// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // 080602 Fix memory leaks by T. Koi // 081120 Add deltaT in signature of CalKinematicsOfBinaryCollisions // Add several required updating of Mean Filed // Modified handling of absorption case by T. Koi // 090126 Fix in absorption case by T. Koi // 090331 Fix for gamma participant by T. Koi // #include "G4QMDCollision.hh" #include "G4Scatterer.hh" #include "Randomize.hh" G4QMDCollision::G4QMDCollision() : deltar ( 4 ) , bcmax0 ( 1.323142 ) // NN maximum impact parameter , bcmax1 ( 2.523 ) // others maximum impact parameter , sig0 ( 55 ) // NN cross section , sig1 ( 200 ) // others cross section , epse ( 0.0001 ) { theScatterer = new G4Scatterer(); } G4QMDCollision::~G4QMDCollision() { delete theScatterer; } void G4QMDCollision::CalKinematicsOfBinaryCollisions( G4double dt ) { G4double deltaT = dt; G4int n = theSystem->GetTotalNumberOfParticipant(); //081118 //G4int nb = 0; for ( G4int i = 0 ; i < n ; i++ ) { theSystem->GetParticipant( i )->UnsetHitMark(); theSystem->GetParticipant( i )->UnsetHitMark(); //nb += theSystem->GetParticipant( i )->GetBaryonNumber(); } //G4cout << "nb = " << nb << " n = " << n << G4endl; //071101 for ( G4int i = 0 ; i < n ; i++ ) { //std::cout << i << " " << theSystem->GetParticipant( i )->GetDefinition()->GetParticleName() << " " << theSystem->GetParticipant( i )->GetPosition() << std::endl; if ( theSystem->GetParticipant( i )->GetDefinition()->IsShortLived() ) { G4bool decayed = false; G4ParticleDefinition* pd0 = theSystem->GetParticipant( i )->GetDefinition(); G4ThreeVector p0 = theSystem->GetParticipant( i )->GetMomentum(); G4ThreeVector r0 = theSystem->GetParticipant( i )->GetPosition(); G4LorentzVector p40 = theSystem->GetParticipant( i )->Get4Momentum(); G4double eini = theMeanField->GetTotalPotential() + p40.e(); G4int n0 = theSystem->GetTotalNumberOfParticipant(); G4int i0 = 0; G4bool isThisEnergyOK = false; for ( G4int ii = 0 ; ii < 4 ; ii++ ) { //G4LorentzVector p4 = theSystem->GetParticipant( i )->Get4Momentum(); G4LorentzVector p400 = p40; p400 *= GeV; //G4KineticTrack kt( theSystem->GetParticipant( i )->GetDefinition() , 0.0 , (theSystem->GetParticipant( i )->GetPosition())*fermi , p4 ); G4KineticTrack kt( pd0 , 0.0 , r0*fermi , p400 ); //std::cout << "G4KineticTrack " << i << " " << kt.GetDefinition()->GetParticleName() << kt.GetPosition() << std::endl; G4KineticTrackVector* secs = NULL; secs = kt.Decay(); G4int id = 0; G4double et = 0; if ( secs ) { for ( G4KineticTrackVector::iterator it = secs->begin() ; it != secs->end() ; it++ ) { /* G4cout << "G4KineticTrack" << " " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum() << " " << (*it)->GetPosition()/fermi << G4endl; */ if ( id == 0 ) { theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() ); theSystem->GetParticipant( i )->SetMomentum( (*it)->Get4Momentum().v()/GeV ); theSystem->GetParticipant( i )->SetPosition( (*it)->GetPosition()/fermi ); //theMeanField->Cal2BodyQuantities( i ); et += (*it)->Get4Momentum().e()/GeV; } if ( id > 0 ) { // Append end; theSystem->SetParticipant ( new G4QMDParticipant ( (*it)->GetDefinition() , (*it)->Get4Momentum().v()/GeV , (*it)->GetPosition()/fermi ) ); et += (*it)->Get4Momentum().e()/GeV; if ( id > 1 ) { //081118 //G4cout << "G4QMDCollision id >2; id= " << id << G4endl; } } id++; // number of daughter particles delete *it; } theMeanField->Update(); i0 = id-1; // 0 enter to i delete secs; } // EnergyCheck G4double efin = theMeanField->GetTotalPotential() + et; //std::cout << std::abs ( eini - efin ) - epse << std::endl; // std::cout << std::abs ( eini - efin ) - epse*10 << std::endl; // *10 TK if ( std::abs ( eini - efin ) < epse*10 ) { // Energy OK isThisEnergyOK = true; break; } else { theSystem->GetParticipant( i )->SetDefinition( pd0 ); theSystem->GetParticipant( i )->SetPosition( r0 ); theSystem->GetParticipant( i )->SetMomentum( p0 ); for ( G4int i0i = 0 ; i0i < id-1 ; i0i++ ) { //081118 //std::cout << "Decay Energitically Blocked deleteing " << i0i+n0 << std::endl; theSystem->DeleteParticipant( i0i+n0 ); } //081103 theMeanField->Update(); } } // Pauli Check if ( isThisEnergyOK == true ) { if ( theMeanField->IsPauliBlocked ( i ) != true ) { G4bool allOK = true; for ( G4int i0i = 0 ; i0i < i0 ; i0i++ ) { if ( theMeanField->IsPauliBlocked ( i0i+n0 ) == true ) { allOK = false; break; } } if ( allOK ) { decayed = true; //Decay Succeeded } } } // if ( decayed ) { //081119 //G4cout << "Decay Suceeded! " << std::endl; theSystem->GetParticipant( i )->SetHitMark(); for ( G4int i0i = 0 ; i0i < i0 ; i0i++ ) { theSystem->GetParticipant( i0i+n0 )->SetHitMark(); } } else { // Decay Blocked and re-enter orginal participant; if ( isThisEnergyOK == true ) // for false case already done { theSystem->GetParticipant( i )->SetDefinition( pd0 ); theSystem->GetParticipant( i )->SetPosition( r0 ); theSystem->GetParticipant( i )->SetMomentum( p0 ); for ( G4int i0i = 0 ; i0i < i0 ; i0i++ ) { //081118 //std::cout << "Decay Blocked deleteing " << i0i+n0 << std::endl; theSystem->DeleteParticipant( i0i+n0 ); } //081103 theMeanField->Update(); } } } //shortlive } // go next participant //071101 n = theSystem->GetTotalNumberOfParticipant(); //081118 //for ( G4int i = 1 ; i < n ; i++ ) for ( G4int i = 1 ; i < theSystem->GetTotalNumberOfParticipant() ; i++ ) { //std::cout << "Collision i " << i << std::endl; if ( theSystem->GetParticipant( i )->IsThisHit() ) continue; G4ThreeVector ri = theSystem->GetParticipant( i )->GetPosition(); G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum(); G4double rmi = theSystem->GetParticipant( i )->GetMass(); G4ParticleDefinition* pdi = theSystem->GetParticipant( i )->GetDefinition(); //090331 gamma if ( pdi->GetPDGMass() == 0.0 ) continue; //std::cout << " p4i00 " << p4i << std::endl; for ( G4int j = 0 ; j < i ; j++ ) { /* std::cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisProjectile() << std::endl; std::cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisProjectile() << std::endl; std::cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisTarget() << std::endl; std::cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisTarget() << std::endl; */ // Only 1 Collision allowed for each particle in a time step. //081119 if ( theSystem->GetParticipant( i )->IsThisHit() ) continue; if ( theSystem->GetParticipant( j )->IsThisHit() ) continue; //std::cout << "Collision " << i << " " << j << std::endl; // Do not allow collision between nucleons in target/projectile til its first collision. if ( theSystem->GetParticipant( i )->IsThisProjectile() ) { if ( theSystem->GetParticipant( j )->IsThisProjectile() ) continue; } else if ( theSystem->GetParticipant( i )->IsThisTarget() ) { if ( theSystem->GetParticipant( j )->IsThisTarget() ) continue; } G4ThreeVector rj = theSystem->GetParticipant( j )->GetPosition(); G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum(); G4double rmj = theSystem->GetParticipant( j )->GetMass(); G4ParticleDefinition* pdj = theSystem->GetParticipant( j )->GetDefinition(); //090331 gamma if ( pdj->GetPDGMass() == 0.0 ) continue; G4double rr2 = theMeanField->GetRR2( i , j ); // Here we assume elab (beam momentum less than 5 GeV/n ) if ( rr2 > deltar*deltar ) continue; G4double s = (p4i+p4j)*(p4i+p4j); G4double srt = std::sqrt ( s ); G4double cutoff = 0.0; G4double bcmax = 0.0; G4double sig = 0.0; if ( rmi < 0.94 && rmj < 0.94 ) { // nucleon or pion case cutoff = rmi + rmj + 0.02; bcmax = bcmax0; sig = sig0; } else { cutoff = rmi + rmj; bcmax = bcmax1; sig = sig1; } //std::cout << "Collision cutoff " << i << " " << j << " " << cutoff << std::endl; if ( srt < cutoff ) continue; G4ThreeVector dr = ri - rj; G4double rsq = dr*dr; G4double pij = p4i*p4j; G4double pidr = p4i.vect()*dr; G4double pjdr = p4j.vect()*dr; G4double aij = 1.0 - ( rmi*rmj /pij ) * ( rmi*rmj /pij ); G4double bij = pidr / rmi - pjdr*rmi/pij; G4double cij = rsq + ( pidr / rmi ) * ( pidr / rmi ); G4double brel = std::sqrt ( std::abs ( cij - bij*bij/aij ) ); if ( brel > bcmax ) continue; //std::cout << "collisions3 " << std::endl; G4double bji = -pjdr/rmj + pidr * rmj /pij; G4double ti = ( pidr/rmi - bij / aij ) * p4i.e() / rmi; G4double tj = (-pjdr/rmj - bji / aij ) * p4j.e() / rmj; /* std::cout << "collisions4 p4i " << p4i << std::endl; std::cout << "collisions4 ri " << ri << std::endl; std::cout << "collisions4 p4j " << p4j << std::endl; std::cout << "collisions4 rj " << rj << std::endl; std::cout << "collisions4 dr " << dr << std::endl; std::cout << "collisions4 pij " << pij << std::endl; std::cout << "collisions4 aij " << aij << std::endl; std::cout << "collisions4 bij bji " << bij << " " << bji << std::endl; std::cout << "collisions4 pidr pjdr " << pidr << " " << pjdr << std::endl; std::cout << "collisions4 p4i.e() p4j.e() " << p4i.e() << " " << p4j.e() << std::endl; std::cout << "collisions4 rmi rmj " << rmi << " " << rmj << std::endl; std::cout << "collisions4 " << ti << " " << tj << std::endl; */ if ( std::abs ( ti + tj ) > deltaT ) continue; //std::cout << "collisions4 " << std::endl; G4ThreeVector beta = ( p4i + p4j ).boostVector(); G4LorentzVector p = p4i; G4LorentzVector p4icm = p.boost( p.findBoostToCM ( p4j ) ); G4ThreeVector pcm = p4icm.vect(); G4double prcm = pcm.mag(); if ( prcm <= 0.00001 ) continue; //std::cout << "collisions5 " << std::endl; G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollision ( i , j ) ); // Use Geant4 Collision Library //G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollisionJQMD ( sig , cutoff , pcm , prcm , srt, beta , gamma , i , j ) ); // JQMD Elastic /* G4bool pauli_blocked = false; if ( energetically_forbidden == false ) // result true { if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) { pauli_blocked = true; //std::cout << "G4QMDRESULT Collsion Pauli Blocked " << std::endl; } } else { if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) pauli_blocked = false; //std::cout << "G4QMDRESULT Collsion Blocked " << std::endl; } */ /* std::cout << "G4QMDRESULT Collsion initial p4 i and j " << p4i << " " << p4j << std::endl; */ // 081118 //if ( energetically_forbidden == true || pauli_blocked == true ) if ( energetically_forbidden == true ) { //G4cout << " energetically_forbidden " << G4endl; // Collsion not allowed then re enter orginal participants // Now only momentum, becasuse we only consider elastic scattering of nucleons theSystem->GetParticipant( i )->SetMomentum( p4i.vect() ); theSystem->GetParticipant( i )->SetDefinition( pdi ); theSystem->GetParticipant( i )->SetPosition( ri ); theSystem->GetParticipant( j )->SetMomentum( p4j.vect() ); theSystem->GetParticipant( j )->SetDefinition( pdj ); theSystem->GetParticipant( j )->SetPosition( rj ); theMeanField->Cal2BodyQuantities( i ); theMeanField->Cal2BodyQuantities( j ); } else { G4bool absorption = false; if ( n == theSystem->GetTotalNumberOfParticipant()+1 ) absorption = true; if ( absorption ) { //G4cout << "Absorption happend " << G4endl; i = i-1; n = n-1; } // Collsion allowed (really happened) // Unset Projectile/Target flag theSystem->GetParticipant( i )->UnsetInitialMark(); if ( !absorption ) theSystem->GetParticipant( j )->UnsetInitialMark(); theSystem->GetParticipant( i )->SetHitMark(); if ( !absorption ) theSystem->GetParticipant( j )->SetHitMark(); theSystem->IncrementCollisionCounter(); /* std::cout << "G4QMDRESULT Collsion Really Happened between " << i << " and " << j << std::endl; std::cout << "G4QMDRESULT Collsion initial p4 i and j " << p4i << " " << p4j << std::endl; std::cout << "G4QMDRESULT Collsion after p4 i and j " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl; std::cout << "G4QMDRESULT Collsion Diff " << p4i + p4j - theSystem->GetParticipant( i )->Get4Momentum() - theSystem->GetParticipant( j )->Get4Momentum() << std::endl; std::cout << "G4QMDRESULT Collsion initial r i and j " << ri << " " << rj << std::endl; std::cout << "G4QMDRESULT Collsion after r i and j " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl; */ } } } } G4bool G4QMDCollision::CalFinalStateOfTheBinaryCollision( G4int i , G4int j ) { //081103 //G4cout << "CalFinalStateOfTheBinaryCollision " << i << " " << j << " " << theSystem->GetTotalNumberOfParticipant() << G4endl; G4bool result = false; G4bool energyOK = false; G4bool pauliOK = false; G4bool abs = false; G4QMDParticipant* absorbed = NULL; G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum(); G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum(); //071031 G4double epot = theMeanField->GetTotalPotential(); G4double eini = epot + p4i.e() + p4j.e(); //071031 // will use KineticTrack G4ParticleDefinition* pdi0 =theSystem->GetParticipant( i )->GetDefinition(); G4ParticleDefinition* pdj0 =theSystem->GetParticipant( j )->GetDefinition(); G4LorentzVector p4i0 = p4i*GeV; G4LorentzVector p4j0 = p4j*GeV; G4ThreeVector ri0 = ( theSystem->GetParticipant( i )->GetPosition() )*fermi; G4ThreeVector rj0 = ( theSystem->GetParticipant( j )->GetPosition() )*fermi; for ( G4int iitry = 0 ; iitry < 4 ; iitry++ ) { abs = false; G4KineticTrack kt1( pdi0 , 0.0 , ri0 , p4i0 ); G4KineticTrack kt2( pdj0 , 0.0 , rj0 , p4j0 ); G4LorentzVector p4ix_new; G4LorentzVector p4jx_new; G4KineticTrackVector* secs = NULL; secs = theScatterer->Scatter( kt1 , kt2 ); //std::cout << "G4QMDSCATTERER BEFORE " << kt1.GetDefinition()->GetParticleName() << " " << kt1.Get4Momentum()/GeV << " " << kt1.GetPosition()/fermi << std::endl; //std::cout << "G4QMDSCATTERER BEFORE " << kt2.GetDefinition()->GetParticleName() << " " << kt2.Get4Momentum()/GeV << " " << kt2.GetPosition()/fermi << std::endl; //std::cout << "THESCATTERER " << theScatterer->GetCrossSection ( kt1 , kt2 )/millibarn << " " << elastic << " " << sig << std::endl; if ( secs ) { G4int iti = 0; if ( secs->size() == 2 ) { for ( G4KineticTrackVector::iterator it = secs->begin() ; it != secs->end() ; it++ ) { if ( iti == 0 ) { theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() ); p4ix_new = (*it)->Get4Momentum()/GeV; //std::cout << "THESCATTERER " << (*it)->GetDefinition()->GetParticleName() << std::endl; theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() ); } if ( iti == 1 ) { theSystem->GetParticipant( j )->SetDefinition( (*it)->GetDefinition() ); p4jx_new = (*it)->Get4Momentum()/GeV; //std::cout << "THESCATTERER " << p4jx_new.e()-p4jx_new.m() << std::endl; theSystem->GetParticipant( j )->SetMomentum( p4jx_new.v() ); } //std::cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << std::endl; iti++; } } else if ( secs->size() == 1 ) { //081118 abs = true; //G4cout << "G4QMDCollision pion absrorption " << secs->front()->GetDefinition()->GetParticleName() << G4endl; //secs->front()->Decay(); theSystem->GetParticipant( i )->SetDefinition( secs->front()->GetDefinition() ); p4ix_new = secs->front()->Get4Momentum()/GeV; theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() ); } //081118 if ( secs->size() > 2 ) { G4cout << "G4QMDCollision secs size > 2; " << secs->size() << G4endl; for ( G4KineticTrackVector::iterator it = secs->begin() ; it != secs->end() ; it++ ) { G4cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << G4endl; } } // deleteing KineticTrack for ( G4KineticTrackVector::iterator it = secs->begin() ; it != secs->end() ; it++ ) { delete *it; } delete secs; } //071031 if ( !abs ) { theMeanField->Cal2BodyQuantities( i ); theMeanField->Cal2BodyQuantities( j ); } else { absorbed = theSystem->EraseParticipant( j ); theMeanField->Update(); } epot = theMeanField->GetTotalPotential(); G4double efin = epot + p4ix_new.e() + p4jx_new.e(); //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - epse << std::endl; /* std::cout << "Collision efin " << i << " " << j << " " << efin << std::endl; std::cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << epse << std::endl; std::cout << "Collision " << std::abs ( eini - efin ) << " " << epse << std::endl; */ //071031 if ( std::abs ( eini - efin ) < epse ) { // Collison OK //std::cout << "collisions6" << std::endl; //std::cout << "collisions before " << p4i << " " << p4j << std::endl; //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl; //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl; //std::cout << "collisions before " << ri0/fermi << " " << rj0/fermi << std::endl; //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl; energyOK = true; break; } else { //G4cout << "Energy Not OK " << G4endl; if ( abs ) { //G4cout << "TKDB reinsert j " << G4endl; theSystem->InsertParticipant( absorbed , j ); theMeanField->Update(); } // do not need reinsert in no absroption case } //071031 } // Energetically forbidden collision if ( energyOK ) { // Pauli Check //G4cout << "Pauli Checking " << theSystem->GetTotalNumberOfParticipant() << G4endl; if ( !abs ) { if ( !( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) ) { //G4cout << "Binary Collision Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl; pauliOK = true; } } else { //if ( theMeanField->IsPauliBlocked ( i ) == false ) //090126 i-1 cause jth is erased if ( theMeanField->IsPauliBlocked ( i-1 ) == false ) { //G4cout << "Absorption Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl; delete absorbed; pauliOK = true; } } if ( pauliOK ) { result = true; } else { //G4cout << "Pauli Blocked" << G4endl; if ( abs ) { //G4cout << "TKDB reinsert j pauli block" << G4endl; theSystem->InsertParticipant( absorbed , j ); theMeanField->Update(); } } } return result; } G4bool G4QMDCollision::CalFinalStateOfTheBinaryCollisionJQMD( G4double sig , G4double cutoff , G4ThreeVector pcm , G4double prcm , G4double srt , G4ThreeVector beta , G4double gamma , G4int i , G4int j ) { //G4cout << "CalFinalStateOfTheBinaryCollisionJQMD" << G4endl; G4bool result = true; G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum(); G4double rmi = theSystem->GetParticipant( i )->GetMass(); G4int zi = theSystem->GetParticipant( i )->GetChargeInUnitOfEplus(); G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum(); G4double rmj = theSystem->GetParticipant( j )->GetMass(); G4int zj = theSystem->GetParticipant( j )->GetChargeInUnitOfEplus(); G4double pr = prcm; G4double c2 = pcm.z()/pr; G4double csrt = srt - cutoff; //G4double pri = prcm; //G4double prf = sqrt ( 0.25 * srt*srt -rm2 ); G4double asrt = srt - rmi - rmj; G4double pra = prcm; G4double elastic = 0.0; if ( zi == zj ) { if ( csrt < 0.4286 ) { elastic = 35.0 / ( 1. + csrt * 100.0 ) + 20.0; } else { elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 ) * 2. / pi + 1.0 ) * 9.65 + 7.0; } } else { if ( csrt < 0.4286 ) { elastic = 28.0 / ( 1. + csrt * 100.0 ) + 27.0; } else { elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 ) * 2. / pi + 1.0 ) * 12.34 + 10.0; } } // std::cout << "Collision csrt " << i << " " << j << " " << csrt << std::endl; // std::cout << "Collision elstic " << i << " " << j << " " << elastic << std::endl; // std::cout << "Collision sig " << i << " " << j << " " << sig << std::endl; if ( G4UniformRand() > elastic / sig ) { //std::cout << "Inelastic " << std::endl; //std::cout << "elastic/sig " << elastic/sig << std::endl; return result; } else { //std::cout << "Elastic " << std::endl; } // std::cout << "Collision ELSTIC " << i << " " << j << std::endl; G4double as = std::pow ( 3.65 * asrt , 6 ); G4double a = 6.0 * as / (1.0 + as); G4double ta = -2.0 * pra*pra; G4double x = G4UniformRand(); G4double t1 = std::log( (1-x) * std::exp(2.*a*ta) + x ) / a; G4double c1 = 1.0 - t1/ta; if( std::abs(c1) > 1.0 ) c1 = 2.0 * x - 1.0; /* std::cout << "Collision as " << i << " " << j << " " << as << std::endl; std::cout << "Collision a " << i << " " << j << " " << a << std::endl; std::cout << "Collision ta " << i << " " << j << " " << ta << std::endl; std::cout << "Collision x " << i << " " << j << " " << x << std::endl; std::cout << "Collision t1 " << i << " " << j << " " << t1 << std::endl; std::cout << "Collision c1 " << i << " " << j << " " << c1 << std::endl; */ t1 = 2.0*pi*G4UniformRand(); // std::cout << "Collision t1 " << i << " " << j << " " << t1 << std::endl; G4double t2 = 0.0; if ( pcm.x() == 0.0 && pcm.y() == 0 ) { t2 = 0.0; } else { t2 = std::atan2( pcm.y() , pcm.x() ); } // std::cout << "Collision t2 " << i << " " << j << " " << t2 << std::endl; G4double s1 = std::sqrt ( 1.0 - c1*c1 ); G4double s2 = std::sqrt ( 1.0 - c2*c2 ); G4double ct1 = std::cos(t1); G4double st1 = std::sin(t1); G4double ct2 = std::cos(t2); G4double st2 = std::sin(t2); G4double ss = c2*s1*ct1 + s2*c1; pcm.setX( pr * ( ss*ct2 - s1*st1*st2) ); pcm.setY( pr * ( ss*st2 + s1*st1*ct2) ); pcm.setZ( pr * ( c1*c2 - s1*s2*ct1) ); // std::cout << "Collision pcm " << i << " " << j << " " << pcm << std::endl; G4double epot = theMeanField->GetTotalPotential(); G4double eini = epot + p4i.e() + p4j.e(); G4double etwo = p4i.e() + p4j.e(); /* std::cout << "Collision epot " << i << " " << j << " " << epot << std::endl; std::cout << "Collision eini " << i << " " << j << " " << eini << std::endl; std::cout << "Collision etwo " << i << " " << j << " " << etwo << std::endl; */ for ( G4int itry = 0 ; itry < 4 ; itry++ ) { G4double eicm = std::sqrt ( rmi*rmi + pcm*pcm ); G4double pibeta = pcm*beta; G4double trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + eicm ); G4ThreeVector pi_new = beta*trans + pcm; G4double ejcm = std::sqrt ( rmj*rmj + pcm*pcm ); trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + ejcm ); G4ThreeVector pj_new = beta*trans - pcm; // // Delete old // Add new Particitipants // // Now only change momentum ( Beacuse we only have elastic sctter of nucleon // In future Definition also will be change // theSystem->GetParticipant( i )->SetMomentum( pi_new ); theSystem->GetParticipant( j )->SetMomentum( pj_new ); G4double pi_new_e = (theSystem->GetParticipant( i )->Get4Momentum()).e(); G4double pj_new_e = (theSystem->GetParticipant( j )->Get4Momentum()).e(); theMeanField->Cal2BodyQuantities( i ); theMeanField->Cal2BodyQuantities( j ); epot = theMeanField->GetTotalPotential(); G4double efin = epot + pi_new_e + pj_new_e ; //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - epse << std::endl; /* std::cout << "Collision efin " << i << " " << j << " " << efin << std::endl; std::cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << epse << std::endl; std::cout << "Collision " << std::abs ( eini - efin ) << " " << epse << std::endl; */ //071031 if ( std::abs ( eini - efin ) < epse ) { // Collison OK //std::cout << "collisions6" << std::endl; //std::cout << "collisions before " << p4i << " " << p4j << std::endl; //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl; //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl; //std::cout << "collisions before " << rix/fermi << " " << rjx/fermi << std::endl; //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl; } //071031 if ( std::abs ( eini - efin ) < epse ) return result; // Collison OK G4double cona = ( eini - efin + etwo ) / gamma; G4double fac2 = 1.0 / ( 4.0 * cona*cona * pr*pr ) * ( ( cona*cona - ( rmi*rmi + rmj*rmj ) )*( cona*cona - ( rmi*rmi + rmj*rmj ) ) - 4.0 * rmi*rmi * rmj*rmj ); if ( fac2 > 0 ) { G4double fact = std::sqrt ( fac2 ); pcm = fact*pcm; } } // Energetically forbidden collision result = false; return result; }