source: trunk/source/processes/hadronic/models/parton_string/diffraction/src/G4FTFParameters.cc@ 1344

Last change on this file since 1344 was 1340, checked in by garnier, 15 years ago

update ti head

File size: 17.2 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4FTFParameters.cc,v 1.14 2010/09/20 15:50:46 vuzhinsk Exp $
28// GEANT4 tag $Name: geant4-09-03-ref-09 $
29//
30
31#include "G4FTFParameters.hh"
32
33#include "G4ios.hh"
34#include <utility>
35
36G4FTFParameters::G4FTFParameters()
37{;}
38
39
40G4FTFParameters::~G4FTFParameters()
41{;}
42//**********************************************************************************************
43
44G4FTFParameters::G4FTFParameters(const G4ParticleDefinition * particle,
45 G4double theA,
46 G4double theZ,
47 G4double s)
48{
49 G4int PDGcode = particle->GetPDGEncoding();
50 G4int absPDGcode = std::abs(PDGcode);
51 G4double ProjectileMass = particle->GetPDGMass();
52 G4double TargetMass = G4Proton::Proton()->GetPDGMass();
53
54 G4double Elab = (s - ProjectileMass*ProjectileMass - TargetMass*TargetMass)/
55 (2*TargetMass);
56 G4double Plab = std::sqrt(Elab * Elab - ProjectileMass*ProjectileMass);
57
58 G4double Ylab=0.5*std::log((Elab+Plab)/(Elab-Plab));
59
60 Plab/=GeV; // Uzhi 8.07.10
61 G4double LogPlab = std::log( Plab );
62 G4double sqrLogPlab = LogPlab * LogPlab;
63
64 G4int NumberOfTargetProtons = (G4int) theZ;
65 G4int NumberOfTargetNeutrons = (G4int) theA- (G4int) theZ;
66 G4int NumberOfTargetNucleons = NumberOfTargetProtons + NumberOfTargetNeutrons;
67
68 G4double Xtotal, Xelastic;
69
70 if( absPDGcode > 1000 ) //------Projectile is baryon --------
71 {
72 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab;
73 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab;
74
75 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
76 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
77
78 Xtotal = ( NumberOfTargetProtons * XtotPP +
79 NumberOfTargetNeutrons * XtotPN ) / NumberOfTargetNucleons;
80 Xelastic = ( NumberOfTargetProtons * XelPP +
81 NumberOfTargetNeutrons * XelPN ) / NumberOfTargetNucleons;
82 }
83 else if( PDGcode == 211 ) //------Projectile is PionPlus -------
84 {
85 G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab;
86 G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab;
87
88 G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab;
89 G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab;
90
91 Xtotal = ( NumberOfTargetProtons * XtotPiP +
92 NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
93 Xelastic = ( NumberOfTargetProtons * XelPiP +
94 NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
95 }
96 else if( PDGcode == -211 ) //------Projectile is PionMinus -------
97 {
98 G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab;
99 G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab;
100
101 G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab;
102 G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab;
103
104 Xtotal = ( NumberOfTargetProtons * XtotPiP +
105 NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
106 Xelastic = ( NumberOfTargetProtons * XelPiP +
107 NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
108 }
109
110 else if( PDGcode == 111 ) //------Projectile is PionZero -------
111 {
112 G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+
113 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
114
115 G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab + //Pi+
116 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
117
118 G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+
119 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
120 G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+
121 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
122
123 Xtotal = ( NumberOfTargetProtons * XtotPiP +
124 NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
125 Xelastic = ( NumberOfTargetProtons * XelPiP +
126 NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
127 }
128 else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
129 {
130 G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab;
131 G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab;
132
133 G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab;
134 G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab;
135
136 Xtotal = ( NumberOfTargetProtons * XtotKP +
137 NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
138 Xelastic = ( NumberOfTargetProtons * XelKP +
139 NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
140 }
141 else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------
142 {
143 G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab;
144 G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab;
145
146 G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab;
147 G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab;
148
149 Xtotal = ( NumberOfTargetProtons * XtotKP +
150 NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
151 Xelastic = ( NumberOfTargetProtons * XelKP +
152 NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
153 }
154 else if((PDGcode == 311) || (PDGcode == 130) || (PDGcode == 310))//Projectile is KaonZero
155 {
156 G4double XtotKP =( 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab + //K+
157 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
158 G4double XtotKN =( 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab + //K+
159 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
160
161 G4double XelKP =( 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+
162 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
163 G4double XelKN =( 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab + //K+
164 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
165 Xtotal = ( NumberOfTargetProtons * XtotKP +
166 NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
167 Xelastic = ( NumberOfTargetProtons * XelKP +
168 NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
169 }
170 else //------Projectile is undefined, Nucleon assumed
171 {
172 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab;
173 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab;
174
175 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
176 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
177
178 Xtotal = ( NumberOfTargetProtons * XtotPP +
179 NumberOfTargetNeutrons * XtotPN ) / NumberOfTargetNucleons;
180 Xelastic = ( NumberOfTargetProtons * XelPP +
181 NumberOfTargetNeutrons * XelPN ) / NumberOfTargetNucleons;
182 };
183
184// Xtotal and Xelastic in mb
185
186//----------- Geometrical parameters ------------------------------------------------
187 SetTotalCrossSection(Xtotal);
188 SetElastisCrossSection(Xelastic);
189 SetInelasticCrossSection(Xtotal-Xelastic);
190
191//G4cout<<"Xtotal, Xelastic "<<Xtotal<<" "<<Xelastic<<G4endl;
192// // Interactions with elastic and inelastic collisions
193 SetProbabilityOfElasticScatt(Xtotal, Xelastic);
194 SetRadiusOfHNinteractions2(Xtotal/pi/10.);
195//
196/* //==== No elastic scattering ============================
197 SetProbabilityOfElasticScatt(Xtotal, 0.);
198 SetRadiusOfHNinteractions2((Xtotal-Xelastic)/pi/10.);
199*/ //=======================================================
200
201//-----------------------------------------------------------------------------------
202
203 SetSlope( Xtotal*Xtotal/16./pi/Xelastic/0.3894 ); // Slope parameter of elastic scattering
204 // (GeV/c)^(-2))
205//-----------------------------------------------------------------------------------
206 SetGamma0( GetSlope()*Xtotal/10./2./pi );
207
208//----------- Parameters of elastic scattering --------------------------------------
209 // Gaussian parametrization of
210 // elastic scattering amplitude assumed
211 SetAvaragePt2ofElasticScattering(1./(Xtotal*Xtotal/16./pi/Xelastic/0.3894)*GeV*GeV);
212
213//----------- Parameters of excitations ---------------------------------------------
214 if( absPDGcode > 1000 ) //------Projectile is baryon --------
215 {
216 SetMagQuarkExchange(1.84);//(3.63);
217 SetSlopeQuarkExchange(0.7);//(1.2);
218 SetDeltaProbAtQuarkExchange(0.);
219
220 SetProjMinDiffMass(1.16); // GeV
221 SetProjMinNonDiffMass(1.16); // GeV
222
223SetProbabilityOfProjDiff(0.805*std::exp(-0.35*Ylab));// 0.5
224
225 SetTarMinDiffMass(1.16); // GeV
226 SetTarMinNonDiffMass(1.16); // GeV
227
228SetProbabilityOfTarDiff(0.805*std::exp(-0.35*Ylab));// 0.5
229
230 SetAveragePt2(0.15); // 0.15 GeV^2
231 }
232 else if( absPDGcode == 211 || PDGcode == 111) //------Projectile is Pion -----------
233 {
234 SetMagQuarkExchange(120.); // 210.
235 SetSlopeQuarkExchange(2.0);
236 SetDeltaProbAtQuarkExchange(0.6);
237
238 SetProjMinDiffMass(0.5); // GeV
239 SetProjMinNonDiffMass(0.3); // GeV
240 SetProbabilityOfProjDiff(0.*0.62*std::pow(s/GeV/GeV,-0.51)); // 40/32 X-dif/X-inel
241
242 SetTarMinDiffMass(1.1); // GeV
243 SetTarMinNonDiffMass(1.1); // GeV
244
245 SetProbabilityOfTarDiff(2.*0.62*std::pow(s/GeV/GeV,-0.51)); // 40/32 X-dif/X-inel
246
247 SetAveragePt2(0.3); // GeV^2
248 }
249 else if( (absPDGcode == 321) || (PDGcode == 311) ||
250 (PDGcode == 130) || (PDGcode == 310)) //Projectile is Kaon
251 {
252// Must be corrected, taken from PiN
253 SetMagQuarkExchange(120.);
254 SetSlopeQuarkExchange(2.0);
255 SetDeltaProbAtQuarkExchange(0.6);
256
257 SetProjMinDiffMass(0.7); // GeV 1.1
258 SetProjMinNonDiffMass(0.7); // GeV
259 SetProbabilityOfProjDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
260
261 SetTarMinDiffMass(1.1); // GeV
262 SetTarMinNonDiffMass(1.1); // GeV
263 SetProbabilityOfTarDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
264
265 SetAveragePt2(0.3); // GeV^2
266 }
267 else //------Projectile is undefined,
268 //------Nucleon assumed
269 {
270 SetMagQuarkExchange(3.5);
271 SetSlopeQuarkExchange(1.0);
272 SetDeltaProbAtQuarkExchange(0.1);
273
274 SetProjMinDiffMass((particle->GetPDGMass()+160.*MeV)/GeV);
275 SetProjMinNonDiffMass((particle->GetPDGMass()+160.*MeV)/GeV);
276 SetProbabilityOfProjDiff(0.95*std::pow(s/GeV/GeV,-0.35)); // 40/32 X-dif/X-inel
277
278 SetTarMinDiffMass(1.1); // GeV
279 SetTarMinNonDiffMass(1.1); // GeV
280 SetProbabilityOfTarDiff(0.95*std::pow(s/GeV/GeV,-0.35)); // 40/32 X-dif/X-inel
281
282 SetAveragePt2(0.3); // GeV^2
283 }
284
285// ---------- Set parameters of a string kink -------------------------------
286 SetPt2Kink(6.*GeV*GeV);
287 G4double Puubar(1./3.), Pddbar(1./3.), Pssbar(1./3.); // SU(3) symmetry
288// G4double Puubar(0.41 ), Pddbar(0.41 ), Pssbar(0.18 ); // Broken SU(3) symmetry
289 SetQuarkProbabilitiesAtGluonSplitUp(Puubar, Pddbar, Pssbar);
290
291// --------- Set parameters of nuclear destruction--------------------
292
293 if( absPDGcode < 1000 )
294 {
295 SetMaxNumberOfCollisions(1000.,1.); //(Plab,2.); //3.); ##############################
296
297 SetCofNuclearDestruction(0.3); //1.0); // for meson projectile
298
299 SetDofNuclearDestruction(0.4);
300 SetPt2ofNuclearDestruction(0.17*GeV*GeV);
301 SetMaxPt2ofNuclearDestruction(1.0*GeV*GeV);
302
303 SetExcitationEnergyPerWoundedNucleon(100*MeV);
304 } else // for baryon projectile
305 {
306// SetMaxNumberOfCollisions(Plab,0.1); //6.); // ##############################
307 SetMaxNumberOfCollisions(Plab,4.); //6.); // ##############################
308
309 SetCofNuclearDestruction(0.62*std::exp(4.*(Ylab-2.1))/(1.+std::exp(4.*(Ylab-2.1))));
310
311 SetDofNuclearDestruction(0.4);
312 SetPt2ofNuclearDestruction((0.035+
313 0.04*std::exp(4.*(Ylab-2.5))/(1.+std::exp(4.*(Ylab-2.5))))*GeV*GeV); //0.09
314 SetMaxPt2ofNuclearDestruction(1.0*GeV*GeV);
315
316 SetExcitationEnergyPerWoundedNucleon(75.*MeV);
317 }
318
319 SetR2ofNuclearDestruction(1.5*fermi*fermi);
320
321//SetCofNuclearDestruction(0.47*std::exp(2.*(Ylab-2.5))/(1.+std::exp(2.*(Ylab-2.5))));
322//SetPt2ofNuclearDestruction((0.035+0.1*std::exp(4.*(Ylab-3.))/(1.+std::exp(4.*(Ylab-3.))))*GeV*GeV);
323
324//SetProbabilityOfElasticScatt(1.,1.); //(Xtotal, Xelastic);
325//SetProbabilityOfProjDiff(1.*0.62*std::pow(s/GeV/GeV,-0.51)); // 0->1
326//SetProbabilityOfTarDiff(4.*0.62*std::pow(s/GeV/GeV,-0.51)); // 2->4
327//SetAveragePt2(0.3); //(0.15);
328//SetAvaragePt2ofElasticScattering(0.);
329
330//SetCofNuclearDestruction(0.6); //(0.4);
331SetExcitationEnergyPerWoundedNucleon(75.*MeV); //(75.*MeV);
332//SetDofNuclearDestruction(0.6); //(0.4);
333//SetPt2ofNuclearDestruction(0.12*GeV*GeV); //(0.168*GeV*GeV);
334
335}
336//**********************************************************************************************
Note: See TracBrowser for help on using the repository browser.