source: trunk/source/processes/hadronic/models/qmd/src/G4QMDReaction.cc@ 1036

Last change on this file since 1036 was 962, checked in by garnier, 17 years ago

update processes

File size: 22.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// 080505 Fixed and changed sampling method of impact parameter by T. Koi
27// 080602 Fix memory leaks by T. Koi
28// 080612 Delete unnecessary dependency and unused functions
29// Change criterion of reaction by T. Koi
30// 081107 Add UnUseGEM (then use the default channel of G4Evaporation)
31// UseFrag (chage criterion of a inelastic reaction)
32// Fix bug in nucleon projectiles by T. Koi
33//
34#include "G4QMDReaction.hh"
35#include "G4QMDNucleus.hh"
36#include "G4QMDGroundStateNucleus.hh"
37
38#include "G4NistManager.hh"
39
40G4QMDReaction::G4QMDReaction()
41: system ( NULL )
42, deltaT ( 1 ) // in fsec
43, maxTime ( 100 ) // will have maxTime-th time step
44, gem ( true )
45, frag ( false )
46{
47 meanField = new G4QMDMeanField();
48 collision = new G4QMDCollision();
49
50 excitationHandler = new G4ExcitationHandler;
51 evaporation = new G4Evaporation;
52 excitationHandler->SetEvaporation( evaporation );
53 setEvaporationCh();
54}
55
56
57
58G4QMDReaction::~G4QMDReaction()
59{
60 delete evaporation;
61 delete excitationHandler;
62 delete collision;
63 delete meanField;
64}
65
66
67
68G4HadFinalState* G4QMDReaction::ApplyYourself( const G4HadProjectile & projectile , G4Nucleus & target )
69{
70 //G4cout << "G4QMDReaction::ApplyYourself" << G4endl;
71
72 theParticleChange.Clear();
73
74 system = new G4QMDSystem;
75
76 G4int proj_Z = 0;
77 G4int proj_A = 0;
78 G4ParticleDefinition* proj_pd = ( G4ParticleDefinition* ) projectile.GetDefinition();
79 if ( proj_pd->GetParticleType() == "nucleus" )
80 {
81 proj_Z = proj_pd->GetAtomicNumber();
82 proj_A = proj_pd->GetAtomicMass();
83 }
84 else
85 {
86 proj_Z = (int)( proj_pd->GetPDGCharge()/eplus );
87 proj_A = 1;
88 }
89 G4int targ_Z = int ( target.GetZ() + 0.5 );
90 G4int targ_A = int ( target.GetN() + 0.5 );
91 G4ParticleDefinition* targ_pd = G4ParticleTable::GetParticleTable()->GetIon( targ_Z , targ_A , 0.0 );
92
93
94 G4NistManager* nistMan = G4NistManager::Instance();
95// G4Element* G4NistManager::FindOrBuildElement( targ_Z );
96
97 const G4DynamicParticle* proj_dp = new G4DynamicParticle ( proj_pd , projectile.Get4Momentum() );
98 const G4Element* targ_ele = nistMan->FindOrBuildElement( targ_Z );
99 G4double aTemp = projectile.GetMaterial()->GetTemperature();
100
101 //G4double xs_0 = shenXS.GetCrossSection ( proj_dp , targ_ele , aTemp );
102 G4double xs_0 = genspaXS.GetCrossSection ( proj_dp , targ_ele , aTemp );
103 G4double bmax_0 = std::sqrt( xs_0 / pi );
104 //std::cout << "bmax_0 in fm (fermi) " << bmax_0/fermi << std::endl;
105
106 //delete proj_dp;
107
108 G4bool elastic = true;
109
110 std::vector< G4QMDNucleus* > nucleuses; // Secondary nuceluses
111 G4ThreeVector boostToReac; // ReactionSystem (CM or NN);
112 G4ThreeVector boostBackToLAB; // Reaction System to LAB;
113
114 G4LorentzVector targ4p( G4ThreeVector( 0.0 ) , targ_pd->GetPDGMass()/GeV );
115 G4ThreeVector boostLABtoCM = targ4p.findBoostToCM( proj_dp->Get4Momentum()/GeV ); // CM of target and proj;
116
117 G4double p1 = proj_dp->GetMomentum().mag()/GeV/proj_A;
118 G4double m1 = proj_dp->GetDefinition()->GetPDGMass()/GeV/proj_A;
119 G4double e1 = std::sqrt( p1*p1 + m1*m1 );
120 G4double e2 = targ_pd->GetPDGMass()/GeV/targ_A;
121 G4double beta_nn = -p1 / ( e1+e2 );
122
123 G4ThreeVector boostLABtoNN ( 0. , 0. , beta_nn ); // CM of NN;
124
125 G4double beta_nncm = ( - boostLABtoCM.beta() + boostLABtoNN.beta() ) / ( 1 - boostLABtoCM.beta() * boostLABtoNN.beta() ) ;
126
127 //std::cout << targ4p << std::endl;
128 //std::cout << proj_dp->Get4Momentum()<< std::endl;
129 //std::cout << beta_nncm << std::endl;
130 G4ThreeVector boostNNtoCM( 0. , 0. , beta_nncm ); //
131 G4ThreeVector boostCMtoNN( 0. , 0. , -beta_nncm ); //
132
133 boostToReac = boostLABtoNN;
134 boostBackToLAB = -boostLABtoNN;
135
136 delete proj_dp;
137
138 while ( elastic )
139 {
140
141// impact parameter
142 G4double bmax = 1.05*(bmax_0/fermi); // 10% for Peripheral reactions
143 G4double b = bmax * std::sqrt ( G4UniformRand() );
144//071112
145 //G4double b = 0;
146 //G4double b = bmax;
147 //G4double b = bmax/1.05 * 0.7 * G4UniformRand();
148
149 //G4cout << "G4QMDRESULT bmax_0 = " << bmax_0/fermi << " fm, bmax = " << bmax << " fm , b = " << b << " fm " << G4endl;
150
151 G4double plab = projectile.GetTotalMomentum()/GeV;
152 G4double elab = (projectile.GetKineticEnergy() + proj_pd->GetPDGMass() + targ_pd->GetPDGMass() )/GeV;
153
154 calcOffSetOfCollision( b , proj_pd , targ_pd , plab , elab , bmax , boostCMtoNN );
155
156// Projectile
157 G4LorentzVector proj4pLAB = projectile.Get4Momentum()/GeV;
158
159 G4QMDGroundStateNucleus* proj(NULL);
160 if ( projectile.GetDefinition()->GetParticleType() == "nucleus"
161 || projectile.GetDefinition()->GetParticleName() == "proton"
162 || projectile.GetDefinition()->GetParticleName() == "neutron" )
163 {
164
165 proj_Z = proj_pd->GetAtomicNumber();
166 proj_A = proj_pd->GetAtomicMass();
167
168 proj = new G4QMDGroundStateNucleus( proj_Z , proj_A );
169 //proj->ShowParticipants();
170
171 }
172
173 meanField->SetSystem ( proj );
174 proj->SetTotalPotential( meanField->GetTotalPotential() );
175 proj->CalEnergyAndAngularMomentumInCM();
176
177// Target
178 G4int iz = int ( target.GetZ() );
179 G4int ia = int ( target.GetN() );
180
181 G4QMDGroundStateNucleus* targ = new G4QMDGroundStateNucleus( iz , ia );
182
183 meanField->SetSystem (targ );
184 targ->SetTotalPotential( meanField->GetTotalPotential() );
185 targ->CalEnergyAndAngularMomentumInCM();
186
187 //G4LorentzVector targ4p( G4ThreeVector( 0.0 ) , targ->GetNuclearMass()/GeV );
188// Boost Vector to CM
189 //boostToCM = targ4p.findBoostToCM( proj4pLAB );
190
191// Target
192 for ( G4int i = 0 ; i < targ->GetTotalNumberOfParticipant() ; i++ )
193 {
194
195 G4ThreeVector p0 = targ->GetParticipant( i )->GetMomentum();
196 G4ThreeVector r0 = targ->GetParticipant( i )->GetPosition();
197
198 G4ThreeVector p ( p0.x() + coulomb_collision_px_targ
199 , p0.y()
200 , p0.z() * coulomb_collision_gamma_targ + coulomb_collision_pz_targ );
201
202 G4ThreeVector r ( r0.x() + coulomb_collision_rx_targ
203 , r0.y()
204 , r0.z() / coulomb_collision_gamma_targ + coulomb_collision_rz_targ );
205
206 system->SetParticipant( new G4QMDParticipant( targ->GetParticipant( i )->GetDefinition() , p , r ) );
207 system->GetParticipant( i )->SetTarget();
208
209 }
210
211 G4LorentzVector proj4pCM = CLHEP::boostOf ( proj4pLAB , boostToReac );
212 G4LorentzVector targ4pCM = CLHEP::boostOf ( targ4p , boostToReac );
213
214
215// Projectile
216 if ( proj != NULL )
217 {
218
219// projectile is nucleus
220
221 for ( G4int i = 0 ; i < proj->GetTotalNumberOfParticipant() ; i++ )
222 {
223
224 G4ThreeVector p0 = proj->GetParticipant( i )->GetMomentum();
225 G4ThreeVector r0 = proj->GetParticipant( i )->GetPosition();
226
227 G4ThreeVector p ( p0.x() + coulomb_collision_px_proj
228 , p0.y()
229 , p0.z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
230
231 G4ThreeVector r ( r0.x() + coulomb_collision_rx_proj
232 , r0.y()
233 , r0.z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
234
235 system->SetParticipant( new G4QMDParticipant( proj->GetParticipant( i )->GetDefinition() , p , r ) );
236 system->GetParticipant ( i + targ->GetTotalNumberOfParticipant() )->SetProjectile();
237 }
238
239 }
240 else
241 {
242
243// projectile is particle
244
245 G4int i = targ->GetTotalNumberOfParticipant();
246
247 G4ThreeVector p0( 0 );
248 G4ThreeVector r0( 0 );
249
250
251 G4ThreeVector p ( p0.x() + coulomb_collision_px_proj
252 , p0.y()
253 , p0.z() * coulomb_collision_gamma_proj + coulomb_collision_pz_proj );
254
255 G4ThreeVector r ( r0.x() + coulomb_collision_rx_proj
256 , r0.y()
257 , r0.z() / coulomb_collision_gamma_proj + coulomb_collision_rz_proj );
258
259 system->SetParticipant( new G4QMDParticipant( (G4ParticleDefinition*)projectile.GetDefinition() , p , r ) );
260 system->GetParticipant ( i )->SetProjectile();
261 }
262
263 delete targ;
264 delete proj;
265
266
267 meanField->SetSystem ( system );
268 collision->SetMeanField ( meanField );
269
270// Time Evolution
271 //std::cout << "Start time evolution " << std::endl;
272 //system->ShowParticipants();
273 for ( G4int i = 0 ; i < maxTime ; i++ )
274 {
275 //G4cout << " do Paropagate " << i << " th time step. " << G4endl;
276 meanField->DoPropagation( deltaT );
277 //system->ShowParticipants();
278 collision->CalKinematicsOfBinaryCollisions( deltaT );
279
280 if ( i / 10 * 10 == i )
281 {
282 //G4cout << i << " th time step. " << G4endl;
283 //system->ShowParticipants();
284 }
285 //system->ShowParticipants();
286 }
287 //system->ShowParticipants();
288
289
290 //std::cout << "Doing Cluster Judgment " << std::endl;
291
292 nucleuses = meanField->DoClusterJudgment();
293
294// Elastic Judgment
295
296 G4int numberOfSecondary = int ( nucleuses.size() ) + system->GetTotalNumberOfParticipant();
297
298 G4int sec_a_Z = 0;
299 G4int sec_a_A = 0;
300 G4ParticleDefinition* sec_a_pd = NULL;
301 G4int sec_b_Z = 0;
302 G4int sec_b_A = 0;
303 G4ParticleDefinition* sec_b_pd = NULL;
304
305 if ( numberOfSecondary == 2 )
306 {
307
308 G4bool elasticLike_system = false;
309 if ( nucleuses.size() == 2 )
310 {
311
312 sec_a_Z = nucleuses[0]->GetAtomicNumber();
313 sec_a_A = nucleuses[0]->GetMassNumber();
314 sec_b_Z = nucleuses[1]->GetAtomicNumber();
315 sec_b_A = nucleuses[1]->GetMassNumber();
316
317 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_Z == targ_Z && sec_b_A == targ_A )
318 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_Z == proj_Z && sec_b_A == proj_A ) )
319 {
320 elasticLike_system = true;
321 }
322
323 }
324 else if ( nucleuses.size() == 1 )
325 {
326
327 sec_a_Z = nucleuses[0]->GetAtomicNumber();
328 sec_a_A = nucleuses[0]->GetMassNumber();
329 sec_b_pd = system->GetParticipant( 0 )->GetDefinition();
330
331 if ( ( sec_a_Z == proj_Z && sec_a_A == proj_A && sec_b_pd == targ_pd )
332 || ( sec_a_Z == targ_Z && sec_a_A == targ_A && sec_b_pd == proj_pd ) )
333 {
334 elasticLike_system = true;
335 }
336
337 }
338 else
339 {
340
341 sec_a_pd = system->GetParticipant( 0 )->GetDefinition();
342 sec_b_pd = system->GetParticipant( 1 )->GetDefinition();
343
344 if ( ( sec_a_pd == proj_pd && sec_b_pd == targ_pd )
345 || ( sec_a_pd == targ_pd && sec_b_pd == proj_pd ) )
346 {
347 elasticLike_system = true;
348 }
349
350 }
351
352 if ( elasticLike_system == true )
353 {
354
355 G4bool elasticLike_energy = true;
356// Cal ExcitationEnergy
357 for ( G4int i = 0 ; i < int ( nucleuses.size() ) ; i++ )
358 {
359
360 //meanField->SetSystem( nucleuses[i] );
361 meanField->SetNucleus( nucleuses[i] );
362 //nucleuses[i]->SetTotalPotential( meanField->GetTotalPotential() );
363 //nucleuses[i]->CalEnergyAndAngularMomentumInCM();
364
365 if ( nucleuses[i]->GetExcitationEnergy()*GeV > 1.0*MeV ) elasticLike_energy = false;
366
367 }
368
369// Check Collision
370 G4bool withCollision = true;
371 if ( system->GetNOCollision() == 0 ) withCollision = false;
372
373// Final judegement for Inelasitc or Elastic;
374//
375// ElasticLike without Collision
376 //if ( elasticLike_energy == true && withCollision == false ) elastic = true; // ielst = 0
377// ElasticLike with Collision
378 //if ( elasticLike_energy == true && withCollision == true ) elastic = true; // ielst = 1
379// InelasticLike without Collision
380 //if ( elasticLike_energy == false ) elastic = false; // ielst = 2
381 if ( frag == true )
382 if ( elasticLike_energy == false ) elastic = false;
383// InelasticLike with Collision
384 if ( elasticLike_energy == false && withCollision == true ) elastic = false; // ielst = 3
385
386 }
387
388 }
389 else
390 {
391
392// numberOfSecondary != 2
393 elastic = false;
394
395 }
396
397//071115
398 //G4cout << elastic << G4endl;
399 // if elastic is true try again from sampling of impact parameter
400
401 if ( elastic == true )
402 {
403 // delete this nucleues
404 for ( std::vector< G4QMDNucleus* >::iterator
405 it = nucleuses.begin() ; it != nucleuses.end() ; it++ )
406 {
407 delete *it;
408 }
409 nucleuses.clear();
410 }
411 }
412
413
414// Statical Decay Phase
415
416 for ( std::vector< G4QMDNucleus* >::iterator it
417 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
418 {
419
420/*
421 std::cout << "G4QMDRESULT "
422 << (*it)->GetAtomicNumber()
423 << " "
424 << (*it)->GetMassNumber()
425 << " "
426 << (*it)->Get4Momentum()
427 << " "
428 << (*it)->Get4Momentum().vect()
429 << " "
430 << (*it)->Get4Momentum().restMass()
431 << " "
432 << (*it)->GetNuclearMass()/GeV
433 << std::endl;
434*/
435
436 meanField->SetNucleus ( *it );
437
438 if ( (*it)->GetAtomicNumber() == 0 // neutron cluster
439 || (*it)->GetAtomicNumber() == (*it)->GetMassNumber() ) // proton cluster
440 {
441 // push back system
442 for ( G4int i = 0 ; i < (*it)->GetTotalNumberOfParticipant() ; i++ )
443 {
444 G4QMDParticipant* aP = new G4QMDParticipant( ( (*it)->GetParticipant( i ) )->GetDefinition() , ( (*it)->GetParticipant( i ) )->GetMomentum() , ( (*it)->GetParticipant( i ) )->GetPosition() );
445 system->SetParticipant ( aP );
446 }
447 continue;
448 }
449
450 G4double nucleus_e = std::sqrt ( std::pow ( (*it)->GetNuclearMass()/GeV , 2 ) + std::pow ( (*it)->Get4Momentum().vect().mag() , 2 ) );
451 G4LorentzVector nucleus_p4CM ( (*it)->Get4Momentum().vect() , nucleus_e );
452
453// std::cout << "G4QMDRESULT nucleus deltaQ " << deltaQ << std::endl;
454
455 G4int ia = (*it)->GetMassNumber();
456 G4int iz = (*it)->GetAtomicNumber();
457
458 G4LorentzVector lv ( G4ThreeVector( 0.0 ) , (*it)->GetExcitationEnergy()*GeV + G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass( iz , ia ) );
459
460 G4Fragment* aFragment = new G4Fragment( ia , iz , lv );
461
462 G4ReactionProductVector* rv;
463 rv = excitationHandler->BreakItUp( *aFragment );
464 G4bool notBreak = true;
465 for ( G4ReactionProductVector::iterator itt
466 = rv->begin() ; itt != rv->end() ; itt++ )
467 {
468
469 notBreak = false;
470 // Secondary from this nucleus (*it)
471 G4ParticleDefinition* pd = (*itt)->GetDefinition();
472 G4LorentzVector p4 ( (*itt)->GetMomentum()/GeV , (*itt)->GetTotalEnergy()/GeV ); //in nucleus(*it) rest system
473 G4LorentzVector p4_CM = CLHEP::boostOf( p4 , -nucleus_p4CM.findBoostToCM() ); // Back to CM
474 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB ); // Back to LAB
475
476 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
477 theParticleChange.AddSecondary( dp );
478
479/*
480 std::cout
481 << "Regist Secondary "
482 << (*itt)->GetDefinition()->GetParticleName()
483 << " "
484 << (*itt)->GetMomentum()/GeV
485 << " "
486 << (*itt)->GetKineticEnergy()/GeV
487 << " "
488 << (*itt)->GetMass()/GeV
489 << " "
490 << (*itt)->GetTotalEnergy()/GeV
491 << " "
492 << (*itt)->GetTotalEnergy()/GeV * (*itt)->GetTotalEnergy()/GeV
493 - (*itt)->GetMomentum()/GeV * (*itt)->GetMomentum()/GeV
494 << " "
495 << nucleus_p4CM.findBoostToCM()
496 << " "
497 << p4
498 << " "
499 << p4_CM
500 << " "
501 << p4_LAB
502 << std::endl;
503*/
504
505 }
506 if ( notBreak == true )
507 {
508
509 G4ParticleDefinition* pd = G4ParticleTable::GetParticleTable()->GetIon( (*it)->GetAtomicNumber() , (*it)->GetMassNumber(), (*it)->GetExcitationEnergy()*GeV );
510 G4LorentzVector p4_CM = nucleus_p4CM;
511 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB ); // Back to LAB
512 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
513 theParticleChange.AddSecondary( dp );
514
515 }
516
517 for ( G4ReactionProductVector::iterator itt
518 = rv->begin() ; itt != rv->end() ; itt++ )
519 {
520 delete *itt;
521 }
522 delete rv;
523
524 delete aFragment;
525
526 }
527
528
529
530 for ( G4int i = 0 ; i < system->GetTotalNumberOfParticipant() ; i++ )
531 {
532
533 // Secondary particles
534
535 G4ParticleDefinition* pd = system->GetParticipant( i )->GetDefinition();
536 G4LorentzVector p4_CM = system->GetParticipant( i )->Get4Momentum();
537 G4LorentzVector p4_LAB = CLHEP::boostOf( p4_CM , boostBackToLAB );
538 G4DynamicParticle* dp = new G4DynamicParticle( pd , p4_LAB*GeV );
539 theParticleChange.AddSecondary( dp );
540
541/*
542 G4cout << "G4QMDRESULT "
543 << "r" << i << " " << system->GetParticipant ( i ) -> GetPosition() << " "
544 << "p" << i << " " << system->GetParticipant ( i ) -> Get4Momentum()
545 << G4endl;
546*/
547
548 }
549
550 for ( std::vector< G4QMDNucleus* >::iterator it
551 = nucleuses.begin() ; it != nucleuses.end() ; it++ )
552 {
553 delete *it; // delete nulceuse
554 }
555 nucleuses.clear();
556
557 system->Clear();
558 delete system;
559
560 theParticleChange.SetStatusChange( stopAndKill );
561
562 return &theParticleChange;
563
564}
565
566
567
568void G4QMDReaction::calcOffSetOfCollision( G4double b ,
569G4ParticleDefinition* pd_proj ,
570G4ParticleDefinition* pd_targ ,
571G4double ptot , G4double etot , G4double bmax , G4ThreeVector boostToCM )
572{
573 G4double mass_proj = pd_proj->GetPDGMass()/GeV;
574 G4double mass_targ = pd_targ->GetPDGMass()/GeV;
575
576 G4double stot = std::sqrt ( etot*etot - ptot*ptot );
577
578 G4double pstt = std::sqrt ( ( stot*stot - ( mass_proj + mass_targ ) * ( mass_proj + mass_targ )
579 ) * ( stot*stot - ( mass_proj - mass_targ ) * ( mass_proj - mass_targ ) ) )
580 / ( 2.0 * stot );
581
582 G4double pzcc = pstt;
583 G4double eccm = stot - ( mass_proj + mass_targ );
584
585 G4int zp = pd_proj->GetAtomicNumber();
586 G4int ap = pd_proj->GetAtomicMass();
587 G4int zt = pd_targ->GetAtomicNumber();
588 G4int at = pd_targ->GetAtomicMass();
589
590 //G4double rmax0 = 8.0; // T.K dicide parameter value // for low energy
591 G4double rmax0 = bmax + 4.0;
592 G4double rmax = std::sqrt( rmax0*rmax0 + b*b );
593
594 G4double ccoul = 0.001439767;
595 G4double pcca = 1.0 - double ( zp * zt ) * ccoul / eccm / rmax - ( b / rmax )*( b / rmax );
596
597 G4double pccf = std::sqrt( pcca );
598
599 G4double aas = 2.0 * eccm * b / double ( zp * zt ) / ccoul;
600 G4double bbs = 1.0 / std::sqrt ( 1.0 + aas*aas );
601 G4double aas1 = ( 1.0 + aas * b / rmax ) * bbs;
602
603 G4double cost = 0.0;
604 G4double sint = 0.0;
605 G4double thet1 = 0.0;
606 G4double thet2 = 0.0;
607 if ( 1.0 - aas1*aas1 <= 0 || 1.0 - bbs*bbs <= 0.0 )
608 {
609 cost = 1.0;
610 sint = 0.0;
611 }
612 else
613 {
614 G4double aat1 = aas1 / std::sqrt ( 1.0 - aas1*aas1 );
615 G4double aat2 = bbs / std::sqrt ( 1.0 - bbs*bbs );
616
617 thet1 = std::atan ( aat1 );
618 thet2 = std::atan ( aat2 );
619
620// TK enter to else block
621 G4double theta = thet1 - thet2;
622 cost = std::cos( theta );
623 sint = std::sin( theta );
624 }
625
626 G4double rzpr = -rmax * cost * ( mass_targ ) / ( mass_proj + mass_targ );
627 G4double rzta = rmax * cost * ( mass_proj ) / ( mass_proj + mass_targ );
628
629 G4double rxpr = rmax / 2.0 * sint;
630
631 G4double rxta = -rxpr;
632
633
634 G4double pzpc = pzcc * ( cost * pccf + sint * b / rmax );
635 G4double pxpr = pzcc * ( -sint * pccf + cost * b / rmax );
636
637 G4double pztc = - pzpc;
638 G4double pxta = - pxpr;
639
640 G4double epc = std::sqrt ( pzpc*pzpc + pxpr*pxpr + mass_proj*mass_proj );
641 G4double etc = std::sqrt ( pztc*pztc + pxta*pxta + mass_targ*mass_targ );
642
643 G4double pzpr = pzpc;
644 G4double pzta = pztc;
645 G4double epr = epc;
646 G4double eta = etc;
647
648// CM -> NN
649 G4double gammacm = boostToCM.gamma();
650 //G4double betacm = -boostToCM.beta();
651 G4double betacm = boostToCM.z();
652 pzpr = pzpc + betacm * gammacm * ( gammacm / ( 1. + gammacm ) * pzpc * betacm + epc );
653 pzta = pztc + betacm * gammacm * ( gammacm / ( 1. + gammacm ) * pztc * betacm + etc );
654 epr = gammacm * ( epc + betacm * pzpc );
655 eta = gammacm * ( etc + betacm * pztc );
656
657 //G4double betpr = pzpr / epr;
658 //G4double betta = pzta / eta;
659
660 G4double gammpr = epr / ( mass_proj );
661 G4double gammta = eta / ( mass_targ );
662
663 pzta = pzta / double ( at );
664 pxta = pxta / double ( at );
665
666 pzpr = pzpr / double ( ap );
667 pxpr = pxpr / double ( ap );
668
669 G4double zeroz = 0.0;
670
671 rzpr = rzpr -zeroz;
672 rzta = rzta -zeroz;
673
674 // Set results
675 coulomb_collision_gamma_proj = gammpr;
676 coulomb_collision_rx_proj = rxpr;
677 coulomb_collision_rz_proj = rzpr;
678 coulomb_collision_px_proj = pxpr;
679 coulomb_collision_pz_proj = pzpr;
680
681 coulomb_collision_gamma_targ = gammta;
682 coulomb_collision_rx_targ = rxta;
683 coulomb_collision_rz_targ = rzta;
684 coulomb_collision_px_targ = pxta;
685 coulomb_collision_pz_targ = pzta;
686
687}
688
689
690
691void G4QMDReaction::setEvaporationCh()
692{
693
694 if ( gem == true )
695 evaporation->SetGEMChannel();
696 else
697 evaporation->SetDefaultChannel();
698
699}
700
Note: See TracBrowser for help on using the repository browser.