FTFParameters()
|
|---|
| 37 | {;}
|
|---|
| 38 |
|
|---|
| 39 |
|
|---|
| 40 | G4FTFParameters::~G4FTFParameters()
|
|---|
| 41 | {;}
|
|---|
| 42 | //**********************************************************************************************
|
|---|
| 43 |
|
|---|
| 44 | G4FTFParameters::G4FTFParameters(const G4ParticleDefinition * particle,
|
|---|
| 45 | G4double theA,
|
|---|
| 46 | G4double theZ,
|
|---|
| 47 | G4double s)
|
|---|
| 48 | {
|
|---|
| 49 | G4int PDGcode = particle->GetPDGEncoding();
|
|---|
| 50 | G4int absPDGcode = std::abs(PDGcode);
|
|---|
| 51 | G4double ProjectileMass = particle->GetPDGMass();
|
|---|
| 52 | G4double TargetMass = G4Proton::Proton()->GetPDGMass();
|
|---|
| 53 |
|
|---|
| 54 | G4double Elab = (s - ProjectileMass*ProjectileMass - TargetMass*TargetMass)/
|
|---|
| 55 | (2*TargetMass);
|
|---|
| 56 | G4double Plab = std::sqrt(Elab * Elab - ProjectileMass*ProjectileMass);
|
|---|
| 57 |
|
|---|
| 58 | G4double LogPlab = std::log( Plab );
|
|---|
| 59 | G4double sqrLogPlab = LogPlab * LogPlab;
|
|---|
| 60 |
|
|---|
| 61 | G4int NumberOfTargetProtons = (G4int) theZ;
|
|---|
| 62 | G4int NumberOfTargetNeutrons = (G4int) theA- (G4int) theZ;
|
|---|
| 63 | G4int NumberOfTargetNucleons = NumberOfTargetProtons + NumberOfTargetNeutrons;
|
|---|
| 64 |
|
|---|
| 65 | G4double Xtotal, Xelastic;
|
|---|
| 66 |
|
|---|
| 67 | if( absPDGcode > 1000 ) //------Projectile is baryon --------
|
|---|
| 68 | {
|
|---|
| 69 | G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab;
|
|---|
| 70 | G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab;
|
|---|
| 71 |
|
|---|
| 72 | G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
|
|---|
| 73 | G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
|
|---|
| 74 |
|
|---|
| 75 | Xtotal = ( NumberOfTargetProtons * XtotPP +
|
|---|
| 76 | NumberOfTargetNeutrons * XtotPN ) / NumberOfTargetNucleons;
|
|---|
| 77 | Xelastic = ( NumberOfTargetProtons * XelPP +
|
|---|
| 78 | NumberOfTargetNeutrons * XelPN ) / NumberOfTargetNucleons;
|
|---|
| 79 | }
|
|---|
| 80 | else if( PDGcode == 211 ) //------Projectile is PionPlus -------
|
|---|
| 81 | {
|
|---|
| 82 | G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab;
|
|---|
| 83 | G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab;
|
|---|
| 84 |
|
|---|
| 85 | G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab;
|
|---|
| 86 | G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab;
|
|---|
| 87 |
|
|---|
| 88 | Xtotal = ( NumberOfTargetProtons * XtotPiP +
|
|---|
| 89 | NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
|
|---|
| 90 | Xelastic = ( NumberOfTargetProtons * XelPiP +
|
|---|
| 91 | NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
|
|---|
| 92 | }
|
|---|
| 93 | else if( PDGcode == -211 ) //------Projectile is PionMinus -------
|
|---|
| 94 | {
|
|---|
| 95 | G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab;
|
|---|
| 96 | G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab;
|
|---|
| 97 |
|
|---|
| 98 | G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab;
|
|---|
| 99 | G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab;
|
|---|
| 100 |
|
|---|
| 101 | Xtotal = ( NumberOfTargetProtons * XtotPiP +
|
|---|
| 102 | NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
|
|---|
| 103 | Xelastic = ( NumberOfTargetProtons * XelPiP +
|
|---|
| 104 | NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
|
|---|
| 105 | }
|
|---|
| 106 |
|
|---|
| 107 | else if( PDGcode == 111 ) //------Projectile is PionZero -------
|
|---|
| 108 | {
|
|---|
| 109 | G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+
|
|---|
| 110 | 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
|
|---|
| 111 |
|
|---|
| 112 | G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab + //Pi+
|
|---|
| 113 | 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
|
|---|
| 114 |
|
|---|
| 115 | G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+
|
|---|
| 116 | 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
|
|---|
| 117 | G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+
|
|---|
| 118 | 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
|
|---|
| 119 |
|
|---|
| 120 | Xtotal = ( NumberOfTargetProtons * XtotPiP +
|
|---|
| 121 | NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
|
|---|
| 122 | Xelastic = ( NumberOfTargetProtons * XelPiP +
|
|---|
| 123 | NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
|
|---|
| 124 | }
|
|---|
| 125 | else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
|
|---|
| 126 | {
|
|---|
| 127 | G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab;
|
|---|
| 128 | G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab;
|
|---|
| 129 |
|
|---|
| 130 | G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab;
|
|---|
| 131 | G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab;
|
|---|
| 132 |
|
|---|
| 133 | Xtotal = ( NumberOfTargetProtons * XtotKP +
|
|---|
| 134 | NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
|
|---|
| 135 | Xelastic = ( NumberOfTargetProtons * XelKP +
|
|---|
| 136 | NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
|
|---|
| 137 | }
|
|---|
| 138 | else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------
|
|---|
| 139 | {
|
|---|
| 140 | G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab;
|
|---|
| 141 | G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab;
|
|---|
| 142 |
|
|---|
| 143 | G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab;
|
|---|
| 144 | G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab;
|
|---|
| 145 |
|
|---|
| 146 | Xtotal = ( NumberOfTargetProtons * XtotKP +
|
|---|
| 147 | NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
|
|---|
| 148 | Xelastic = ( NumberOfTargetProtons * XelKP +
|
|---|
| 149 | NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
|
|---|
| 150 | }
|
|---|
| 151 | else if((PDGcode == 311) || (PDGcode == 130) || (PDGcode == 310))//Projectile is KaonZero
|
|---|
| 152 | {
|
|---|
| 153 | G4double XtotKP =( 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab + //K+
|
|---|
| 154 | 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
|
|---|
| 155 | G4double XtotKN =( 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab + //K+
|
|---|
| 156 | 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
|
|---|
| 157 |
|
|---|
| 158 | G4double XelKP =( 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+
|
|---|
| 159 | 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
|
|---|
| 160 | G4double XelKN =( 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab + //K+
|
|---|
| 161 | 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
|
|---|
| 162 | Xtotal = ( NumberOfTargetProtons * XtotKP +
|
|---|
| 163 | NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
|
|---|
| 164 | Xelastic = ( NumberOfTargetProtons * XelKP +
|
|---|
| 165 | NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
|
|---|
| 166 | }
|
|---|
| 167 | else //------Projectile is undefined, Nucleon assumed
|
|---|
| 168 | {
|
|---|
| 169 | G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab;
|
|---|
| 170 | G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab;
|
|---|
| 171 |
|
|---|
| 172 | G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
|
|---|
| 173 | G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
|
|---|
| 174 |
|
|---|
| 175 | Xtotal = ( NumberOfTargetProtons * XtotPP +
|
|---|
| 176 | NumberOfTargetNeutrons * XtotPN ) / NumberOfTargetNucleons;
|
|---|
| 177 | Xelastic = ( NumberOfTargetProtons * XelPP +
|
|---|
| 178 | NumberOfTargetNeutrons * XelPN ) / NumberOfTargetNucleons;
|
|---|
| 179 | };
|
|---|
| 180 |
|
|---|
| 181 | // Xtotal and Xelastic in mb
|
|---|
| 182 |
|
|---|
| 183 | //----------- Geometrical parameters ------------------------------------------------
|
|---|
| 184 | SetTotalCrossSection(Xtotal);
|
|---|
| 185 | SetElastisCrossSection(Xelastic);
|
|---|
| 186 | SetInelasticCrossSection(Xtotal-Xelastic);
|
|---|
| 187 |
|
|---|
| 188 | // // Interactions with elastic and inelastic collisions
|
|---|
| 189 | SetProbabilityOfElasticScatt(Xtotal, Xelastic);
|
|---|
| 190 | SetRadiusOfHNinteractions2(Xtotal/pi/10.);
|
|---|
| 191 | //
|
|---|
| 192 | /* //==== No elastic scattering ============================
|
|---|
| 193 | SetProbabilityOfElasticScatt(Xtotal, 0.);
|
|---|
| 194 | SetRadiusOfHNinteractions2((Xtotal-Xelastic)/pi/10.);
|
|---|
| 195 | */ //=======================================================
|
|---|
| 196 |
|
|---|
| 197 | //-----------------------------------------------------------------------------------
|
|---|
| 198 | SetSlope( Xtotal*Xtotal/16./pi/Xelastic/0.3894 ); // Slope parameter of elastic scattering
|
|---|
| 199 | // (GeV/c)^(-2))
|
|---|
| 200 | //-----------------------------------------------------------------------------------
|
|---|
| 201 | SetGamma0( GetSlope()*Xtotal/10./2./pi );
|
|---|
| 202 |
|
|---|
| 203 | //----------- Parameters of elastic scattering --------------------------------------
|
|---|
| 204 | // Gaussian parametrization of
|
|---|
| 205 | // elastic scattering amplitude assumed
|
|---|
| 206 | SetAvaragePt2ofElasticScattering(1./(Xtotal*Xtotal/16./pi/Xelastic/0.3894)*GeV*GeV);
|
|---|
| 207 |
|
|---|
| 208 | //----------- Parameters of excitations ---------------------------------------------
|
|---|
| 209 | if( absPDGcode > 1000 ) //------Projectile is baryon --------
|
|---|
| 210 | {
|
|---|
| 211 | SetMagQuarkExchange(3.4); //3.8);
|
|---|
| 212 | SetSlopeQuarkExchange(1.2);
|
|---|
| 213 | SetDeltaProbAtQuarkExchange(0.1); //(0.1*4.);
|
|---|
| 214 |
|
|---|
| 215 | SetProjMinDiffMass(1.1); // GeV
|
|---|
| 216 | SetProjMinNonDiffMass(1.1); // GeV
|
|---|
| 217 | SetProbabilityOfProjDiff(0.76*std::pow(s/GeV/GeV,-0.35));
|
|---|
| 218 |
|
|---|
| 219 | SetTarMinDiffMass(1.1); // GeV
|
|---|
| 220 | SetTarMinNonDiffMass(1.1); // GeV
|
|---|
| 221 | SetProbabilityOfTarDiff(0.76*std::pow(s/GeV/GeV,-0.35));
|
|---|
| 222 |
|
|---|
| 223 | SetAveragePt2(0.3); // GeV^2
|
|---|
| 224 | }
|
|---|
| 225 | else if( absPDGcode == 211 || PDGcode == 111) //------Projectile is Pion -----------
|
|---|
| 226 | {
|
|---|
| 227 | SetMagQuarkExchange(120.); // 210.
|
|---|
| 228 | SetSlopeQuarkExchange(2.0);
|
|---|
| 229 | SetDeltaProbAtQuarkExchange(0.6);
|
|---|
| 230 |
|
|---|
| 231 | SetProjMinDiffMass(0.5); // GeV
|
|---|
| 232 | SetProjMinNonDiffMass(0.3); // GeV
|
|---|
| 233 | SetProbabilityOfProjDiff(0.*0.62*std::pow(s/GeV/GeV,-0.51)); // 40/32 X-dif/X-inel
|
|---|
| 234 |
|
|---|
| 235 | SetTarMinDiffMass(1.1); // GeV
|
|---|
| 236 | SetTarMinNonDiffMass(1.1); // GeV
|
|---|
| 237 |
|
|---|
| 238 | SetProbabilityOfTarDiff(2.*0.62*std::pow(s/GeV/GeV,-0.51)); // 40/32 X-dif/X-inel
|
|---|
| 239 |
|
|---|
| 240 | SetAveragePt2(0.3); // GeV^2
|
|---|
| 241 | }
|
|---|
| 242 | else if( (absPDGcode == 321) || (PDGcode == 311) ||
|
|---|
| 243 | (PDGcode == 130) || (PDGcode == 310)) //Projectile is Kaon
|
|---|
| 244 | {
|
|---|
| 245 | // Must be corrected, taken from PiN
|
|---|
| 246 | SetMagQuarkExchange(120.);
|
|---|
| 247 | SetSlopeQuarkExchange(2.0);
|
|---|
| 248 | SetDeltaProbAtQuarkExchange(0.6);
|
|---|
| 249 |
|
|---|
| 250 | SetProjMinDiffMass(0.7); // GeV 1.1
|
|---|
| 251 | SetProjMinNonDiffMass(0.7); // GeV
|
|---|
| 252 | SetProbabilityOfProjDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
|
|---|
| 253 |
|
|---|
| 254 | SetTarMinDiffMass(1.1); // GeV
|
|---|
| 255 | SetTarMinNonDiffMass(1.1); // GeV
|
|---|
| 256 | SetProbabilityOfTarDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
|
|---|
| 257 |
|
|---|
| 258 | SetAveragePt2(0.3); // GeV^2
|
|---|
| 259 | }
|
|---|
| 260 | else //------Projectile is undefined,
|
|---|
| 261 | //------Nucleon assumed
|
|---|
| 262 | {
|
|---|
| 263 | SetMagQuarkExchange(3.5);
|
|---|
| 264 | SetSlopeQuarkExchange(1.0);
|
|---|
| 265 | SetDeltaProbAtQuarkExchange(0.1);
|
|---|
| 266 |
|
|---|
| 267 | SetProjMinDiffMass((particle->GetPDGMass()+160.*MeV)/GeV);
|
|---|
| 268 | SetProjMinNonDiffMass((particle->GetPDGMass()+160.*MeV)/GeV);
|
|---|
| 269 | SetProbabilityOfProjDiff(0.95*std::pow(s/GeV/GeV,-0.35)); // 40/32 X-dif/X-inel
|
|---|
| 270 |
|
|---|
| 271 | SetTarMinDiffMass(1.1); // GeV
|
|---|
| 272 | SetTarMinNonDiffMass(1.1); // GeV
|
|---|
| 273 | SetProbabilityOfTarDiff(0.95*std::pow(s/GeV/GeV,-0.35)); // 40/32 X-dif/X-inel
|
|---|
| 274 |
|
|---|
| 275 | SetAveragePt2(0.3); // GeV^2
|
|---|
| 276 | }
|
|---|
| 277 |
|
|---|
| 278 | // ---------- Set parameters of a string kink -------------------------------
|
|---|
| 279 | SetPt2Kink(6.*GeV*GeV);
|
|---|
| 280 | G4double Puubar(1./3.), Pddbar(1./3.), Pssbar(1./3.); // SU(3) symmetry
|
|---|
| 281 | // G4double Puubar(0.41 ), Pddbar(0.41 ), Pssbar(0.18 ); // Broken SU(3) symmetry
|
|---|
| 282 | SetQuarkProbabilitiesAtGluonSplitUp(Puubar, Pddbar, Pssbar);
|
|---|
| 283 |
|
|---|
| 284 | // --------- Set parameters of nuclear destruction--------------------
|
|---|
| 285 |
|
|---|
| 286 | if( absPDGcode < 1000 )
|
|---|
| 287 | {
|
|---|
| 288 | SetCofNuclearDestruction(1.); //1.0); // for meson projectile
|
|---|
| 289 | } else if( theA > 20. )
|
|---|
| 290 | {
|
|---|
| 291 | SetCofNuclearDestruction(0.2); //2); // for baryon projectile and heavy target
|
|---|
| 292 | } else
|
|---|
| 293 | {
|
|---|
| 294 | SetCofNuclearDestruction(0.2); //1.0); // for baryon projectile and light target
|
|---|
| 295 | }
|
|---|
| 296 |
|
|---|
| 297 | SetR2ofNuclearDestruction(1.5*fermi*fermi);
|
|---|
| 298 |
|
|---|
| 299 | SetExcitationEnergyPerWoundedNucleon(100*MeV);
|
|---|
| 300 |
|
|---|
| 301 | SetDofNuclearDestruction(0.4);
|
|---|
| 302 | SetPt2ofNuclearDestruction(0.17*GeV*GeV);
|
|---|
| 303 | SetMaxPt2ofNuclearDestruction(1.0*GeV*GeV);
|
|---|
| 304 | }
|
|---|
| 305 | //**********************************************************************************************
|
|---|