source: trunk/source/processes/hadronic/models/parton_string/diffraction/src/G4FTFParameters.cc@ 1315

Last change on this file since 1315 was 1228, checked in by garnier, 16 years ago

update geant4.9.3 tag

File size: 15.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4FTFParameters.cc,v 1.13 2009/12/16 17:51:15 gunter Exp $
28// GEANT4 tag $Name: geant4-09-03 $
29//
30
31#include "G4FTFParameters.hh"
32
33#include "G4ios.hh"
34#include <utility>
35
36G4FTFParameters::G4FTFParameters()
37{;}
38
39
40G4FTFParameters::~G4FTFParameters()
41{;}
42//**********************************************************************************************
43
44G4FTFParameters::G4FTFParameters(const G4ParticleDefinition * particle,
45 G4double theA,
46 G4double theZ,
47 G4double s)
48{
49 G4int PDGcode = particle->GetPDGEncoding();
50 G4int absPDGcode = std::abs(PDGcode);
51 G4double ProjectileMass = particle->GetPDGMass();
52 G4double TargetMass = G4Proton::Proton()->GetPDGMass();
53
54 G4double Elab = (s - ProjectileMass*ProjectileMass - TargetMass*TargetMass)/
55 (2*TargetMass);
56 G4double Plab = std::sqrt(Elab * Elab - ProjectileMass*ProjectileMass);
57
58 G4double LogPlab = std::log( Plab );
59 G4double sqrLogPlab = LogPlab * LogPlab;
60
61 G4int NumberOfTargetProtons = (G4int) theZ;
62 G4int NumberOfTargetNeutrons = (G4int) theA- (G4int) theZ;
63 G4int NumberOfTargetNucleons = NumberOfTargetProtons + NumberOfTargetNeutrons;
64
65 G4double Xtotal, Xelastic;
66
67 if( absPDGcode > 1000 ) //------Projectile is baryon --------
68 {
69 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab;
70 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab;
71
72 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
73 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
74
75 Xtotal = ( NumberOfTargetProtons * XtotPP +
76 NumberOfTargetNeutrons * XtotPN ) / NumberOfTargetNucleons;
77 Xelastic = ( NumberOfTargetProtons * XelPP +
78 NumberOfTargetNeutrons * XelPN ) / NumberOfTargetNucleons;
79 }
80 else if( PDGcode == 211 ) //------Projectile is PionPlus -------
81 {
82 G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab;
83 G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab;
84
85 G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab;
86 G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab;
87
88 Xtotal = ( NumberOfTargetProtons * XtotPiP +
89 NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
90 Xelastic = ( NumberOfTargetProtons * XelPiP +
91 NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
92 }
93 else if( PDGcode == -211 ) //------Projectile is PionMinus -------
94 {
95 G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab;
96 G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab;
97
98 G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab;
99 G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab;
100
101 Xtotal = ( NumberOfTargetProtons * XtotPiP +
102 NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
103 Xelastic = ( NumberOfTargetProtons * XelPiP +
104 NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
105 }
106
107 else if( PDGcode == 111 ) //------Projectile is PionZero -------
108 {
109 G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+
110 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
111
112 G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab + //Pi+
113 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
114
115 G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+
116 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
117 G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+
118 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
119
120 Xtotal = ( NumberOfTargetProtons * XtotPiP +
121 NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
122 Xelastic = ( NumberOfTargetProtons * XelPiP +
123 NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
124 }
125 else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
126 {
127 G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab;
128 G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab;
129
130 G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab;
131 G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab;
132
133 Xtotal = ( NumberOfTargetProtons * XtotKP +
134 NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
135 Xelastic = ( NumberOfTargetProtons * XelKP +
136 NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
137 }
138 else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------
139 {
140 G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab;
141 G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab;
142
143 G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab;
144 G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab;
145
146 Xtotal = ( NumberOfTargetProtons * XtotKP +
147 NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
148 Xelastic = ( NumberOfTargetProtons * XelKP +
149 NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
150 }
151 else if((PDGcode == 311) || (PDGcode == 130) || (PDGcode == 310))//Projectile is KaonZero
152 {
153 G4double XtotKP =( 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab + //K+
154 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
155 G4double XtotKN =( 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab + //K+
156 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
157
158 G4double XelKP =( 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+
159 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
160 G4double XelKN =( 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab + //K+
161 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
162 Xtotal = ( NumberOfTargetProtons * XtotKP +
163 NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
164 Xelastic = ( NumberOfTargetProtons * XelKP +
165 NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
166 }
167 else //------Projectile is undefined, Nucleon assumed
168 {
169 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab;
170 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab;
171
172 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
173 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
174
175 Xtotal = ( NumberOfTargetProtons * XtotPP +
176 NumberOfTargetNeutrons * XtotPN ) / NumberOfTargetNucleons;
177 Xelastic = ( NumberOfTargetProtons * XelPP +
178 NumberOfTargetNeutrons * XelPN ) / NumberOfTargetNucleons;
179 };
180
181// Xtotal and Xelastic in mb
182
183//----------- Geometrical parameters ------------------------------------------------
184 SetTotalCrossSection(Xtotal);
185 SetElastisCrossSection(Xelastic);
186 SetInelasticCrossSection(Xtotal-Xelastic);
187
188// // Interactions with elastic and inelastic collisions
189 SetProbabilityOfElasticScatt(Xtotal, Xelastic);
190 SetRadiusOfHNinteractions2(Xtotal/pi/10.);
191//
192/* //==== No elastic scattering ============================
193 SetProbabilityOfElasticScatt(Xtotal, 0.);
194 SetRadiusOfHNinteractions2((Xtotal-Xelastic)/pi/10.);
195*/ //=======================================================
196
197//-----------------------------------------------------------------------------------
198 SetSlope( Xtotal*Xtotal/16./pi/Xelastic/0.3894 ); // Slope parameter of elastic scattering
199 // (GeV/c)^(-2))
200//-----------------------------------------------------------------------------------
201 SetGamma0( GetSlope()*Xtotal/10./2./pi );
202
203//----------- Parameters of elastic scattering --------------------------------------
204 // Gaussian parametrization of
205 // elastic scattering amplitude assumed
206 SetAvaragePt2ofElasticScattering(1./(Xtotal*Xtotal/16./pi/Xelastic/0.3894)*GeV*GeV);
207
208//----------- Parameters of excitations ---------------------------------------------
209 if( absPDGcode > 1000 ) //------Projectile is baryon --------
210 {
211 SetMagQuarkExchange(3.4); //3.8);
212 SetSlopeQuarkExchange(1.2);
213 SetDeltaProbAtQuarkExchange(0.1); //(0.1*4.);
214
215 SetProjMinDiffMass(1.1); // GeV
216 SetProjMinNonDiffMass(1.1); // GeV
217 SetProbabilityOfProjDiff(0.76*std::pow(s/GeV/GeV,-0.35));
218
219 SetTarMinDiffMass(1.1); // GeV
220 SetTarMinNonDiffMass(1.1); // GeV
221 SetProbabilityOfTarDiff(0.76*std::pow(s/GeV/GeV,-0.35));
222
223 SetAveragePt2(0.3); // GeV^2
224 }
225 else if( absPDGcode == 211 || PDGcode == 111) //------Projectile is Pion -----------
226 {
227 SetMagQuarkExchange(120.); // 210.
228 SetSlopeQuarkExchange(2.0);
229 SetDeltaProbAtQuarkExchange(0.6);
230
231 SetProjMinDiffMass(0.5); // GeV
232 SetProjMinNonDiffMass(0.3); // GeV
233 SetProbabilityOfProjDiff(0.*0.62*std::pow(s/GeV/GeV,-0.51)); // 40/32 X-dif/X-inel
234
235 SetTarMinDiffMass(1.1); // GeV
236 SetTarMinNonDiffMass(1.1); // GeV
237
238 SetProbabilityOfTarDiff(2.*0.62*std::pow(s/GeV/GeV,-0.51)); // 40/32 X-dif/X-inel
239
240 SetAveragePt2(0.3); // GeV^2
241 }
242 else if( (absPDGcode == 321) || (PDGcode == 311) ||
243 (PDGcode == 130) || (PDGcode == 310)) //Projectile is Kaon
244 {
245// Must be corrected, taken from PiN
246 SetMagQuarkExchange(120.);
247 SetSlopeQuarkExchange(2.0);
248 SetDeltaProbAtQuarkExchange(0.6);
249
250 SetProjMinDiffMass(0.7); // GeV 1.1
251 SetProjMinNonDiffMass(0.7); // GeV
252 SetProbabilityOfProjDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
253
254 SetTarMinDiffMass(1.1); // GeV
255 SetTarMinNonDiffMass(1.1); // GeV
256 SetProbabilityOfTarDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
257
258 SetAveragePt2(0.3); // GeV^2
259 }
260 else //------Projectile is undefined,
261 //------Nucleon assumed
262 {
263 SetMagQuarkExchange(3.5);
264 SetSlopeQuarkExchange(1.0);
265 SetDeltaProbAtQuarkExchange(0.1);
266
267 SetProjMinDiffMass((particle->GetPDGMass()+160.*MeV)/GeV);
268 SetProjMinNonDiffMass((particle->GetPDGMass()+160.*MeV)/GeV);
269 SetProbabilityOfProjDiff(0.95*std::pow(s/GeV/GeV,-0.35)); // 40/32 X-dif/X-inel
270
271 SetTarMinDiffMass(1.1); // GeV
272 SetTarMinNonDiffMass(1.1); // GeV
273 SetProbabilityOfTarDiff(0.95*std::pow(s/GeV/GeV,-0.35)); // 40/32 X-dif/X-inel
274
275 SetAveragePt2(0.3); // GeV^2
276 }
277
278// ---------- Set parameters of a string kink -------------------------------
279 SetPt2Kink(6.*GeV*GeV);
280 G4double Puubar(1./3.), Pddbar(1./3.), Pssbar(1./3.); // SU(3) symmetry
281// G4double Puubar(0.41 ), Pddbar(0.41 ), Pssbar(0.18 ); // Broken SU(3) symmetry
282 SetQuarkProbabilitiesAtGluonSplitUp(Puubar, Pddbar, Pssbar);
283
284// --------- Set parameters of nuclear destruction--------------------
285
286 if( absPDGcode < 1000 )
287 {
288 SetCofNuclearDestruction(1.); //1.0); // for meson projectile
289 } else if( theA > 20. )
290 {
291 SetCofNuclearDestruction(0.2); //2); // for baryon projectile and heavy target
292 } else
293 {
294 SetCofNuclearDestruction(0.2); //1.0); // for baryon projectile and light target
295 }
296
297 SetR2ofNuclearDestruction(1.5*fermi*fermi);
298
299 SetExcitationEnergyPerWoundedNucleon(100*MeV);
300
301 SetDofNuclearDestruction(0.4);
302 SetPt2ofNuclearDestruction(0.17*GeV*GeV);
303 SetMaxPt2ofNuclearDestruction(1.0*GeV*GeV);
304}
305//**********************************************************************************************
Note: See TracBrowser for help on using the repository browser.