// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4SingleDiffractiveExcitation.cc,v 1.1 2007/05/25 07:30:47 gunter Exp $ // ------------------------------------------------------------ // GEANT 4 class implemetation file // // ---------------- G4SingleDiffractiveExcitation -------------- // by Gunter Folger, October 1998. // diffractive Excitation used by strings models // Take a projectile and a target // excite the projectile and target // ------------------------------------------------------------ #include "globals.hh" #include "Randomize.hh" #include "G4SingleDiffractiveExcitation.hh" #include "G4LorentzRotation.hh" #include "G4ThreeVector.hh" #include "G4ParticleDefinition.hh" #include "G4VSplitableHadron.hh" #include "G4ExcitedString.hh" //#include "G4ios.hh" G4SingleDiffractiveExcitation::G4SingleDiffractiveExcitation(G4double sigmaPt, G4double minextraMass,G4double x0mass) : widthOfPtSquare(-2*sqr(sigmaPt)) , minExtraMass(minextraMass), minmass(x0mass) { } G4bool G4SingleDiffractiveExcitation:: ExciteParticipants(G4VSplitableHadron *projectile, G4VSplitableHadron *target) const { G4LorentzVector Pprojectile=projectile->Get4Momentum(); G4double Mprojectile2=sqr(projectile->GetDefinition()->GetPDGMass() + minExtraMass); G4LorentzVector Ptarget=target->Get4Momentum(); G4double Mtarget2=sqr(target->GetDefinition()->GetPDGMass() + minExtraMass); // G4cout << "E proj, target :" << Pprojectile.e() << ", " << // Ptarget.e() << G4endl; G4bool KeepProjectile= G4UniformRand() > 0.5; // reset the min.mass of the non diffractive particle to its value, ( minus a bit for rounding...) if ( KeepProjectile ) { // cout << " Projectile fix" << G4endl; Mprojectile2 = sqr(projectile->GetDefinition()->GetPDGMass() * (1-perCent) ); } else { // cout << " Target fix" << G4endl; Mtarget2=sqr(target->GetDefinition()->GetPDGMass() * (1-perCent) ); } // Transform momenta to cms and then rotate parallel to z axis; G4LorentzVector Psum; Psum=Pprojectile+Ptarget; G4LorentzRotation toCms(-1*Psum.boostVector()); G4LorentzVector Ptmp=toCms*Pprojectile; if ( Ptmp.pz() <= 0. ) { // "String" moving backwards in CMS, abort collision !! // G4cout << " abort Collision!! " << G4endl; return false; } toCms.rotateZ(-1*Ptmp.phi()); toCms.rotateY(-1*Ptmp.theta()); // G4cout << "Pprojectile be4 boost " << Pprojectile << G4endl; // G4cout << "Ptarget be4 boost : " << Ptarget << G4endl; G4LorentzRotation toLab(toCms.inverse()); Pprojectile.transform(toCms); Ptarget.transform(toCms); G4LorentzVector Qmomentum; G4int whilecount=0; do { // Generate pt G4double maxPtSquare=sqr(Ptarget.pz()); if (whilecount++ >= 500 && (whilecount%100)==0) // G4cout << "G4SingleDiffractiveExcitation::ExciteParticipants possibly looping" // << ", loop count/ maxPtSquare : " // << whilecount << " / " << maxPtSquare << G4endl; if (whilecount > 1000 ) { Qmomentum=G4LorentzVector(0.,0.,0.,0.); // G4cout << "G4SingleDiffractiveExcitation::ExciteParticipants: Aborting loop!" << G4endl; return false; // Ignore this interaction } Qmomentum=G4LorentzVector(GaussianPt(widthOfPtSquare,maxPtSquare),0); // Momentum transfer G4double Xmin = minmass / ( Pprojectile.e() + Ptarget.e() ); G4double Xmax=1.; G4double Xplus =ChooseX(Xmin,Xmax); G4double Xminus=ChooseX(Xmin,Xmax); G4double pt2=G4ThreeVector(Qmomentum.vect()).mag2(); G4double Qplus =-1 * pt2 / Xminus/Ptarget.minus(); G4double Qminus= pt2 / Xplus /Pprojectile.plus(); if ( KeepProjectile ) { Qminus = (sqr(projectile->GetDefinition()->GetPDGMass()) + pt2 ) / (Pprojectile.plus() + Qplus ) - Pprojectile.minus(); } else { Qplus = Ptarget.plus() - (sqr(target->GetDefinition()->GetPDGMass()) + pt2 ) / (Ptarget.minus() - Qminus ); } Qmomentum.setPz( (Qplus-Qminus)/2 ); Qmomentum.setE( (Qplus+Qminus)/2 ); // G4cout << "Qplus / Qminus " << Qplus << " / " << Qminus<Set4Momentum(Ptarget); projectile->Set4Momentum(Pprojectile); return true; } // --------- private methods ---------------------- G4double G4SingleDiffractiveExcitation::ChooseX(G4double Xmin, G4double Xmax) const { // choose an x between Xmin and Xmax with P(x) ~ 1/x // to be improved... G4double range=Xmax-Xmin; if ( Xmin <= 0. || range <=0. ) { G4cout << " Xmin, range : " << Xmin << " , " << range << G4endl; throw G4HadronicException(__FILE__, __LINE__, "G4SingleDiffractiveExcitation::ChooseX : Invalid arguments "); } G4double x; do { x=Xmin + G4UniformRand() * range; } while ( Xmin/x < G4UniformRand() ); // cout << "DiffractiveX "< maxPtSquare); pt2=std::sqrt(pt2); G4double phi=G4UniformRand() * twopi; return G4ThreeVector (pt2*std::cos(phi), pt2*std::sin(phi), 0.); } G4SingleDiffractiveExcitation::G4SingleDiffractiveExcitation(const G4SingleDiffractiveExcitation &) : G4QGSDiffractiveExcitation(), widthOfPtSquare(0) , minExtraMass(0), minmass(0) { throw G4HadronicException(__FILE__, __LINE__, "G4SingleDiffractiveExcitation copy contructor not meant to be called"); } G4SingleDiffractiveExcitation::~G4SingleDiffractiveExcitation() { } const G4SingleDiffractiveExcitation & G4SingleDiffractiveExcitation::operator=(const G4SingleDiffractiveExcitation &) { throw G4HadronicException(__FILE__, __LINE__, "G4SingleDiffractiveExcitation = operator meant to be called"); return *this; } int G4SingleDiffractiveExcitation::operator==(const G4SingleDiffractiveExcitation &) const { throw G4HadronicException(__FILE__, __LINE__, "G4SingleDiffractiveExcitation == operator meant to be called"); return false; } int G4SingleDiffractiveExcitation::operator!=(const G4SingleDiffractiveExcitation &) const { throw G4HadronicException(__FILE__, __LINE__, "G4SingleDiffractiveExcitation != operator meant to be called"); return true; }