// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4PreCompoundDeuteron.cc,v 1.6 2010/04/09 14:06:17 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4PreCompoundDeuteron // // Author: V.Lara // // Modified: // 21.08.2008 J. M. Quesada add choice of options // #include "G4PreCompoundDeuteron.hh" G4ReactionProduct * G4PreCompoundDeuteron::GetReactionProduct() const { G4ReactionProduct * theReactionProduct = new G4ReactionProduct(G4Deuteron::DeuteronDefinition()); theReactionProduct->SetMomentum(GetMomentum().vect()); theReactionProduct->SetTotalEnergy(GetMomentum().e()); #ifdef PRECOMPOUND_TEST theReactionProduct->SetCreatorModel("G4PrecompoundModel"); #endif return theReactionProduct; } G4double G4PreCompoundDeuteron::FactorialFactor(const G4double N, const G4double P) { return (N-1.0)*(N-2.0)*(P-1.0)*P/2.0; } G4double G4PreCompoundDeuteron::CoalescenceFactor(const G4double A) { return 16.0/A; } G4double G4PreCompoundDeuteron::GetRj(const G4int NumberParticles, const G4int NumberCharged) { G4double rj = 0.0; G4double denominator = NumberParticles*(NumberParticles-1); if(NumberCharged >=1 && (NumberParticles-NumberCharged) >=1) { rj = 2.0*static_cast(NumberCharged*(NumberParticles-NumberCharged)) / static_cast(denominator); } return rj; } //////////////////////////////////////////////////////////////////////////////////// //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections //OPT=0 Dostrovski's parameterization //OPT=1,2 Chatterjee's paramaterization //OPT=3,4 Kalbach's parameterization // G4double G4PreCompoundDeuteron::CrossSection(const G4double K) { ResidualA=GetRestA(); ResidualZ=GetRestZ(); theA=GetA(); theZ=GetZ(); ResidualAthrd=std::pow(ResidualA,0.33333); FragmentA=GetA()+GetRestA(); FragmentAthrd=std::pow(FragmentA,0.33333); if (OPTxs==0) return GetOpt0( K); else if( OPTxs==1 || OPTxs==2) return GetOpt12( K); else if (OPTxs==3 || OPTxs==4) return GetOpt34( K); else{ std::ostringstream errOs; errOs << "BAD DEUTERON CROSS SECTION OPTION !!" <Getr0(); // cross section is now given in mb (r0 is in mm) for the sake of consistency //with the rest of the options return 1.e+25*pi*(r0*ResidualAthrd)*(r0*ResidualAthrd)*GetAlpha()*(1.+GetBeta()/K); } // //--------- // G4double G4PreCompoundDeuteron::GetAlpha() { G4double C = 0.0; G4double aZ = GetZ() + GetRestZ(); if (aZ >= 70) { C = 0.10; } else { C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375; } return 1.0 + C/2.0; } // //--------- // G4double G4PreCompoundDeuteron::GetBeta() { return -GetCoulombBarrier(); } // //********************* OPT=1,2 : Chatterjee's cross section ************************ //(fitting to cross section from Bechetti & Greenles OM potential) G4double G4PreCompoundDeuteron::GetOpt12(const G4double K) { G4double Kc=K; // JMQ xsec is set constat above limit of validity if (K>50) Kc=50; G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs; //G4double Eo(0),epsilon1(0),epsilon2(0),discri(0); G4double p0 = -38.21; G4double p1 = 922.6; G4double p2 = -2804.; G4double landa0 = -0.0323; G4double landa1 = -5.48; G4double mu0 = 336.1; G4double mu1 = 0.48; G4double nu0 = 524.3; G4double nu1 = -371.8; G4double nu2 = -5.924; G4double delta=1.2; Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta); p = p0 + p1/Ec + p2/(Ec*Ec); landa = landa0*ResidualA + landa1; mu = mu0*std::pow(ResidualA,mu1); nu = std::pow(ResidualA,mu1)*(nu0 + nu1*Ec + nu2*(Ec*Ec)); q = landa - nu/(Ec*Ec) - 2*p*Ec; r = mu + 2*nu/Ec + p*(Ec*Ec); ji=std::max(Kc,Ec); if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;} else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;} if (xs <0.0) {xs=0.0;} return xs; } // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)************* G4double G4PreCompoundDeuteron::GetOpt34(const G4double K) // ** d from o.m. of perey and perey { G4double landa, mu, nu, p ,signor(1.),sig; G4double ec,ecsq,xnulam,etest(0.),a; G4double b,ecut,cut,ecut2,geom,elab; G4double flow = 1.e-18; G4double spill= 1.e+18; G4double p0 = 0.798; G4double p1 = 420.3; G4double p2 = -1651.; G4double landa0 = 0.00619; G4double landa1 = -7.54; G4double mu0 = 583.5; G4double mu1 = 0.337; G4double nu0 = 421.8; G4double nu1 = -474.5; G4double nu2 = -3.592; G4double ra=0.80; //JMQ 13/02/09 increase of reduced radius to lower the barrier // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra); ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra); ecsq = ec * ec; p = p0 + p1/ec + p2/ecsq; landa = landa0*ResidualA + landa1; a = std::pow(ResidualA,mu1); mu = mu0 * a; nu = a* (nu0+nu1*ec+nu2*ecsq); xnulam = nu / landa; if (xnulam > spill) xnulam=0.; if (xnulam >= flow) etest = 1.2 *std::sqrt(xnulam); a = -2.*p*ec + landa - nu/ecsq; b = p*ecsq + mu + 2.*nu/ec; ecut = 0.; cut = a*a - 4.*p*b; if (cut > 0.) ecut = std::sqrt(cut); ecut = (ecut-a) / (p+p); ecut2 = ecut; //JMQ 290310 for avoiding unphysical increase below minimum (at ecut) //ecut<0 means that there is no cut with energy axis, i.e. xs is set to 0 bellow minimum // if (cut < 0.) ecut2 = ecut - 2.; if (cut < 0.) ecut2 = ecut; elab = K * FragmentA / ResidualA; sig = 0.; if (elab <= ec) { //start for E ecut2) sig = (p*elab*elab+a*elab+b) * signor; } //end for EEc sig = (landa*elab+mu+nu/elab) * signor; geom = 0.; if (xnulam < flow || elab < etest) return sig; geom = std::sqrt(theA*K); geom = 1.23*ResidualAthrd + ra + 4.573/geom; geom = 31.416 * geom * geom; sig = std::max(geom,sig); } //end for E>Ec return sig; } // ************************** end of cross sections *******************************