// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // by V. Lara #include "G4HETCFragment.hh" #include "G4PreCompoundParameters.hh" G4HETCFragment:: G4HETCFragment(const G4HETCFragment & right) : G4VPreCompoundFragment(right) { } G4HETCFragment:: G4HETCFragment(const G4double anA, const G4double aZ, G4VCoulombBarrier* aCoulombBarrier, const G4String & aName) : G4VPreCompoundFragment(anA,aZ,aCoulombBarrier,aName) {} G4HETCFragment::~G4HETCFragment() { } const G4HETCFragment & G4HETCFragment:: operator= (const G4HETCFragment & right) { if (&right != this) this->G4VPreCompoundFragment::operator=(right); return *this; } G4int G4HETCFragment::operator==(const G4HETCFragment & right) const { return G4VPreCompoundFragment::operator==(right); } G4int G4HETCFragment::operator!=(const G4HETCFragment & right) const { return G4VPreCompoundFragment::operator!=(right); } G4double G4HETCFragment:: CalcEmissionProbability(const G4Fragment & aFragment) { if (GetEnergyThreshold() <= 0.0) { theEmissionProbability = 0.0; return 0.0; } // Coulomb barrier is the lower limit // of integration over kinetic energy G4double LowerLimit = theCoulombBarrier; // Excitation energy of nucleus after fragment emission is the upper limit // of integration over kinetic energy G4double UpperLimit = this->GetMaximalKineticEnergy(); theEmissionProbability = IntegrateEmissionProbability(LowerLimit,UpperLimit,aFragment); return theEmissionProbability; } G4double G4HETCFragment:: IntegrateEmissionProbability(const G4double & Low, const G4double & Up, const G4Fragment & aFragment) { if ( !IsItPossible(aFragment) ) return 0.0; const G4double r0 = G4PreCompoundParameters::GetAddress()->Getr0(); G4double U = aFragment.GetExcitationEnergy(); G4double P = aFragment.GetNumberOfParticles(); G4double H = aFragment.GetNumberOfHoles(); G4double N = P + H; G4double Pb = P - GetA(); G4double Nb = Pb + H; if (Nb <= 0.0) return 0.0; G4double A = (P*P+H*H+P-3*H)/4.0; G4double Ab = (Pb*Pb+H*H+Pb-3*H)/4.0; U = std::max(U-A,0.0); if (U <= 0.0) return 0.0; G4double g = (6.0/pi2)*aFragment.GetA()*G4PreCompoundParameters::GetAddress()->GetLevelDensity(); G4double gb = (6.0/pi2)*GetRestA()*G4PreCompoundParameters::GetAddress()->GetLevelDensity(); G4double Pf = P; G4double Hf = H; G4double Nf = N-1.0; for (G4int i = 1; i < GetA(); i++) { Pf *= (P-i); Hf *= (H-i); Nf *= (N-1-i); } G4double X = std::max(Up - Ab + GetBeta(),0.0); G4double Y = std::max(Up - Ab - Low, 0.0); G4double Probability = GetSpinFactor()/(pi*hbarc*hbarc*hbarc) * GetReducedMass() * GetAlpha() * r0 * r0 * std::pow(GetRestA(),2.0/3.0)/std::pow(U,N-1) * (std::pow(gb,Nb)/std::pow(g,N)) * Pf * Hf * Nf * K(aFragment) * std::pow(Y,Nb) * (X/Nb - Y/(Nb+1)); return Probability; }