// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4VPreCompoundFragment.icc,v 1.7 2008/09/22 10:18:36 ahoward Exp $ // GEANT4 tag $Name: geant4-09-03-beta-cand-01 $ // // by V. Lara // // Modif (03 September 2008) by J. M. Quesada for external choice of inverse // cross section option // JMQ (06 September 2008) Also external choice has been added for: // - superimposed Coulomb barrier (if useSICB=true) inline G4double G4VPreCompoundFragment::GetA() const { return theA; } inline G4double G4VPreCompoundFragment::GetZ() const { return theZ; } inline G4double G4VPreCompoundFragment::GetRestA() const { return theRestNucleusA; } inline G4double G4VPreCompoundFragment::GetRestZ() const { return theRestNucleusZ; } inline G4double G4VPreCompoundFragment::GetCoulombBarrier() const { return theCoulombBarrier; } inline G4double G4VPreCompoundFragment::GetBindingEnergy() const { return theBindingEnergy; } inline G4double G4VPreCompoundFragment::GetMaximalKineticEnergy() const { return theMaximalKineticEnergy; } inline G4double G4VPreCompoundFragment::GetEnergyThreshold() const { return theMaximalKineticEnergy - theCoulombBarrier; } inline G4double G4VPreCompoundFragment::GetEmissionProbability() const { return theEmissionProbability; } inline G4double G4VPreCompoundFragment::GetNuclearMass(void) const { return G4ParticleTable::GetParticleTable()-> GetIonTable()->GetIonMass(static_cast(theZ),static_cast(theA)); } inline G4double G4VPreCompoundFragment::GetRestNuclearMass() const { return G4ParticleTable::GetParticleTable()->GetIonTable()-> GetIonMass(static_cast(theRestNucleusZ),static_cast(theRestNucleusA)); } inline G4double G4VPreCompoundFragment::GetReducedMass() const { return GetRestNuclearMass()*GetNuclearMass()/ (GetNuclearMass()+GetRestNuclearMass()); } inline const G4LorentzVector G4VPreCompoundFragment:: GetMomentum() const { return theMomentum; } inline void G4VPreCompoundFragment:: SetMomentum(const G4LorentzVector & value) { theMomentum = value; } inline void G4VPreCompoundFragment:: SetFragmentName(const G4String& aName) { theFragmentName = aName; } inline const G4String G4VPreCompoundFragment:: GetName() const { return theFragmentName; } inline void G4VPreCompoundFragment::ResetStage() { theStage = 1; } inline G4int G4VPreCompoundFragment::GetStage() const { return theStage; } inline void G4VPreCompoundFragment::IncrementStage() { theStage++; } //for inverse cross section choice inline void G4VPreCompoundFragment::SetOPTxs(G4int opt) { OPTxs=opt; return; } //for superimposed Coulomb Barrier for inverse cross sections inline void G4VPreCompoundFragment::UseSICB(G4bool use) { useSICB=use; return; }