// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4PreCompoundProton.cc,v 1.5 2010/04/09 14:06:17 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // // ------------------------------------------------------------------- // // GEANT4 Class file // // // File name: G4PreCompoundProton // // Author: V.Lara // // Modified: // 21.08.2008 J. M. Quesada added external choice of inverse cross section option // 21.08.2008 J. M. Quesada added external choice for superimposed Coulomb barrier // (if useSICB=true) // #include "G4PreCompoundProton.hh" G4ReactionProduct * G4PreCompoundProton::GetReactionProduct() const { G4ReactionProduct * theReactionProduct = new G4ReactionProduct(G4Proton::ProtonDefinition()); theReactionProduct->SetMomentum(GetMomentum().vect()); theReactionProduct->SetTotalEnergy(GetMomentum().e()); #ifdef PRECOMPOUND_TEST theReactionProduct->SetCreatorModel("G4PrecompoundModel"); #endif return theReactionProduct; } G4double G4PreCompoundProton::GetRj(const G4int NumberParticles, const G4int NumberCharged) { G4double rj = 0.0; if(NumberParticles > 0) rj = static_cast(NumberCharged)/static_cast(NumberParticles); return rj; } //////////////////////////////////////////////////////////////////////////////////// //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections //OPT=0 Dostrovski's parameterization //OPT=1 Chatterjee's paramaterization //OPT=2,4 Wellisch's parametarization //OPT=3 Kalbach's parameterization // G4double G4PreCompoundProton::CrossSection(const G4double K) { //G4cout<<" In G4PreCompoundProton OPTxs="<Getr0(); // cross section is now given in mb (r0 is in mm) for the sake of consistency //with the rest of the options return 1.e+25*pi*(r0*ResidualAthrd)*(r0*ResidualAthrd)*GetAlpha()*(1.+GetBeta()/K); } // //------------ // G4double G4PreCompoundProton::GetAlpha() { G4double aZ = static_cast(GetRestZ()); G4double C = 0.0; if (aZ >= 70) { C = 0.10; } else { C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375; } return 1.0 + C; } // //------------------- // G4double G4PreCompoundProton::GetBeta() { return -GetCoulombBarrier(); } // //********************* OPT=1 : Chatterjee's cross section ************************ //(fitting to cross section from Bechetti & Greenles OM potential) G4double G4PreCompoundProton::GetOpt1(const G4double K) { G4double Kc=K; // JMQ xsec is set constat above limit of validity if (K>50) Kc=50; G4double landa, landa0, landa1, mu, mu0, mu1,nu, nu0, nu1, nu2,xs; G4double p, p0, p1, p2,Ec,delta,q,r,ji; p0 = 15.72; p1 = 9.65; p2 = -449.0; landa0 = 0.00437; landa1 = -16.58; mu0 = 244.7; mu1 = 0.503; nu0 = 273.1; nu1 = -182.4; nu2 = -1.872; delta=0.; Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta); p = p0 + p1/Ec + p2/(Ec*Ec); landa = landa0*ResidualA + landa1; mu = mu0*std::pow(ResidualA,mu1); nu = std::pow(ResidualA,mu1)*(nu0 + nu1*Ec + nu2*(Ec*Ec)); q = landa - nu/(Ec*Ec) - 2*p*Ec; r = mu + 2*nu/Ec + p*(Ec*Ec); ji=std::max(Kc,Ec); if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;} else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;} if (xs <0.0) {xs=0.0;} return xs; } //************* OPT=2 : Welisch's proton reaction cross section ************************ G4double G4PreCompoundProton::GetOpt2(const G4double K) { G4double rnpro,rnneu,eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0); //This is redundant when the Coulomb barrier is overimposed to all cross sections //It should be kept when Coulomb barrier only imposed at OPTxs=2 if(!useSICB && K<=theCoulombBarrier) return xine_th=0.0; eekin=K; rnpro=ResidualZ; rnneu=ResidualA-ResidualZ; ekin=eekin/1000; r0=1.36*1.e-15; fac=pi*r0*r0; b0=2.247-0.915*(1.-1./ResidualAthrd); fac1=b0*(1.-1./ResidualAthrd); fac2=1.; if(rnneu > 1.5) fac2=std::log(rnneu); xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1); xine_th=(1.-0.15*std::exp(-ekin))*xine_th/(1.00-0.0007*ResidualA); ff1=0.70-0.0020*ResidualA ; ff2=1.00+1/ResidualA; ff3=0.8+18/ResidualA-0.002*ResidualA; fac=1.-(1./(1.+std::exp(-8.*ff1*(std::log10(ekin)+1.37*ff2)))); xine_th=xine_th*(1.+ff3*fac); ff1=1.-1/ResidualA-0.001*ResidualA; ff2=1.17-2.7/ResidualA-0.0014*ResidualA; fac=-8.*ff1*(std::log10(ekin)+2.0*ff2); fac=1./(1.+std::exp(fac)); xine_th=xine_th*fac; if (xine_th < 0.0){ std::ostringstream errOs; G4cout<<"WARNING: negative Wellisch cross section "<