source: trunk/source/processes/hadronic/models/parton_string/diffraction/src/G4FTFParameters.cc@ 1357

Last change on this file since 1357 was 1347, checked in by garnier, 15 years ago

geant4 tag 9.4

File size: 22.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4FTFParameters.cc,v 1.15 2010/11/15 10:02:38 vuzhinsk Exp $
28// GEANT4 tag $Name: geant4-09-04-ref-00 $
29//
30
31#include "G4FTFParameters.hh"
32
33#include "G4ios.hh"
34#include <utility>
35
36G4FTFParameters::G4FTFParameters()
37{;}
38
39
40G4FTFParameters::~G4FTFParameters()
41{;}
42//**********************************************************************************************
43
44//G4FTFParameters::G4FTFParameters(const G4ParticleDefinition * particle,
45// G4double theA,
46// G4double theZ,
47// G4double s)
48G4FTFParameters::G4FTFParameters(const G4ParticleDefinition * particle,
49 G4int theA,
50 G4int theZ,
51 G4double s)
52{
53 G4int PDGcode = particle->GetPDGEncoding();
54 G4int absPDGcode = std::abs(PDGcode);
55 G4double ProjectileMass = particle->GetPDGMass();
56 G4double TargetMass = G4Proton::Proton()->GetPDGMass();
57
58 G4double Elab = (s - ProjectileMass*ProjectileMass - TargetMass*TargetMass)/
59 (2*TargetMass);
60 G4double Plab = std::sqrt(Elab * Elab - ProjectileMass*ProjectileMass);
61
62 G4double Ylab=0.5*std::log((Elab+Plab)/(Elab-Plab));
63
64 Plab/=GeV; // Uzhi 8.07.10
65 G4double LogPlab = std::log( Plab );
66 G4double sqrLogPlab = LogPlab * LogPlab;
67
68 G4int NumberOfTargetProtons = theZ;
69 G4int NumberOfTargetNeutrons = theA-theZ;
70// G4int NumberOfTargetProtons = (G4int) theZ;
71// G4int NumberOfTargetNeutrons = (G4int) theA- (G4int) theZ;
72 G4int NumberOfTargetNucleons = NumberOfTargetProtons + NumberOfTargetNeutrons;
73
74 G4double Xtotal, Xelastic;
75
76 if( PDGcode > 1000 ) //------Projectile is baryon --------
77 {
78 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab;
79 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab;
80
81 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
82 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
83
84 Xtotal = ( NumberOfTargetProtons * XtotPP +
85 NumberOfTargetNeutrons * XtotPN ) / NumberOfTargetNucleons;
86 Xelastic = ( NumberOfTargetProtons * XelPP +
87 NumberOfTargetNeutrons * XelPN ) / NumberOfTargetNucleons;
88 }
89 else if( PDGcode < -1000 ) //------Projectile is anti_baryon --------
90 {
91 G4double XtotPP = 38.4 + 77.6*std::pow(Plab,-0.64) + 0.26*sqrLogPlab - 1.2*LogPlab;
92 G4double XtotPN = 0. + 133.6*std::pow(Plab,-0.70) + 1.22*sqrLogPlab +13.7*LogPlab;
93
94 G4double XelPP = 10.2 + 52.7*std::pow(Plab,-1.16) + 0.125*sqrLogPlab - 1.28*LogPlab;
95 G4double XelPN = 36.5 + 0. *std::pow(Plab, 0. ) + 0. *sqrLogPlab -11.9 *LogPlab;
96
97 Xtotal = ( NumberOfTargetProtons * XtotPP +
98 NumberOfTargetNeutrons * XtotPN ) / NumberOfTargetNucleons;
99 Xelastic = ( NumberOfTargetProtons * XelPP +
100 NumberOfTargetNeutrons * XelPN ) / NumberOfTargetNucleons;
101 }
102 else if( PDGcode == 211 ) //------Projectile is PionPlus -------
103 {
104 G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab;
105 G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab;
106
107 G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab;
108 G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab;
109
110 Xtotal = ( NumberOfTargetProtons * XtotPiP +
111 NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
112 Xelastic = ( NumberOfTargetProtons * XelPiP +
113 NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
114 }
115 else if( PDGcode == -211 ) //------Projectile is PionMinus -------
116 {
117 G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab;
118 G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab;
119
120 G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab;
121 G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab;
122
123 Xtotal = ( NumberOfTargetProtons * XtotPiP +
124 NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
125 Xelastic = ( NumberOfTargetProtons * XelPiP +
126 NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
127 }
128
129 else if( PDGcode == 111 ) //------Projectile is PionZero -------
130 {
131 G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+
132 33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
133
134 G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) + 0.456*sqrLogPlab - 4.03*LogPlab + //Pi+
135 16.4 + 19.3 *std::pow(Plab,-0.42) + 0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
136
137 G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+
138 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
139 G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) + 0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+
140 0.0 + 11.4*std::pow(Plab,-0.40) + 0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
141
142 Xtotal = ( NumberOfTargetProtons * XtotPiP +
143 NumberOfTargetNeutrons * XtotPiN ) / NumberOfTargetNucleons;
144 Xelastic = ( NumberOfTargetProtons * XelPiP +
145 NumberOfTargetNeutrons * XelPiN ) / NumberOfTargetNucleons;
146 }
147 else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
148 {
149 G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab;
150 G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab;
151
152 G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab;
153 G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab;
154
155 Xtotal = ( NumberOfTargetProtons * XtotKP +
156 NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
157 Xelastic = ( NumberOfTargetProtons * XelKP +
158 NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
159 }
160 else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------
161 {
162 G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab;
163 G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab;
164
165 G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab;
166 G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab;
167
168 Xtotal = ( NumberOfTargetProtons * XtotKP +
169 NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
170 Xelastic = ( NumberOfTargetProtons * XelKP +
171 NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
172 }
173 else if((PDGcode == 311) || (PDGcode == 130) || (PDGcode == 310))//Projectile is KaonZero
174 {
175 G4double XtotKP =( 18.1 + 0. *std::pow(Plab, 0. ) + 0.26 *sqrLogPlab - 1.0 *LogPlab + //K+
176 32.1 + 0. *std::pow(Plab, 0. ) + 0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
177 G4double XtotKN =( 18.7 + 0. *std::pow(Plab, 0. ) + 0.21 *sqrLogPlab - 0.89*LogPlab + //K+
178 25.2 + 0. *std::pow(Plab, 0. ) + 0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
179
180 G4double XelKP =( 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+
181 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
182 G4double XelKN =( 7.3 + 0. *std::pow(Plab,-0. ) + 0.29 *sqrLogPlab - 2.4 *LogPlab + //K+
183 5.0 + 8.1*std::pow(Plab,-1.8 ) + 0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
184 Xtotal = ( NumberOfTargetProtons * XtotKP +
185 NumberOfTargetNeutrons * XtotKN ) / NumberOfTargetNucleons;
186 Xelastic = ( NumberOfTargetProtons * XelKP +
187 NumberOfTargetNeutrons * XelKN ) / NumberOfTargetNucleons;
188 }
189 else //------Projectile is undefined, Nucleon assumed
190 {
191 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + 0.522*sqrLogPlab - 4.51*LogPlab;
192 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + 0.513*sqrLogPlab - 4.27*LogPlab;
193
194 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
195 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + 0.169*sqrLogPlab - 1.85*LogPlab;
196
197 Xtotal = ( NumberOfTargetProtons * XtotPP +
198 NumberOfTargetNeutrons * XtotPN ) / NumberOfTargetNucleons;
199 Xelastic = ( NumberOfTargetProtons * XelPP +
200 NumberOfTargetNeutrons * XelPN ) / NumberOfTargetNucleons;
201 };
202
203// Xtotal and Xelastic in mb
204
205// For Pi- P interactions only!
206if(std::abs(Plab-1.4) < 0.05) {Xtotal=3.500599e+01; Xelastic= 1.150032e+01;}
207if(std::abs(Plab-1.5) < 0.05) {Xtotal=3.450591e+01; Xelastic= 1.050038e+01;}
208if(std::abs(Plab-1.6) < 0.05) {Xtotal=3.430576e+01; Xelastic= 9.800433e+00;}
209if(std::abs(Plab-1.7) < 0.05) {Xtotal=3.455560e+01; Xelastic= 9.300436e+00;}
210if(std::abs(Plab-1.8) < 0.05) {Xtotal=3.480545e+01; Xelastic= 8.800438e+00;}
211if(std::abs(Plab-2.0) < 0.05) {Xtotal=3.570503e+01; Xelastic= 8.200370e+00;}
212if(std::abs(Plab-2.2) < 0.05) {Xtotal=3.530495e+01; Xelastic= 7.800362e+00;}
213if(std::abs(Plab-2.5) < 0.05) {Xtotal=3.410484e+01; Xelastic= 7.350320e+00;}
214if(std::abs(Plab-2.75) < 0.05){Xtotal=3.280479e+01; Xelastic= 7.050273e+00;}
215if(std::abs(Plab-3.0) < 0.05) {Xtotal=3.180473e+01; Xelastic= 6.800258e+00;}
216if(std::abs(Plab-4.0) < 0.05) {Xtotal=2.910441e+01; Xelastic= 6.100229e+00;}
217if(std::abs(Plab-5.0) < 0.05) {Xtotal=2.820372e+01; Xelastic= 5.700275e+00;}
218if(std::abs(Plab-6.0) < 0.05) {Xtotal=2.760367e+01; Xelastic= 5.400255e+00;}
219if(std::abs(Plab-7.0) < 0.05) {Xtotal=2.725366e+01; Xelastic= 5.150256e+00;}
220if(std::abs(Plab-8.0) < 0.05) {Xtotal=2.690365e+01; Xelastic= 4.900258e+00;}
221if(std::abs(Plab-10.0) < 0.05){Xtotal=2.660342e+01; Xelastic= 4.600237e+00;}
222if(std::abs(Plab-12.0) < 0.05){Xtotal=2.632341e+01; Xelastic= 4.480229e+00;}
223if(std::abs(Plab-14.0) < 0.05){Xtotal=2.604340e+01; Xelastic= 4.360221e+00;}
224if(std::abs(Plab-20.0) < 0.05){Xtotal=2.520337e+01; Xelastic= 4.000197e+00;}
225if(std::abs(Plab-30.0) < 0.05){Xtotal=2.505334e+01; Xelastic= 3.912679e+00;}
226//
227//----------- Geometrical parameters ------------------------------------------------
228 SetTotalCrossSection(Xtotal);
229 SetElastisCrossSection(Xelastic);
230 SetInelasticCrossSection(Xtotal-Xelastic);
231
232//G4cout<<"Plab Xtotal, Xelastic Xinel "<<Plab<<" "<<Xtotal<<" "<<Xelastic<<Xtotal-Xelastic)<<G4endl;
233// // Interactions with elastic and inelastic collisions
234 SetProbabilityOfElasticScatt(Xtotal, Xelastic);
235 SetRadiusOfHNinteractions2(Xtotal/pi/10.);
236//
237/* //==== No elastic scattering ============================
238 SetProbabilityOfElasticScatt(Xtotal, 0.);
239 SetRadiusOfHNinteractions2((Xtotal-Xelastic)/pi/10.);
240*/ //=======================================================
241
242//-----------------------------------------------------------------------------------
243
244 SetSlope( Xtotal*Xtotal/16./pi/Xelastic/0.3894 ); // Slope parameter of elastic scattering
245 // (GeV/c)^(-2))
246//-----------------------------------------------------------------------------------
247 SetGamma0( GetSlope()*Xtotal/10./2./pi );
248
249//----------- Parameters of elastic scattering --------------------------------------
250 // Gaussian parametrization of
251 // elastic scattering amplitude assumed
252 SetAvaragePt2ofElasticScattering(1./(Xtotal*Xtotal/16./pi/Xelastic/0.3894)*GeV*GeV);
253
254//----------- Parameters of excitations ---------------------------------------------
255 if( PDGcode > 1000 ) //------Projectile is baryon --------
256 {
257 SetMagQuarkExchange(1.84);//(3.63);
258 SetSlopeQuarkExchange(0.7);//(1.2);
259 SetDeltaProbAtQuarkExchange(0.);
260 if(NumberOfTargetNucleons > 26) {SetProbOfSameQuarkExchange(1.);}
261 else {SetProbOfSameQuarkExchange(0.);}
262
263 SetProjMinDiffMass(1.16); // GeV
264 SetProjMinNonDiffMass(1.16); // GeV
265 SetProbabilityOfProjDiff(0.805*std::exp(-0.35*Ylab));// 0.5
266
267 SetTarMinDiffMass(1.16); // GeV
268 SetTarMinNonDiffMass(1.16); // GeV
269 SetProbabilityOfTarDiff(0.805*std::exp(-0.35*Ylab));// 0.5
270
271 SetAveragePt2(0.15); // 0.15 GeV^2
272 }
273 if( PDGcode < -1000 ) //------Projectile is anti_baryon --------
274 {
275 SetMagQuarkExchange(0.);
276 SetSlopeQuarkExchange(0.);
277 SetDeltaProbAtQuarkExchange(0.);
278 SetProbOfSameQuarkExchange(0.);
279
280 SetProjMinDiffMass(1.16); // GeV
281 SetProjMinNonDiffMass(1.16); // GeV
282 SetProbabilityOfProjDiff(0.805*std::exp(-0.35*Ylab));// 0.5
283
284 SetTarMinDiffMass(1.16); // GeV
285 SetTarMinNonDiffMass(1.16); // GeV
286 SetProbabilityOfTarDiff(0.805*std::exp(-0.35*Ylab));// 0.5
287
288 SetAveragePt2(0.15); // 0.15 GeV^2
289 }
290 else if( absPDGcode == 211 || PDGcode == 111) //------Projectile is Pion -----------
291 {
292 SetMagQuarkExchange(240.);
293 SetSlopeQuarkExchange(2.);
294 SetDeltaProbAtQuarkExchange(0.56); //(0.35);
295
296 SetProjMinDiffMass(0.5); // GeV
297 SetProjMinNonDiffMass(0.5); // GeV 0.3
298 SetProbabilityOfProjDiff(0.);//(0.*0.62*std::pow(s/GeV/GeV,-0.51)); // 40/32 X-dif/X-inel
299
300 SetTarMinDiffMass(1.16); // GeV
301 SetTarMinNonDiffMass(1.16); // GeV
302// SetProbabilityOfTarDiff(1.);//(2.*0.62*std::pow(s/GeV/GeV,-0.51));
303// SetProbabilityOfTarDiff(2.6*std::exp(-0.46*Ylab));
304 SetProbabilityOfTarDiff(0.8*std::exp(-0.6*(Ylab-3.)));
305
306 SetAveragePt2(0.3); // GeV^2
307 }
308 else if( (absPDGcode == 321) || (PDGcode == 311) ||
309 (PDGcode == 130) || (PDGcode == 310)) //Projectile is Kaon
310 {
311// Must be corrected, taken from PiN
312 SetMagQuarkExchange(120.);
313 SetSlopeQuarkExchange(2.0);
314 SetDeltaProbAtQuarkExchange(0.6);
315
316 SetProjMinDiffMass(0.7); // GeV 1.1
317 SetProjMinNonDiffMass(0.7); // GeV
318 SetProbabilityOfProjDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
319
320 SetTarMinDiffMass(1.1); // GeV
321 SetTarMinNonDiffMass(1.1); // GeV
322 SetProbabilityOfTarDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
323
324 SetAveragePt2(0.3); // GeV^2
325 }
326 else //------Projectile is undefined,
327 //------Nucleon assumed
328 {
329 SetMagQuarkExchange(3.5);
330 SetSlopeQuarkExchange(1.0);
331 SetDeltaProbAtQuarkExchange(0.1);
332
333 SetProjMinDiffMass((particle->GetPDGMass()+160.*MeV)/GeV);
334 SetProjMinNonDiffMass((particle->GetPDGMass()+160.*MeV)/GeV);
335 SetProbabilityOfProjDiff(0.95*std::pow(s/GeV/GeV,-0.35)); // 40/32 X-dif/X-inel
336
337 SetTarMinDiffMass(1.1); // GeV
338 SetTarMinNonDiffMass(1.1); // GeV
339 SetProbabilityOfTarDiff(0.95*std::pow(s/GeV/GeV,-0.35)); // 40/32 X-dif/X-inel
340
341 SetAveragePt2(0.3); // GeV^2
342 }
343
344// ---------- Set parameters of a string kink -------------------------------
345 SetPt2Kink(6.*GeV*GeV);
346 G4double Puubar(1./3.), Pddbar(1./3.), Pssbar(1./3.); // SU(3) symmetry
347// G4double Puubar(0.41 ), Pddbar(0.41 ), Pssbar(0.18 ); // Broken SU(3) symmetry
348 SetQuarkProbabilitiesAtGluonSplitUp(Puubar, Pddbar, Pssbar);
349
350// --------- Set parameters of nuclear destruction--------------------
351
352 if( absPDGcode < 1000 )
353 {
354 SetMaxNumberOfCollisions(1000.,1.); //(Plab,2.); //3.); ##############################
355
356// SetCofNuclearDestruction(0.); //1.0); // for meson projectile
357// SetCofNuclearDestruction(1.*std::exp(4.*(Ylab-2.1))/(1.+std::exp(4.*(Ylab-2.1))));
358//G4cout<<Ylab<<" "<<0.62*std::exp(4.*(Ylab-4.5))/(1.+std::exp(4.*(Ylab-4.5)))<<G4endl;
359//G4int Uzhi; G4cin>>Uzhi;
360
361// SetMaxNumberOfCollisions(Plab,2.); //4.); // ##############################
362
363 SetCofNuclearDestruction(1.*std::exp(4.*(Ylab-2.1))/(1.+std::exp(4.*(Ylab-2.1)))); //0.62 1.0
364//------------------------------------------
365// SetDofNuclearDestruction(0.4);
366// SetPt2ofNuclearDestruction(0.17*GeV*GeV);
367// SetMaxPt2ofNuclearDestruction(1.0*GeV*GeV);
368
369// SetExcitationEnergyPerWoundedNucleon(100*MeV);
370 SetDofNuclearDestruction(0.4);
371 SetPt2ofNuclearDestruction((0.035+
372 0.04*std::exp(4.*(Ylab-2.5))/(1.+std::exp(4.*(Ylab-2.5))))*GeV*GeV); //0.09
373 SetMaxPt2ofNuclearDestruction(1.0*GeV*GeV);
374
375 SetExcitationEnergyPerWoundedNucleon(75.*MeV);
376 } else // for baryon projectile
377 {
378 SetMaxNumberOfCollisions(Plab,2.); //4.); // ##############################
379
380 SetCofNuclearDestruction(1.*std::exp(4.*(Ylab-2.1))/(1.+std::exp(4.*(Ylab-2.1)))); //0.62 1.0
381//G4cout<<Ylab<<" "<<0.62*std::exp(4.*(Ylab-2.1))/(1.+std::exp(4.*(Ylab-2.1)))<<G4endl;
382//G4int Uzhi; G4cin>>Uzhi;
383
384 SetDofNuclearDestruction(0.4);
385 SetPt2ofNuclearDestruction((0.035+
386 0.04*std::exp(4.*(Ylab-2.5))/(1.+std::exp(4.*(Ylab-2.5))))*GeV*GeV); //0.09
387 SetMaxPt2ofNuclearDestruction(1.0*GeV*GeV);
388
389 SetExcitationEnergyPerWoundedNucleon(75.*MeV);
390 }
391
392 SetR2ofNuclearDestruction(1.5*fermi*fermi);
393
394//SetCofNuclearDestruction(0.47*std::exp(2.*(Ylab-2.5))/(1.+std::exp(2.*(Ylab-2.5))));
395//SetPt2ofNuclearDestruction((0.035+0.1*std::exp(4.*(Ylab-3.))/(1.+std::exp(4.*(Ylab-3.))))*GeV*GeV);
396
397//SetMagQuarkExchange(120.); // 210. PipP
398//SetSlopeQuarkExchange(2.0);
399//SetDeltaProbAtQuarkExchange(0.6);
400//SetProjMinDiffMass(0.7); // GeV 1.1
401//SetProjMinNonDiffMass(0.7); // GeV
402//SetProbabilityOfProjDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
403//SetTarMinDiffMass(1.1); // GeV
404//SetTarMinNonDiffMass(1.1); // GeV
405//SetProbabilityOfTarDiff(0.85*std::pow(s/GeV/GeV,-0.5)); // 40/32 X-dif/X-inel
406//
407//SetAveragePt2(0.3); // GeV^2
408//------------------------------------
409//SetProbabilityOfElasticScatt(1.,1.); //(Xtotal, Xelastic);
410//SetProbabilityOfProjDiff(1.*0.62*std::pow(s/GeV/GeV,-0.51)); // 0->1
411//SetProbabilityOfTarDiff(4.*0.62*std::pow(s/GeV/GeV,-0.51)); // 2->4
412//SetAveragePt2(0.3); //(0.15);
413//SetAvaragePt2ofElasticScattering(0.);
414
415//SetMaxNumberOfCollisions(4.*(Plab+0.01),Plab); //6.); // ##############################
416//SetCofNuclearDestruction(0.2); //(0.4);
417//SetExcitationEnergyPerWoundedNucleon(0.*MeV); //(75.*MeV);
418//SetDofNuclearDestruction(0.4); //(0.4);
419//SetPt2ofNuclearDestruction(0.1*GeV*GeV); //(0.168*GeV*GeV);
420
421}
422//**********************************************************************************************
Note: See TracBrowser for help on using the repository browser.