// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4PreCompoundNeutron.cc,v 1.4 2009/02/11 18:06:00 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4PreCompoundNeutron // // Author: V.Lara // // Modified: // 21.08.2008 J. M. Quesada add choice of options // 10.02.2009 J. M. Quesada set default opt3 // #include "G4PreCompoundNeutron.hh" G4ReactionProduct * G4PreCompoundNeutron::GetReactionProduct() const { G4ReactionProduct * theReactionProduct = new G4ReactionProduct(G4Neutron::NeutronDefinition()); theReactionProduct->SetMomentum(GetMomentum().vect()); theReactionProduct->SetTotalEnergy(GetMomentum().e()); #ifdef PRECOMPOUND_TEST theReactionProduct->SetCreatorModel("G4PrecompoundModel"); #endif return theReactionProduct; } G4double G4PreCompoundNeutron::GetRj(const G4int NumberParticles, const G4int NumberCharged) { G4double rj = 0.0; if(NumberParticles > 0) rj = static_cast(NumberParticles - NumberCharged)/ static_cast(NumberParticles); return rj; } //////////////////////////////////////////////////////////////////////////////////// //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections //OPT=0 Dostrovski's parameterization //OPT=1,2 Chatterjee's paramaterization //OPT=3,4 Kalbach's parameterization // G4double G4PreCompoundNeutron::CrossSection(const G4double K) { ResidualA=GetRestA(); ResidualZ=GetRestZ(); theA=GetA(); theZ=GetZ(); ResidualAthrd=std::pow(ResidualA,0.33333); FragmentA=GetA()+GetRestA(); FragmentAthrd=std::pow(FragmentA,0.33333); if (OPTxs==0) return GetOpt0( K); else if( OPTxs==1 || OPTxs==2) return GetOpt12( K); else if (OPTxs==3 || OPTxs==4) return GetOpt34( K); else{ std::ostringstream errOs; errOs << "BAD NEUTRON CROSS SECTION OPTION !!" <Getr0(); // cross section is now given in mb (r0 is in mm) for the sake of consistency //with the rest of the options return 1.e+25*pi*(r0*ResidualAthrd)*(r0*ResidualAthrd)*GetAlpha()*(1.+GetBeta()/K); } // //------- // G4double G4PreCompoundNeutron::GetAlpha() { // return 0.76+2.2/std::pow(GetRestA(),1.0/3.0); return 0.76+2.2/ResidualAthrd; } // //------------ // G4double G4PreCompoundNeutron::GetBeta() { // return (2.12/std::pow(GetRestA(),2.0/3.0)-0.05)*MeV/GetAlpha(); return (2.12/(ResidualAthrd*ResidualAthrd)-0.05)*MeV/GetAlpha(); } // //********************* OPT=1,2 : Chatterjee's cross section ************************ //(fitting to cross section from Bechetti & Greenles OM potential) G4double G4PreCompoundNeutron::GetOpt12(const G4double K) { G4double Kc=K; // Pramana (Bechetti & Greenles) for neutrons is chosen // JMQ xsec is set constat above limit of validity if (K>50) Kc=50; G4double landa, landa0, landa1, mu, mu0, mu1,nu, nu0, nu1, nu2,xs; landa0 = 18.57; landa1 = -22.93; mu0 = 381.7; mu1 = 24.31; nu0 = 0.172; nu1 = -15.39; nu2 = 804.8; landa = landa0/ResidualAthrd + landa1; mu = mu0*ResidualAthrd + mu1*ResidualAthrd*ResidualAthrd; nu = nu0*ResidualAthrd*ResidualA + nu1*ResidualAthrd*ResidualAthrd + nu2 ; xs=landa*Kc + mu + nu/Kc; if (xs <= 0.0 ){ std::ostringstream errOs; G4cout<<"WARNING: NEGATIVE OPT=1 neutron cross section "<