source: trunk/source/processes/hadronic/models/qmd/src/G4QMDCollision.cc @ 847

Last change on this file since 847 was 819, checked in by garnier, 16 years ago

import all except CVS

File size: 28.5 KB
RevLine 
[819]1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26#include "G4QMDCollision.hh"
27#include "G4ParticleDefinition.hh"
28#include "G4Scatterer.hh"
29#include "Randomize.hh"
30#include "G4PionZero.hh"
31
32G4QMDCollision::G4QMDCollision()
33: deltar ( 4 )
34, bcmax0 ( 1.323142 ) // NN maximum impact parameter
35, bcmax1 ( 2.523 )    // others maximum impact parameter
36, sig0 ( 55 )   // NN cross section
37, sig1 ( 200 )  // others cross section
38, epse ( 0.0001 )
39{
40   theScatterer = new G4Scatterer();
41}
42
43
44
45G4QMDCollision::~G4QMDCollision()
46{
47   delete theScatterer;
48}
49
50
51void G4QMDCollision::CalKinematicsOfBinaryCollisions()
52{
53
54
55   G4int n = theSystem->GetTotalNumberOfParticipant(); 
56
57//071101
58   for ( G4int i = 0 ; i < n ; i++ )
59   {
60      //std::cout << i << " " << theSystem->GetParticipant( i )->GetDefinition()->GetParticleName() << " " << theSystem->GetParticipant( i )->GetPosition() << std::endl;
61      if ( theSystem->GetParticipant( i )->GetDefinition()->IsShortLived() )
62      {
63         G4ParticleDefinition* pd0 = theSystem->GetParticipant( i )->GetDefinition();
64         G4ThreeVector p0 = theSystem->GetParticipant( i )->GetMomentum();
65         G4ThreeVector r0 = theSystem->GetParticipant( i )->GetPosition();
66
67         G4LorentzVector p40 = theSystem->GetParticipant( i )->Get4Momentum();
68
69         G4double epot = theMeanField->GetTotalPotential();
70         G4double eini = epot + p40.e();
71
72         G4int n0 = theSystem->GetTotalNumberOfParticipant(); 
73         G4int i0 = 0; 
74G4bool isThisEnergyOK = false;
75         for ( G4int ii = 0 ; ii < 4 ; ii++ )
76{ 
77
78         //G4LorentzVector p4 = theSystem->GetParticipant( i )->Get4Momentum();
79         G4LorentzVector p400 = p40;
80
81         p400 *= GeV;
82         //G4KineticTrack kt( theSystem->GetParticipant( i )->GetDefinition() , 0.0 , (theSystem->GetParticipant( i )->GetPosition())*fermi , p4 );
83         G4KineticTrack kt( pd0 , 0.0 , r0*fermi , p400 );
84//         std::cout << "G4KineticTrack " << i << " " <<  kt.GetDefinition()->GetParticleName() <<  kt.GetPosition() << std::endl;
85         G4KineticTrackVector* secs = NULL;
86         secs = kt.Decay();
87         G4int id = 0;
88         G4double et = 0;
89         if ( secs )
90         {
91            for ( G4KineticTrackVector::iterator it
92                  = secs->begin() ; it != secs->end() ; it++ )
93            {
94//              std::cout << "G4KineticTrack"
95//                 << " " << (*it)->GetDefinition()->GetParticleName()
96//                 << " " << (*it)->Get4Momentum()
97//                 << " " << (*it)->GetPosition()/fermi
98//                         << std::endl;
99                if ( id == 0 ) 
100                {
101                   theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
102                   theSystem->GetParticipant( i )->SetMomentum( (*it)->Get4Momentum().v()/GeV );
103                   theSystem->GetParticipant( i )->SetPosition( (*it)->GetPosition()/fermi );
104                   //theMeanField->Cal2BodyQuantities( i );
105                   et += (*it)->Get4Momentum().e()/GeV;
106                }
107                if ( id > 0 )
108                {
109                   // Append end;
110                   theSystem->SetParticipant ( new G4QMDParticipant ( (*it)->GetDefinition() , (*it)->Get4Momentum().v()/GeV , (*it)->GetPosition()/fermi ) );
111                   et += (*it)->Get4Momentum().e()/GeV;
112                   if ( id > 1 )
113                   {
114 //                     std::cout << "NAGISA id >2; id= " << id  << std::endl;
115                   }
116                }
117                id++; 
118
119                delete *it;
120            }
121            theMeanField->SetSystem ( theSystem );
122            i0 = id-1; // 0 enter to i
123         }
124
125//       EnergyCheck 
126
127         G4double epot = theMeanField->GetTotalPotential();
128         G4double efin = epot + et; 
129         //std::cout <<  std::abs ( eini - efin ) - epse << std::endl;
130//         std::cout <<  std::abs ( eini - efin ) - epse*10 << std::endl;
131//071031
132//                                        *10 TK 
133         if ( std::abs ( eini - efin ) < epse*10 ) 
134         {
135            // Energy OK
136//            std::cout << "Decay Succeeded Energy OK" << std::endl;
137            isThisEnergyOK = true;
138            break; 
139         }
140         else
141         {
142            for ( G4int i0i = 0 ; i0i < id-1 ; i0i++ )
143            {
144//               std::cout << "Decay Energitically Blocked deleteing " << i0i+n0  << std::endl;
145               theSystem->DeleteParticipant( i0i+n0 );
146            }
147         }
148}
149
150//       Pauli Check
151         if ( isThisEnergyOK == true )
152         {
153//          if ( theMeanField->IsPauliBlocked ( i ) != true )
154            {
155               bool allOK = true; 
156               for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
157               {
158                  if ( theMeanField->IsPauliBlocked ( i0i+n0 ) == true )
159                  {
160                     allOK = false;
161                     break;
162                  } 
163               }
164
165//               if ( allOK ) std::cout << "Decay Succeeded" << std::endl;
166               if ( allOK ) continue; //Do not Pauli Blocked
167            }
168         }
169//       
170
171//         std::cout << "Decay Blocked" << std::endl;
172         theSystem->GetParticipant( i )->SetDefinition( pd0 );
173         theSystem->GetParticipant( i )->SetPosition( r0 );
174         theSystem->GetParticipant( i )->SetMomentum( p0 );
175
176         if ( isThisEnergyOK == true )
177         {
178         for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
179         {
180//            std::cout << "Decay Blocked deleteing " << i0i+n0  << std::endl;
181            theSystem->DeleteParticipant( i0i+n0 );
182         }
183         }
184         
185      }
186   }
187//071101
188
189
190   n = theSystem->GetTotalNumberOfParticipant(); 
191   //std::cout << "Collision n " << n << std::endl;
192
193   std::vector< G4bool > isCollided ( n , false );
194
195   for ( G4int i = 1 ; i < n ; i++ )
196   {
197
198      //std::cout << "Collision i " << i << std::endl;
199
200      G4ThreeVector ri =  theSystem->GetParticipant( i )->GetPosition();
201      G4LorentzVector p4i =  theSystem->GetParticipant( i )->Get4Momentum();
202      G4double rmi =  theSystem->GetParticipant( i )->GetMass();
203      G4ParticleDefinition* pdi =  theSystem->GetParticipant( i )->GetDefinition();
204
205      //std::cout << " p4i00 " << p4i << std::endl;
206      for ( G4int j = 0 ; j < i ; j++ )
207      {
208//         std::cout << "Collision " << i << " " << j << std::endl;
209
210/*
211         std::cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisProjectile() << std::endl;
212         std::cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisProjectile() << std::endl;
213         std::cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisTarget() << std::endl;
214         std::cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisTarget() << std::endl;
215*/
216
217         // Only 1 Collision allowed for each particle in a time step.
218         if ( isCollided[ i ] == true ) continue;
219         if ( isCollided[ j ] == true ) continue;
220
221         // Do not allow collision between nucleons in target/projectile til its first collision.
222         if ( theSystem->GetParticipant( i )->IsThisProjectile() )
223         {
224            if ( theSystem->GetParticipant( j )->IsThisProjectile() ) continue;
225         }
226         else if ( theSystem->GetParticipant( i )->IsThisTarget() )
227         {
228            if ( theSystem->GetParticipant( j )->IsThisTarget() ) continue;
229         }
230
231
232         G4ThreeVector rj =  theSystem->GetParticipant( j )->GetPosition();
233         G4LorentzVector p4j =  theSystem->GetParticipant( j )->Get4Momentum();
234         G4double rmj =  theSystem->GetParticipant( j )->GetMass();
235         G4ParticleDefinition* pdj =  theSystem->GetParticipant( j )->GetDefinition();
236
237         G4double rr2 = theMeanField->GetRR2( i , j );
238
239//       Here we assume elab (beam momentum less than 5 GeV/n )
240         if ( rr2 > deltar*deltar ) continue;
241
242         G4double s = (p4i+p4j)*(p4i+p4j);
243
244         G4double srt = std::sqrt ( s );
245
246         G4double cutoff = 0.0;
247         G4double bcmax = 0.0;
248         G4double sig = 0.0;
249
250         if ( rmi < 0.94 && rmj < 0.94 ) 
251         {
252//          nucleon or pion case
253            cutoff = rmi + rmj + 0.02; 
254            bcmax = bcmax0;
255            sig = sig0;
256         }
257         else
258         {
259            cutoff = rmi + rmj; 
260            bcmax = bcmax1;
261            sig = sig1;
262         }
263
264         //std::cout << "Collision cutoff " << i << " " << j << " " << cutoff << std::endl;
265         if ( srt < cutoff ) continue; 
266       
267         G4ThreeVector dr = ri - rj;
268         G4double rsq = dr*dr;
269
270         G4double pij = p4i*p4j; 
271         G4double pidr = p4i.vect()*dr;
272         G4double pjdr = p4j.vect()*dr;
273 
274         G4double aij = 1.0 - ( rmi*rmj /pij ) * ( rmi*rmj /pij ); 
275         G4double bij = pidr / rmi - pjdr*rmi/pij;
276         G4double cij = rsq + ( pidr / rmi ) * ( pidr / rmi );
277         G4double brel = std::sqrt ( std::abs ( cij - bij*bij/aij ) );
278 
279         if ( brel > bcmax ) continue;
280         //std::cout << "collisions3 " << std::endl;
281     
282         G4double bji = -pjdr/rmj + pidr * rmj /pij;
283 
284         G4double ti = ( pidr/rmi - bij / aij ) * p4i.e() / rmi;
285         G4double tj = (-pjdr/rmj - bji / aij ) * p4j.e() / rmj;
286
287         G4double deltaT = 0.0;
288         deltaT = 1.0; // TK 
289
290/*
291         std::cout << "collisions4  p4i " << p4i << std::endl;
292         std::cout << "collisions4  ri " << ri << std::endl;
293         std::cout << "collisions4  p4j " << p4j << std::endl;
294         std::cout << "collisions4  rj " << rj << std::endl;
295         std::cout << "collisions4  dr " << dr << std::endl;
296         std::cout << "collisions4  pij " << pij << std::endl;
297         std::cout << "collisions4  aij " << aij << std::endl;
298         std::cout << "collisions4  bij bji " << bij << " " << bji << std::endl;
299         std::cout << "collisions4  pidr pjdr " << pidr << " " << pjdr << std::endl;
300         std::cout << "collisions4  p4i.e() p4j.e() " << p4i.e() << " " << p4j.e() << std::endl;
301         std::cout << "collisions4  rmi rmj " << rmi << " " << rmj << std::endl;
302         std::cout << "collisions4 " << ti << " " << tj << std::endl;
303*/
304         if ( std::abs ( ti + tj ) > deltaT ) continue;
305         //std::cout << "collisions4 " << std::endl;
306
307         G4ThreeVector beta = ( p4i + p4j ).boostVector();
308
309         G4LorentzVector p = p4i;
310         G4LorentzVector p4icm = p.boost( p.findBoostToCM ( p4j ) );
311         G4ThreeVector pcm = p4icm.vect();
312         
313         G4double prcm = pcm.mag();
314
315         if ( prcm <= 0.00001 ) continue; 
316         //std::cout << "collisions5 " << std::endl;
317
318         G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollision ( i , j ) ); // Use Geant4 Collision Library
319         //G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollisionJQMD ( sig , cutoff , pcm , prcm , srt, beta , gamma , i , j ) ); // JQMD Elastic
320
321         G4bool pauli_blocked = false;
322         if ( energetically_forbidden != true ) 
323         { 
324            if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) 
325            {
326               pauli_blocked = true;
327               //std::cout << "G4QMDRESULT Collsion Pauli Blocked " << std::endl;
328            }
329         }
330         else
331         {
332            //std::cout << "G4QMDRESULT Collsion Blocked " << std::endl;
333         } 
334
335/*
336            std::cout << "G4QMDRESULT Collsion initial p4 i and j "
337                      << p4i << " " << p4j
338                      << std::endl;
339*/
340
341 
342         if ( energetically_forbidden == true ||  pauli_blocked == true )
343         {
344//       Collsion not allowed then re enter orginal participants
345//       Now only momentum, becasuse we only consider elastic scattering of nucleons
346
347            theSystem->GetParticipant( i )->SetMomentum( p4i.vect() );
348            theSystem->GetParticipant( i )->SetDefinition( pdi );
349            theSystem->GetParticipant( i )->SetPosition( ri );
350            theSystem->GetParticipant( j )->SetMomentum( p4j.vect() );
351            theSystem->GetParticipant( j )->SetDefinition( pdj );
352            theSystem->GetParticipant( j )->SetPosition( rj );
353
354         }
355         else 
356         {
357//       Collsion allowed (really happened)
358
359            // Unset Projectile/Target flag
360            theSystem->GetParticipant( i )->UnsetInitialMark();
361            theSystem->GetParticipant( j )->UnsetInitialMark();
362
363            isCollided[ i ] = true; 
364            isCollided[ j ] = true; 
365
366            theSystem->IncrementCollisionCounter();
367
368/*
369            std::cout << "G4QMDRESULT Collsion Really Happened between "
370                      << i << " and " << j
371                      << std::endl;
372            std::cout << "G4QMDRESULT Collsion initial p4 i and j "
373                      << p4i << " " << p4j
374                      << std::endl;
375            std::cout << "G4QMDRESULT Collsion after p4 i and j "
376                      << theSystem->GetParticipant( i )->Get4Momentum()
377                      << " "
378                      << theSystem->GetParticipant( j )->Get4Momentum()
379                      << std::endl;
380            std::cout << "G4QMDRESULT Collsion Diff "
381                      << p4i + p4j - theSystem->GetParticipant( i )->Get4Momentum() - theSystem->GetParticipant( j )->Get4Momentum()
382                      << std::endl;
383            std::cout << "G4QMDRESULT Collsion initial r i and j "
384                      << ri << " " << rj
385                      << std::endl;
386            std::cout << "G4QMDRESULT Collsion after r i and j "
387                      << theSystem->GetParticipant( i )->GetPosition()
388                      << " "
389                      << theSystem->GetParticipant( j )->GetPosition()
390                      << std::endl;
391*/
392
393         }
394
395//         theMeanField
396
397      }
398   }
399
400//071106
401   n = theSystem->GetTotalNumberOfParticipant(); 
402   G4bool isThisModefied = false;
403   for ( G4int i = 0 ; i < n ; i++ )
404   {
405      if ( theSystem->GetParticipant( i )->GetDefinition() == G4PionZero::PionZero() )
406      {
407         if ( theSystem->GetParticipant( i )->GetPosition().mag() > 1.0e9 )
408         {
409//            std::cout << "Deleting " << i << " " << theSystem->GetParticipant( i )->GetPosition().mag() << std::endl;
410            theSystem->DeleteParticipant( i );
411            isThisModefied = true;
412         }
413      } 
414   }
415   if ( isThisModefied == true ) theMeanField->SetSystem ( theSystem );
416//071106
417
418}
419
420
421
422G4bool G4QMDCollision::CalFinalStateOfTheBinaryCollision( G4int i , G4int j )
423{
424
425   //G4cout << "CalFinalStateOfTheBinaryCollision " << G4endl;
426
427   G4bool result = true;
428
429   G4LorentzVector p4i =  theSystem->GetParticipant( i )->Get4Momentum();
430   G4LorentzVector p4j =  theSystem->GetParticipant( j )->Get4Momentum();
431
432//071031
433   // will use KineticTrack
434   G4LorentzVector p4ix = p4i*GeV;
435   G4LorentzVector p4jx = p4j*GeV;
436   G4ThreeVector rix = (theSystem->GetParticipant( i )->GetPosition())*fermi; 
437   G4ThreeVector rjx = (theSystem->GetParticipant( j )->GetPosition())*fermi; 
438//071031
439
440   G4double epot = theMeanField->GetTotalPotential();
441
442   G4double eini = epot + p4i.e() + p4j.e();
443
444
445//071031
446   G4ParticleDefinition* pdi0 =theSystem->GetParticipant( i )->GetDefinition();
447   G4ParticleDefinition* pdj0 =theSystem->GetParticipant( j )->GetDefinition();
448   G4ThreeVector ri0 =(theSystem->GetParticipant( i )->GetPosition())*fermi;
449   G4ThreeVector rj0 =(theSystem->GetParticipant( j )->GetPosition())*fermi;
450
451   for ( G4int iitry = 0 ; iitry < 4 ; iitry++ )
452   {
453
454      G4KineticTrack kt1( pdi0 , 0.0 , ri0 , p4ix );
455      G4KineticTrack kt2( pdj0 , 0.0 , rj0 , p4jx );
456      G4LorentzVector p4ix_new; 
457      G4LorentzVector p4jx_new; 
458      G4KineticTrackVector* secs = NULL;
459      secs = theScatterer->Scatter( kt1 , kt2 );
460
461      //std::cout << "G4QMDSCATTERER BEFORE " << kt1.GetDefinition()->GetParticleName() << " " << kt1.Get4Momentum()/GeV << " " << kt1.GetPosition()/fermi << std::endl;
462      //std::cout << "G4QMDSCATTERER BEFORE " << kt2.GetDefinition()->GetParticleName() << " " << kt2.Get4Momentum()/GeV << " " << kt2.GetPosition()/fermi << std::endl;
463      //std::cout << "THESCATTERER " << theScatterer->GetCrossSection ( kt1 , kt2 )/millibarn << " " << elastic << " " << sig << std::endl;
464      if ( secs )
465      {
466         G4int iti = 0;
467         if (  secs->size() == 2 )
468         {
469            for ( G4KineticTrackVector::iterator it
470                = secs->begin() ; it != secs->end() ; it++ )
471            {
472               if ( iti == 0 ) 
473               {
474                  theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
475                  p4ix_new = (*it)->Get4Momentum()/GeV;
476                  //std::cout << "THESCATTERER " << (*it)->GetDefinition()->GetParticleName() << std::endl;
477                  theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
478               } 
479               if ( iti == 1 )
480               {
481                  theSystem->GetParticipant( j )->SetDefinition( (*it)->GetDefinition() );
482                  p4jx_new = (*it)->Get4Momentum()/GeV;
483                  //std::cout << "THESCATTERER " << p4jx_new.e()-p4jx_new.m() << std::endl;
484                  theSystem->GetParticipant( j )->SetMomentum( p4jx_new.v() );
485               }
486               //std::cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << std::endl;
487               iti++;
488            }
489         }
490         else
491         {
492            //std::cout << "NAGISA pion absrorption " << secs->front()->GetDefinition()->GetParticleName() << std::endl;
493            //secs->front()->Decay();
494            theSystem->GetParticipant( i )->SetDefinition( secs->front()->GetDefinition() );
495            p4ix_new = secs->front()->Get4Momentum()/GeV;
496            theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
497           
498              //std::cout << "THESCATTERER " << (*it)->GetDefinition()->GetParticleName() << std::endl;
499              p4jx_new( 0 ); 
500              //theSystem->GetParticipant( j )->SetDefinition( G4Gamma::Gamma() );
501              //theSystem->GetParticipant( j )->SetDefinition( G4Neutron::Neutron() );
502              theSystem->GetParticipant( j )->SetDefinition( G4PionZero::PionZero() );
503              theSystem->GetParticipant( j )->SetMomentum( G4ThreeVector( G4UniformRand() )*eV );
504              theSystem->GetParticipant( j )->SetPosition( G4ThreeVector( 1000, 1000, 1000 )*km );
505
506         } 
507
508         if ( secs->size() > 2 ) std::cout << "NAGISA secs size > 2;  " << secs->size() << std::endl;
509
510         // deleteing KineticTrack
511         for ( G4KineticTrackVector::iterator it
512               = secs->begin() ; it != secs->end() ; it++ )
513         { 
514            delete *it;
515         }
516      }
517//071031
518
519      theMeanField->Cal2BodyQuantities( i ); 
520      theMeanField->Cal2BodyQuantities( j ); 
521
522      epot = theMeanField->GetTotalPotential();
523
524      G4double efin = epot + p4ix_new.e() + p4jx_new.e(); 
525
526      //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - epse << std::endl;
527
528/*
529      std::cout << "Collision efin " << i << " " << j << " " << efin << std::endl;
530      std::cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << epse << std::endl;
531      std::cout << "Collision " << std::abs ( eini - efin ) << " " << epse << std::endl;
532*/
533
534//071031
535      if ( std::abs ( eini - efin ) < epse ) 
536      {
537         // Collison OK
538         //std::cout << "collisions6" << std::endl;
539         //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
540         //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
541         //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
542         //std::cout << "collisions before " << rix/fermi << " " << rjx/fermi << std::endl;
543         //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
544      }
545//071031
546
547      if ( std::abs ( eini - efin ) < epse ) return result;  // Collison OK
548
549   }
550
551//  Energetically forbidden collision
552    result = false;
553
554    return result;
555
556} 
557
558
559
560G4bool G4QMDCollision::CalFinalStateOfTheBinaryCollisionJQMD( G4double sig , G4double cutoff , G4ThreeVector pcm , G4double prcm , G4double srt , G4ThreeVector beta , G4double gamma , G4int i , G4int j )
561{
562
563   //G4cout << "CalFinalStateOfTheBinaryCollisionJQMD" << G4endl;
564
565   G4bool result = true;
566
567   G4LorentzVector p4i =  theSystem->GetParticipant( i )->Get4Momentum();
568   G4double rmi =  theSystem->GetParticipant( i )->GetMass();
569   G4int zi =  theSystem->GetParticipant( i )->GetChargeInUnitOfEplus();
570
571   G4LorentzVector p4j =  theSystem->GetParticipant( j )->Get4Momentum();
572   G4double rmj =  theSystem->GetParticipant( j )->GetMass();
573   G4int zj =  theSystem->GetParticipant( j )->GetChargeInUnitOfEplus();
574
575   G4double pr = prcm;
576
577   G4double c2  = pcm.z()/pr;
578   
579   G4double csrt = srt - cutoff;
580
581   //G4double pri = prcm;
582   //G4double prf = sqrt ( 0.25 * srt*srt -rm2 );
583   
584   G4double asrt = srt - rmi - rmj;
585   G4double pra = prcm;
586   
587
588
589   G4double elastic = 0.0; 
590
591   if ( zi == zj )
592   {
593      if ( csrt < 0.4286 )
594      {
595         elastic = 35.0 / ( 1. + csrt * 100.0 )  +  20.0;
596      }
597      else
598      {
599         elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
600                 *   2. / pi + 1.0 ) * 9.65 + 7.0;
601      }         
602   }
603   else
604   {
605      if ( csrt < 0.4286 )
606      {
607         elastic = 28.0 / ( 1. + csrt * 100.0 )  +  27.0;
608      }
609      else
610      {
611         elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
612                 *   2. / pi + 1.0 ) * 12.34 + 10.0;
613      }         
614   }
615
616//   std::cout << "Collision csrt " << i << " " << j << " " << csrt << std::endl;
617//   std::cout << "Collision elstic " << i << " " << j << " " << elastic << std::endl;
618
619
620//   std::cout << "Collision sig " << i << " " << j  << " " << sig << std::endl;
621   if ( G4UniformRand() > elastic / sig ) 
622   { 
623      //std::cout << "Inelastic " << std::endl;
624      //std::cout << "elastic/sig " << elastic/sig << std::endl;
625      return result; 
626   }
627   else
628   {
629      //std::cout << "Elastic " << std::endl;
630   } 
631//   std::cout << "Collision ELSTIC " << i << " " << j << std::endl;
632
633   
634   G4double as = std::pow ( 3.65 * asrt , 6 );
635   G4double a = 6.0 * as / (1.0 + as);
636   G4double ta = -2.0 * pra*pra;
637   G4double x = G4UniformRand(); 
638   G4double t1 = std::log( (1-x) * std::exp(2.*a*ta) + x )  /  a;
639   G4double c1 = 1.0 - t1/ta;
640 
641   if( std::abs(c1) > 1.0 ) c1 = 2.0 * x - 1.0;
642
643/*
644   std::cout << "Collision as " << i << " " << j << " " << as << std::endl;
645   std::cout << "Collision a " << i << " " << j << " " << a << std::endl;
646   std::cout << "Collision ta " << i << " " << j << " " << ta << std::endl;
647   std::cout << "Collision x " << i << " " << j << " " << x << std::endl;
648   std::cout << "Collision t1 " << i << " " << j << " " << t1 << std::endl;
649   std::cout << "Collision c1 " << i << " " << j << " " << c1 << std::endl;
650*/
651   t1 = 2.0*pi*G4UniformRand(); 
652//   std::cout << "Collision t1 " << i << " " << j << " " << t1 << std::endl;
653   G4double t2 = 0.0;
654   if ( pcm.x() == 0.0 && pcm.y() == 0 )
655   {
656      t2 = 0.0;
657   }
658   else 
659   {
660      t2 = std::atan2( pcm.y() , pcm.x() );
661   }
662//      std::cout << "Collision t2 " << i << " " << j << " " << t2 << std::endl;
663
664   G4double s1 = std::sqrt ( 1.0 - c1*c1 );
665   G4double s2 = std::sqrt ( 1.0 - c2*c2 );
666 
667   G4double ct1 = std::cos(t1);     
668   G4double st1 = std::sin(t1);     
669
670   G4double ct2 = std::cos(t2);     
671   G4double st2 = std::sin(t2);     
672
673   G4double ss = c2*s1*ct1 + s2*c1;
674
675   pcm.setX( pr * ( ss*ct2 - s1*st1*st2) );
676   pcm.setY( pr * ( ss*st2 + s1*st1*ct2) );
677   pcm.setZ( pr * ( c1*c2 - s1*s2*ct1) );
678
679// std::cout << "Collision pcm " << i << " " << j << " " << pcm << std::endl;
680
681   G4double epot = theMeanField->GetTotalPotential();
682
683   G4double eini = epot + p4i.e() + p4j.e();
684   G4double etwo = p4i.e() + p4j.e();
685
686/*
687   std::cout << "Collision epot " << i << " " << j << " " << epot << std::endl;
688   std::cout << "Collision eini " << i << " " << j << " " << eini << std::endl;
689   std::cout << "Collision etwo " << i << " " << j << " " << etwo << std::endl;
690*/
691
692
693   for ( G4int itry = 0 ; itry < 4 ; itry++ )
694   {
695
696      G4double eicm = std::sqrt ( rmi*rmi + pcm*pcm );
697      G4double pibeta = pcm*beta;
698
699      G4double trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + eicm );
700   
701      G4ThreeVector pi_new = beta*trans + pcm;
702   
703      G4double ejcm = std::sqrt ( rmj*rmj + pcm*pcm );
704      trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + ejcm );
705
706      G4ThreeVector pj_new = beta*trans - pcm;
707
708//
709// Delete old
710// Add new Particitipants
711//
712// Now only change momentum ( Beacuse we only have elastic sctter of nucleon
713// In future Definition also will be change
714//
715
716      theSystem->GetParticipant( i )->SetMomentum( pi_new );
717      theSystem->GetParticipant( j )->SetMomentum( pj_new );
718
719      G4double pi_new_e = (theSystem->GetParticipant( i )->Get4Momentum()).e();
720      G4double pj_new_e = (theSystem->GetParticipant( j )->Get4Momentum()).e();
721
722      theMeanField->Cal2BodyQuantities( i ); 
723      theMeanField->Cal2BodyQuantities( j ); 
724
725      epot = theMeanField->GetTotalPotential();
726
727      G4double efin = epot + pi_new_e + pj_new_e ; 
728
729      //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - epse << std::endl;
730/*
731      std::cout << "Collision efin " << i << " " << j << " " << efin << std::endl;
732      std::cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << epse << std::endl;
733      std::cout << "Collision " << std::abs ( eini - efin ) << " " << epse << std::endl;
734*/
735
736//071031
737      if ( std::abs ( eini - efin ) < epse ) 
738      {
739         // Collison OK
740         //std::cout << "collisions6" << std::endl;
741         //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
742         //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
743         //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
744         //std::cout << "collisions before " << rix/fermi << " " << rjx/fermi << std::endl;
745         //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
746      }
747//071031
748
749         if ( std::abs ( eini - efin ) < epse ) return result;  // Collison OK
750     
751         G4double cona = ( eini - efin + etwo ) / gamma;
752         G4double fac2 = 1.0 / ( 4.0 * cona*cona * pr*pr ) *
753                       ( ( cona*cona - ( rmi*rmi + rmj*rmj ) )*( cona*cona - ( rmi*rmi + rmj*rmj ) )
754                       - 4.0 * rmi*rmi * rmj*rmj );
755
756         if ( fac2 > 0 ) 
757         {
758            G4double fact = std::sqrt ( fac2 ); 
759            pcm = fact*pcm;
760         }
761
762
763   }
764
765// Energetically forbidden collision
766   result = false;
767
768   return result;
769
770} 
Note: See TracBrowser for help on using the repository browser.