| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4RPGFragmentation.cc,v 1.6 2008/06/09 18:13:16 dennis Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03 $
|
|---|
| 28 | //
|
|---|
| 29 |
|
|---|
| 30 | #include "G4RPGFragmentation.hh"
|
|---|
| 31 | #include "G4AntiProton.hh"
|
|---|
| 32 | #include "G4AntiNeutron.hh"
|
|---|
| 33 | #include "Randomize.hh"
|
|---|
| 34 | #include "G4Poisson.hh"
|
|---|
| 35 | #include <iostream>
|
|---|
| 36 | #include "G4HadReentrentException.hh"
|
|---|
| 37 | #include <signal.h>
|
|---|
| 38 |
|
|---|
| 39 |
|
|---|
| 40 | G4RPGFragmentation::G4RPGFragmentation()
|
|---|
| 41 | : G4RPGReaction() {}
|
|---|
| 42 |
|
|---|
| 43 |
|
|---|
| 44 | void G4RPGFragmentation::
|
|---|
| 45 | FragmentationIntegral(G4double pt, G4double et, G4double parMass, G4double secMass)
|
|---|
| 46 | {
|
|---|
| 47 | pt = std::max( 0.001, pt );
|
|---|
| 48 | G4double dx = 1./(19.*pt);
|
|---|
| 49 | G4double x;
|
|---|
| 50 | G4double term1;
|
|---|
| 51 | G4double term2;
|
|---|
| 52 |
|
|---|
| 53 | for (G4int i = 1; i < 20; i++) {
|
|---|
| 54 | x = (G4double(i) - 0.5)*dx;
|
|---|
| 55 | term1 = 1. + parMass*parMass*x*x;
|
|---|
| 56 | term2 = pt*x*et*pt*x*et + pt*pt + secMass*secMass;
|
|---|
| 57 | dndl[i] = dx / std::sqrt( term1*term1*term1*term2 )
|
|---|
| 58 | + dndl[i-1];
|
|---|
| 59 | }
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 |
|
|---|
| 63 | G4bool G4RPGFragmentation::
|
|---|
| 64 | ReactionStage(const G4HadProjectile* originalIncident,
|
|---|
| 65 | G4ReactionProduct& modifiedOriginal,
|
|---|
| 66 | G4bool& incidentHasChanged,
|
|---|
| 67 | const G4DynamicParticle* originalTarget,
|
|---|
| 68 | G4ReactionProduct& targetParticle,
|
|---|
| 69 | G4bool& targetHasChanged,
|
|---|
| 70 | const G4Nucleus& targetNucleus,
|
|---|
| 71 | G4ReactionProduct& currentParticle,
|
|---|
| 72 | G4FastVector<G4ReactionProduct,256>& vec,
|
|---|
| 73 | G4int& vecLen,
|
|---|
| 74 | G4bool leadFlag,
|
|---|
| 75 | G4ReactionProduct& leadingStrangeParticle)
|
|---|
| 76 | {
|
|---|
| 77 | //
|
|---|
| 78 | // Based on H. Fesefeldt's original FORTRAN code GENXPT
|
|---|
| 79 | //
|
|---|
| 80 | // Generation of x- and pT- values for incident, target, and all secondary
|
|---|
| 81 | // particles using a simple single variable description E D3S/DP3= F(Q)
|
|---|
| 82 | // with Q^2 = (M*X)^2 + PT^2. Final state kinematics are produced by an
|
|---|
| 83 | // FF-type iterative cascade method
|
|---|
| 84 | //
|
|---|
| 85 | // Internal units are GeV
|
|---|
| 86 | //
|
|---|
| 87 |
|
|---|
| 88 | // Protection in case no secondary has been created. In that case use
|
|---|
| 89 | // two-body scattering
|
|---|
| 90 | //
|
|---|
| 91 | if (vecLen == 0) return false;
|
|---|
| 92 |
|
|---|
| 93 | G4ParticleDefinition* aPiMinus = G4PionMinus::PionMinus();
|
|---|
| 94 | G4ParticleDefinition* aProton = G4Proton::Proton();
|
|---|
| 95 | G4ParticleDefinition* aNeutron = G4Neutron::Neutron();
|
|---|
| 96 | G4ParticleDefinition* aPiPlus = G4PionPlus::PionPlus();
|
|---|
| 97 | G4ParticleDefinition* aPiZero = G4PionZero::PionZero();
|
|---|
| 98 |
|
|---|
| 99 | G4int i, l;
|
|---|
| 100 | G4bool veryForward = false;
|
|---|
| 101 |
|
|---|
| 102 | const G4double ekOriginal = modifiedOriginal.GetKineticEnergy()/GeV;
|
|---|
| 103 | const G4double etOriginal = modifiedOriginal.GetTotalEnergy()/GeV;
|
|---|
| 104 | const G4double mOriginal = modifiedOriginal.GetMass()/GeV;
|
|---|
| 105 | const G4double pOriginal = modifiedOriginal.GetMomentum().mag()/GeV;
|
|---|
| 106 | G4double targetMass = targetParticle.GetDefinition()->GetPDGMass()/GeV;
|
|---|
| 107 | G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
|
|---|
| 108 | targetMass*targetMass +
|
|---|
| 109 | 2.0*targetMass*etOriginal ); // GeV
|
|---|
| 110 | G4double currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 111 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 112 |
|
|---|
| 113 | // Randomize the order of the secondary particles.
|
|---|
| 114 | // Note that the current and target particles are not affected.
|
|---|
| 115 |
|
|---|
| 116 | for (i=0; i<vecLen; ++i) {
|
|---|
| 117 | G4int itemp = G4int( G4UniformRand()*vecLen );
|
|---|
| 118 | G4ReactionProduct pTemp = *vec[itemp];
|
|---|
| 119 | *vec[itemp] = *vec[i];
|
|---|
| 120 | *vec[i] = pTemp;
|
|---|
| 121 | }
|
|---|
| 122 |
|
|---|
| 123 | if (currentMass == 0.0 && targetMass == 0.0) {
|
|---|
| 124 | // Target and projectile have annihilated. Replace them with the first
|
|---|
| 125 | // two secondaries in the list. Current particle KE is maintained.
|
|---|
| 126 |
|
|---|
| 127 | G4double ek = currentParticle.GetKineticEnergy();
|
|---|
| 128 | G4ThreeVector m = currentParticle.GetMomentum();
|
|---|
| 129 | currentParticle = *vec[0];
|
|---|
| 130 | currentParticle.SetSide(1);
|
|---|
| 131 | targetParticle = *vec[1];
|
|---|
| 132 | targetParticle.SetSide(-1);
|
|---|
| 133 | for( i=0; i<(vecLen-2); ++i )*vec[i] = *vec[i+2];
|
|---|
| 134 | G4ReactionProduct *temp = vec[vecLen-1];
|
|---|
| 135 | delete temp;
|
|---|
| 136 | temp = vec[vecLen-2];
|
|---|
| 137 | delete temp;
|
|---|
| 138 | vecLen -= 2;
|
|---|
| 139 | currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 140 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 141 | incidentHasChanged = true;
|
|---|
| 142 | targetHasChanged = true;
|
|---|
| 143 | currentParticle.SetKineticEnergy( ek );
|
|---|
| 144 | currentParticle.SetMomentum( m );
|
|---|
| 145 | veryForward = true;
|
|---|
| 146 | }
|
|---|
| 147 | const G4double atomicWeight = targetNucleus.GetN();
|
|---|
| 148 | const G4double atomicNumber = targetNucleus.GetZ();
|
|---|
| 149 | const G4double protonMass = aProton->GetPDGMass();
|
|---|
| 150 |
|
|---|
| 151 | if (originalIncident->GetDefinition()->GetParticleSubType() == "kaon"
|
|---|
| 152 | && G4UniformRand() >= 0.7) {
|
|---|
| 153 | G4ReactionProduct temp = currentParticle;
|
|---|
| 154 | currentParticle = targetParticle;
|
|---|
| 155 | targetParticle = temp;
|
|---|
| 156 | incidentHasChanged = true;
|
|---|
| 157 | targetHasChanged = true;
|
|---|
| 158 | currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 159 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 160 | }
|
|---|
| 161 | const G4double afc = std::min( 0.75,
|
|---|
| 162 | 0.312+0.200*std::log(std::log(centerofmassEnergy*centerofmassEnergy))+
|
|---|
| 163 | std::pow(centerofmassEnergy*centerofmassEnergy,1.5)/6000.0 );
|
|---|
| 164 |
|
|---|
| 165 | G4double freeEnergy = centerofmassEnergy-currentMass-targetMass;
|
|---|
| 166 | G4double forwardEnergy = freeEnergy/2.;
|
|---|
| 167 | G4int forwardCount = 1; // number of particles in forward hemisphere
|
|---|
| 168 |
|
|---|
| 169 | G4double backwardEnergy = freeEnergy/2.;
|
|---|
| 170 | G4int backwardCount = 1; // number of particles in backward hemisphere
|
|---|
| 171 |
|
|---|
| 172 | if(veryForward) {
|
|---|
| 173 | if(currentParticle.GetSide()==-1)
|
|---|
| 174 | {
|
|---|
| 175 | forwardEnergy += currentMass;
|
|---|
| 176 | forwardCount --;
|
|---|
| 177 | backwardEnergy -= currentMass;
|
|---|
| 178 | backwardCount ++;
|
|---|
| 179 | }
|
|---|
| 180 | if(targetParticle.GetSide()!=-1)
|
|---|
| 181 | {
|
|---|
| 182 | backwardEnergy += targetMass;
|
|---|
| 183 | backwardCount --;
|
|---|
| 184 | forwardEnergy -= targetMass;
|
|---|
| 185 | forwardCount ++;
|
|---|
| 186 | }
|
|---|
| 187 | }
|
|---|
| 188 |
|
|---|
| 189 | for (i=0; i<vecLen; ++i) {
|
|---|
| 190 | if( vec[i]->GetSide() == -1 )
|
|---|
| 191 | {
|
|---|
| 192 | ++backwardCount;
|
|---|
| 193 | backwardEnergy -= vec[i]->GetMass()/GeV;
|
|---|
| 194 | } else {
|
|---|
| 195 | ++forwardCount;
|
|---|
| 196 | forwardEnergy -= vec[i]->GetMass()/GeV;
|
|---|
| 197 | }
|
|---|
| 198 | }
|
|---|
| 199 |
|
|---|
| 200 | // Check that sum of forward particle masses does not exceed forwardEnergy,
|
|---|
| 201 | // and similarly for backward particles. If so, move particles from one
|
|---|
| 202 | // hemisphere to another.
|
|---|
| 203 |
|
|---|
| 204 | if (backwardEnergy < 0.0) {
|
|---|
| 205 | for (i = 0; i < vecLen; ++i) {
|
|---|
| 206 | if (vec[i]->GetSide() == -1) {
|
|---|
| 207 | backwardEnergy += vec[i]->GetMass()/GeV;
|
|---|
| 208 | --backwardCount;
|
|---|
| 209 | vec[i]->SetSide(1);
|
|---|
| 210 | forwardEnergy -= vec[i]->GetMass()/GeV;
|
|---|
| 211 | ++forwardCount;
|
|---|
| 212 | if (backwardEnergy > 0.0) break;
|
|---|
| 213 | }
|
|---|
| 214 | }
|
|---|
| 215 | }
|
|---|
| 216 |
|
|---|
| 217 | if (forwardEnergy < 0.0) {
|
|---|
| 218 | for (i = 0; i < vecLen; ++i) {
|
|---|
| 219 | if (vec[i]->GetSide() == 1) {
|
|---|
| 220 | forwardEnergy += vec[i]->GetMass()/GeV;
|
|---|
| 221 | --forwardCount;
|
|---|
| 222 | vec[i]->SetSide(-1);
|
|---|
| 223 | backwardEnergy -= vec[i]->GetMass()/GeV;
|
|---|
| 224 | ++backwardCount;
|
|---|
| 225 | if (forwardEnergy > 0.0) break;
|
|---|
| 226 | }
|
|---|
| 227 | }
|
|---|
| 228 | }
|
|---|
| 229 |
|
|---|
| 230 | // Special cases for reactions near threshold
|
|---|
| 231 |
|
|---|
| 232 | // 1. There is only one secondary
|
|---|
| 233 | if (forwardEnergy > 0.0 && backwardEnergy < 0.0) {
|
|---|
| 234 | forwardEnergy += backwardEnergy;
|
|---|
| 235 | backwardEnergy = 0;
|
|---|
| 236 | }
|
|---|
| 237 |
|
|---|
| 238 | // 2. Nuclear binding energy is large
|
|---|
| 239 | if (forwardEnergy + backwardEnergy < 0.0) return false;
|
|---|
| 240 |
|
|---|
| 241 |
|
|---|
| 242 | // forwardEnergy now represents the total energy in the forward reaction
|
|---|
| 243 | // hemisphere which is available for kinetic energy and particle creation.
|
|---|
| 244 | // Similarly for backwardEnergy.
|
|---|
| 245 |
|
|---|
| 246 | // Add particles from the intranuclear cascade.
|
|---|
| 247 | // nuclearExcitationCount = number of new secondaries produced by nuclear
|
|---|
| 248 | // excitation
|
|---|
| 249 | // extraCount = number of nucleons within these new secondaries
|
|---|
| 250 | //
|
|---|
| 251 | // Note: eventually have to make sure that enough nucleons are available
|
|---|
| 252 | // in the case of small target nuclei
|
|---|
| 253 |
|
|---|
| 254 | G4double xtarg;
|
|---|
| 255 | if( centerofmassEnergy < (2.0+G4UniformRand()) )
|
|---|
| 256 | xtarg = afc * (std::pow(atomicWeight,0.33)-1.0) * (2.0*backwardCount+vecLen+2)/2.0;
|
|---|
| 257 | else
|
|---|
| 258 | xtarg = afc * (std::pow(atomicWeight,0.33)-1.0) * (2.0*backwardCount);
|
|---|
| 259 | if( xtarg <= 0.0 )xtarg = 0.01;
|
|---|
| 260 | G4int nuclearExcitationCount = G4Poisson( xtarg );
|
|---|
| 261 | // To do: try reducing nuclearExcitationCount with increasing energy
|
|---|
| 262 | // to simulate cut-off of cascade
|
|---|
| 263 | if(atomicWeight<1.0001) nuclearExcitationCount = 0;
|
|---|
| 264 | G4int extraNucleonCount = 0;
|
|---|
| 265 | G4double extraNucleonMass = 0.0;
|
|---|
| 266 |
|
|---|
| 267 | if (nuclearExcitationCount > 0) {
|
|---|
| 268 | const G4double nucsup[] = { 1.00, 0.7, 0.5, 0.4, 0.35, 0.3 };
|
|---|
| 269 | const G4double psup[] = { 3., 6., 20., 50., 100., 1000. };
|
|---|
| 270 | G4int momentumBin = 0;
|
|---|
| 271 | while( (momentumBin < 6) &&
|
|---|
| 272 | (modifiedOriginal.GetTotalMomentum()/GeV > psup[momentumBin]) )
|
|---|
| 273 | ++momentumBin;
|
|---|
| 274 | momentumBin = std::min( 5, momentumBin );
|
|---|
| 275 |
|
|---|
| 276 | // NOTE: in GENXPT, these new particles were given negative codes
|
|---|
| 277 | // here I use NewlyAdded = true instead
|
|---|
| 278 | //
|
|---|
| 279 |
|
|---|
| 280 | for (i = 0; i < nuclearExcitationCount; ++i) {
|
|---|
| 281 | G4ReactionProduct * pVec = new G4ReactionProduct();
|
|---|
| 282 | if (G4UniformRand() < nucsup[momentumBin]) {
|
|---|
| 283 |
|
|---|
| 284 | if (G4UniformRand() > 1.0-atomicNumber/atomicWeight)
|
|---|
| 285 | pVec->SetDefinition( aProton );
|
|---|
| 286 | else
|
|---|
| 287 | pVec->SetDefinition( aNeutron );
|
|---|
| 288 |
|
|---|
| 289 | // nucleon comes from nucleus -
|
|---|
| 290 | // do not subtract its mass from backward energy
|
|---|
| 291 | pVec->SetSide( -2 ); // -2 means backside nucleon
|
|---|
| 292 | ++extraNucleonCount;
|
|---|
| 293 | extraNucleonMass += pVec->GetMass()/GeV;
|
|---|
| 294 | // To do: Remove chosen nucleon from target nucleus
|
|---|
| 295 | pVec->SetNewlyAdded( true );
|
|---|
| 296 | vec.SetElement( vecLen++, pVec );
|
|---|
| 297 | ++backwardCount;
|
|---|
| 298 |
|
|---|
| 299 | } else {
|
|---|
| 300 |
|
|---|
| 301 | G4double ran = G4UniformRand();
|
|---|
| 302 | if( ran < 0.3181 )
|
|---|
| 303 | pVec->SetDefinition( aPiPlus );
|
|---|
| 304 | else if( ran < 0.6819 )
|
|---|
| 305 | pVec->SetDefinition( aPiZero );
|
|---|
| 306 | else
|
|---|
| 307 | pVec->SetDefinition( aPiMinus );
|
|---|
| 308 |
|
|---|
| 309 | if (backwardEnergy > pVec->GetMass()/GeV) {
|
|---|
| 310 | backwardEnergy -= pVec->GetMass()/GeV; // pion mass comes from free energy
|
|---|
| 311 | ++backwardCount;
|
|---|
| 312 | pVec->SetSide( -1 ); // backside particle, but not a nucleon
|
|---|
| 313 | pVec->SetNewlyAdded( true );
|
|---|
| 314 | vec.SetElement( vecLen++, pVec );
|
|---|
| 315 | }
|
|---|
| 316 |
|
|---|
| 317 | // To do: Change proton to neutron (or vice versa) in target nucleus depending
|
|---|
| 318 | // on pion charge
|
|---|
| 319 | }
|
|---|
| 320 | }
|
|---|
| 321 | }
|
|---|
| 322 |
|
|---|
| 323 | // Define initial state vectors for Lorentz transformations
|
|---|
| 324 | // The pseudoParticles have non-standard masses, hence the "pseudo"
|
|---|
| 325 |
|
|---|
| 326 | G4ReactionProduct pseudoParticle[8];
|
|---|
| 327 | for (i = 0; i < 8; ++i) pseudoParticle[i].SetZero();
|
|---|
| 328 |
|
|---|
| 329 | pseudoParticle[0].SetMass( mOriginal*GeV );
|
|---|
| 330 | pseudoParticle[0].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 331 | pseudoParticle[0].SetTotalEnergy(
|
|---|
| 332 | std::sqrt( pOriginal*pOriginal + mOriginal*mOriginal )*GeV );
|
|---|
| 333 |
|
|---|
| 334 | pseudoParticle[1].SetMass(protonMass); // this could be targetMass
|
|---|
| 335 | pseudoParticle[1].SetTotalEnergy(protonMass);
|
|---|
| 336 |
|
|---|
| 337 | pseudoParticle[3].SetMass(protonMass*(1+extraNucleonCount) );
|
|---|
| 338 | pseudoParticle[3].SetTotalEnergy(protonMass*(1+extraNucleonCount) );
|
|---|
| 339 |
|
|---|
| 340 | pseudoParticle[2] = pseudoParticle[0] + pseudoParticle[1];
|
|---|
| 341 | pseudoParticle[3] = pseudoParticle[3] + pseudoParticle[0];
|
|---|
| 342 |
|
|---|
| 343 | pseudoParticle[0].Lorentz( pseudoParticle[0], pseudoParticle[2] );
|
|---|
| 344 | pseudoParticle[1].Lorentz( pseudoParticle[1], pseudoParticle[2] );
|
|---|
| 345 |
|
|---|
| 346 | // Main loop for 4-momentum generation
|
|---|
| 347 | // See Pitha-report (Aachen) for a detailed description of the method
|
|---|
| 348 |
|
|---|
| 349 | G4double aspar, pt, et, x, pp, pp1, wgt;
|
|---|
| 350 | G4int innerCounter, outerCounter;
|
|---|
| 351 | G4bool eliminateThisParticle, resetEnergies, constantCrossSection;
|
|---|
| 352 |
|
|---|
| 353 | G4double forwardKinetic = 0.0;
|
|---|
| 354 | G4double backwardKinetic = 0.0;
|
|---|
| 355 |
|
|---|
| 356 | // Process the secondary particles in reverse order
|
|---|
| 357 | // The incident particle is done after the secondaries
|
|---|
| 358 | // Nucleons, including the target, in the backward hemisphere are also
|
|---|
| 359 | // done later
|
|---|
| 360 |
|
|---|
| 361 | G4int backwardNucleonCount = 0; // number of nucleons in backward hemisphere
|
|---|
| 362 | G4double totalEnergy, kineticEnergy, vecMass;
|
|---|
| 363 | G4double phi;
|
|---|
| 364 |
|
|---|
| 365 | for (i = vecLen-1; i >= 0; --i) {
|
|---|
| 366 |
|
|---|
| 367 | if (vec[i]->GetNewlyAdded()) { // added from intranuclear cascade
|
|---|
| 368 | if (vec[i]->GetSide() == -2) { // its a nucleon
|
|---|
| 369 | if (backwardNucleonCount < 18) {
|
|---|
| 370 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 371 | for(G4int i=0; i<vecLen; i++) delete vec[i];
|
|---|
| 372 | vecLen = 0;
|
|---|
| 373 | throw G4HadReentrentException(__FILE__, __LINE__,
|
|---|
| 374 | "G4RPGFragmentation::ReactionStage : a pion has been counted as a backward nucleon");
|
|---|
| 375 | }
|
|---|
| 376 | vec[i]->SetSide(-3);
|
|---|
| 377 | ++backwardNucleonCount;
|
|---|
| 378 | continue; // Don't generate momenta for the first 17 backward
|
|---|
| 379 | // cascade nucleons. This gets done by the cluster
|
|---|
| 380 | // model later on.
|
|---|
| 381 | }
|
|---|
| 382 | }
|
|---|
| 383 | }
|
|---|
| 384 |
|
|---|
| 385 | // Set pt and phi values, they are changed somewhat in the iteration loop
|
|---|
| 386 | // Set mass parameter for lambda fragmentation model
|
|---|
| 387 |
|
|---|
| 388 | vecMass = vec[i]->GetMass()/GeV;
|
|---|
| 389 | G4double ran = -std::log(1.0-G4UniformRand())/3.5;
|
|---|
| 390 |
|
|---|
| 391 | if (vec[i]->GetSide() == -2) { // backward nucleon
|
|---|
| 392 | aspar = 0.20;
|
|---|
| 393 | pt = std::sqrt( std::pow( ran, 1.2 ) );
|
|---|
| 394 |
|
|---|
| 395 | } else { // not a backward nucleon
|
|---|
| 396 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 397 | aspar = 0.75;
|
|---|
| 398 | pt = std::sqrt( std::pow( ran, 1.7 ) );
|
|---|
| 399 | } else if (vec[i]->GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 400 | aspar = 0.70;
|
|---|
| 401 | pt = std::sqrt( std::pow( ran, 1.7 ) );
|
|---|
| 402 | } else { // vec[i] must be a baryon or ion
|
|---|
| 403 | aspar = 0.65;
|
|---|
| 404 | pt = std::sqrt( std::pow( ran, 1.5 ) );
|
|---|
| 405 | }
|
|---|
| 406 | }
|
|---|
| 407 |
|
|---|
| 408 | pt = std::max( 0.001, pt );
|
|---|
| 409 | phi = G4UniformRand()*twopi;
|
|---|
| 410 | vec[i]->SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 411 | if (vec[i]->GetSide() > 0)
|
|---|
| 412 | et = pseudoParticle[0].GetTotalEnergy()/GeV;
|
|---|
| 413 | else
|
|---|
| 414 | et = pseudoParticle[1].GetTotalEnergy()/GeV;
|
|---|
| 415 |
|
|---|
| 416 | //
|
|---|
| 417 | // Start of outer iteration loop
|
|---|
| 418 | //
|
|---|
| 419 | outerCounter = 0;
|
|---|
| 420 | eliminateThisParticle = true;
|
|---|
| 421 | resetEnergies = true;
|
|---|
| 422 | dndl[0] = 0.0;
|
|---|
| 423 |
|
|---|
| 424 | while (++outerCounter < 3) {
|
|---|
| 425 |
|
|---|
| 426 | FragmentationIntegral(pt, et, aspar, vecMass);
|
|---|
| 427 | innerCounter = 0;
|
|---|
| 428 | vec[i]->SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 429 |
|
|---|
| 430 | // Start of inner iteration loop
|
|---|
| 431 |
|
|---|
| 432 | while (++innerCounter < 7) {
|
|---|
| 433 |
|
|---|
| 434 | ran = G4UniformRand()*dndl[19];
|
|---|
| 435 | l = 1;
|
|---|
| 436 | while( ( ran > dndl[l] ) && ( l < 19 ) ) l++;
|
|---|
| 437 | x = (G4double(l-1) + G4UniformRand())/19.;
|
|---|
| 438 | if (vec[i]->GetSide() < 0) x *= -1.;
|
|---|
| 439 | vec[i]->SetMomentum( x*et*GeV ); // set the z-momentum
|
|---|
| 440 | totalEnergy = std::sqrt( x*et*x*et + pt*pt + vecMass*vecMass );
|
|---|
| 441 | vec[i]->SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 442 | kineticEnergy = vec[i]->GetKineticEnergy()/GeV;
|
|---|
| 443 |
|
|---|
| 444 | if (vec[i]->GetSide() > 0) { // forward side
|
|---|
| 445 | if( (forwardKinetic+kineticEnergy) < 0.95*forwardEnergy ) {
|
|---|
| 446 | // Leave at least 5% of the forward free energy for the projectile
|
|---|
| 447 |
|
|---|
| 448 | pseudoParticle[4] = pseudoParticle[4] + (*vec[i]);
|
|---|
| 449 | forwardKinetic += kineticEnergy;
|
|---|
| 450 | outerCounter = 2; // leave outer loop
|
|---|
| 451 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 452 | resetEnergies = false;
|
|---|
| 453 | break; // leave inner loop
|
|---|
| 454 | }
|
|---|
| 455 | if( innerCounter > 5 )break; // leave inner loop
|
|---|
| 456 | if( backwardEnergy >= vecMass ) // switch sides
|
|---|
| 457 | {
|
|---|
| 458 | vec[i]->SetSide(-1);
|
|---|
| 459 | forwardEnergy += vecMass;
|
|---|
| 460 | backwardEnergy -= vecMass;
|
|---|
| 461 | ++backwardCount;
|
|---|
| 462 | }
|
|---|
| 463 | } else { // backward side
|
|---|
| 464 | // if (extraNucleonCount > 19) x = 0.999;
|
|---|
| 465 | // G4double xxx = 0.95+0.05*extraNucleonCount/20.0;
|
|---|
| 466 | // DHW: I think above lines were meant to be as follows:
|
|---|
| 467 | G4double xxx = 0.999;
|
|---|
| 468 | if (extraNucleonCount < 20) xxx = 0.95+0.05*extraNucleonCount/20.0;
|
|---|
| 469 |
|
|---|
| 470 | if ((backwardKinetic+kineticEnergy) < xxx*backwardEnergy) {
|
|---|
| 471 | pseudoParticle[5] = pseudoParticle[5] + (*vec[i]);
|
|---|
| 472 | backwardKinetic += kineticEnergy;
|
|---|
| 473 | outerCounter = 2; // leave outer loop
|
|---|
| 474 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 475 | resetEnergies = false;
|
|---|
| 476 | break; // leave inner loop
|
|---|
| 477 | }
|
|---|
| 478 | if (innerCounter > 5) break; // leave inner loop
|
|---|
| 479 | if (forwardEnergy >= vecMass) { // switch sides
|
|---|
| 480 | vec[i]->SetSide(1);
|
|---|
| 481 | forwardEnergy -= vecMass;
|
|---|
| 482 | backwardEnergy += vecMass;
|
|---|
| 483 | backwardCount--;
|
|---|
| 484 | }
|
|---|
| 485 | }
|
|---|
| 486 | G4ThreeVector momentum = vec[i]->GetMomentum();
|
|---|
| 487 | vec[i]->SetMomentum( momentum.x() * 0.9, momentum.y() * 0.9 );
|
|---|
| 488 | pt *= 0.9;
|
|---|
| 489 | dndl[19] *= 0.9;
|
|---|
| 490 | } // closes inner loop
|
|---|
| 491 |
|
|---|
| 492 | // If we get here, the inner loop has been done 6 times.
|
|---|
| 493 | // If necessary, reduce energies of the previously done particles if
|
|---|
| 494 | // they are lighter than protons or are in the forward hemisphere.
|
|---|
| 495 | // Then continue with outer loop.
|
|---|
| 496 |
|
|---|
| 497 | if (resetEnergies)
|
|---|
| 498 | ReduceEnergiesOfSecondaries(i+1, forwardKinetic, backwardKinetic,
|
|---|
| 499 | vec, vecLen,
|
|---|
| 500 | pseudoParticle[4], pseudoParticle[5],
|
|---|
| 501 | pt);
|
|---|
| 502 |
|
|---|
| 503 | } // closes outer loop
|
|---|
| 504 |
|
|---|
| 505 | if (eliminateThisParticle && vec[i]->GetMayBeKilled()) {
|
|---|
| 506 | // not enough energy, eliminate this particle
|
|---|
| 507 |
|
|---|
| 508 | if (vec[i]->GetSide() > 0) {
|
|---|
| 509 | --forwardCount;
|
|---|
| 510 | forwardEnergy += vecMass;
|
|---|
| 511 | } else {
|
|---|
| 512 | --backwardCount;
|
|---|
| 513 | if (vec[i]->GetSide() == -2) {
|
|---|
| 514 | --extraNucleonCount;
|
|---|
| 515 | extraNucleonMass -= vecMass;
|
|---|
| 516 | } else {
|
|---|
| 517 | backwardEnergy += vecMass;
|
|---|
| 518 | }
|
|---|
| 519 | }
|
|---|
| 520 |
|
|---|
| 521 | for( G4int j=i; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 522 | G4ReactionProduct* temp = vec[vecLen-1];
|
|---|
| 523 | delete temp;
|
|---|
| 524 | // To do: modify target nucleus according to particle eliminated
|
|---|
| 525 |
|
|---|
| 526 | if( --vecLen == 0 ){
|
|---|
| 527 | G4cout << " FALSE RETURN DUE TO ENERGY BALANCE " << G4endl;
|
|---|
| 528 | return false;
|
|---|
| 529 | } // all the secondaries have been eliminated
|
|---|
| 530 | }
|
|---|
| 531 | } // closes main loop over secondaries
|
|---|
| 532 |
|
|---|
| 533 | // Re-balance forward and backward energy if possible and if necessary
|
|---|
| 534 |
|
|---|
| 535 | G4double forwardKEDiff = forwardEnergy - forwardKinetic;
|
|---|
| 536 | G4double backwardKEDiff = backwardEnergy - backwardKinetic;
|
|---|
| 537 |
|
|---|
| 538 | if (forwardKEDiff < 0.0 || backwardKEDiff < 0.0) {
|
|---|
| 539 | ReduceEnergiesOfSecondaries(0, forwardKinetic, backwardKinetic,
|
|---|
| 540 | vec, vecLen,
|
|---|
| 541 | pseudoParticle[4], pseudoParticle[5],
|
|---|
| 542 | pt);
|
|---|
| 543 |
|
|---|
| 544 | forwardKEDiff = forwardEnergy - forwardKinetic;
|
|---|
| 545 | backwardKEDiff = backwardEnergy - backwardKinetic;
|
|---|
| 546 | if (backwardKEDiff < 0.0) {
|
|---|
| 547 | if (forwardKEDiff + backwardKEDiff > 0.0) {
|
|---|
| 548 | backwardEnergy = backwardKinetic;
|
|---|
| 549 | forwardEnergy += backwardKEDiff;
|
|---|
| 550 | forwardKEDiff = forwardEnergy - forwardKinetic;
|
|---|
| 551 | backwardKEDiff = 0.0;
|
|---|
| 552 | } else {
|
|---|
| 553 | G4cout << " False return due to insufficient backward energy " << G4endl;
|
|---|
| 554 | return false;
|
|---|
| 555 | }
|
|---|
| 556 | }
|
|---|
| 557 |
|
|---|
| 558 | if (forwardKEDiff < 0.0) {
|
|---|
| 559 | if (forwardKEDiff + backwardKEDiff > 0.0) {
|
|---|
| 560 | forwardEnergy = forwardKinetic;
|
|---|
| 561 | backwardEnergy += forwardKEDiff;
|
|---|
| 562 | backwardKEDiff = backwardEnergy - backwardKinetic;
|
|---|
| 563 | forwardKEDiff = 0.0;
|
|---|
| 564 | } else {
|
|---|
| 565 | G4cout << " False return due to insufficient forward energy " << G4endl;
|
|---|
| 566 | return false;
|
|---|
| 567 | }
|
|---|
| 568 | }
|
|---|
| 569 | }
|
|---|
| 570 |
|
|---|
| 571 | // Generate momentum for incident (current) particle, which was placed
|
|---|
| 572 | // in the forward hemisphere.
|
|---|
| 573 | // Set mass parameter for lambda fragmentation model.
|
|---|
| 574 | // Set pt and phi values, which are changed somewhat in the iteration loop
|
|---|
| 575 |
|
|---|
| 576 | G4double ran = -std::log(1.0-G4UniformRand());
|
|---|
| 577 | if (currentParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 578 | aspar = 0.60;
|
|---|
| 579 | pt = std::sqrt( std::pow( ran/6.0, 1.7 ) );
|
|---|
| 580 | } else if (currentParticle.GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 581 | aspar = 0.50;
|
|---|
| 582 | pt = std::sqrt( std::pow( ran/5.0, 1.4 ) );
|
|---|
| 583 | } else {
|
|---|
| 584 | aspar = 0.40;
|
|---|
| 585 | pt = std::sqrt( std::pow( ran/4.0, 1.2 ) );
|
|---|
| 586 | }
|
|---|
| 587 |
|
|---|
| 588 | phi = G4UniformRand()*twopi;
|
|---|
| 589 | currentParticle.SetMomentum(pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV);
|
|---|
| 590 | et = pseudoParticle[0].GetTotalEnergy()/GeV;
|
|---|
| 591 | dndl[0] = 0.0;
|
|---|
| 592 | vecMass = currentParticle.GetMass()/GeV;
|
|---|
| 593 |
|
|---|
| 594 | FragmentationIntegral(pt, et, aspar, vecMass);
|
|---|
| 595 |
|
|---|
| 596 | ran = G4UniformRand()*dndl[19];
|
|---|
| 597 | l = 1;
|
|---|
| 598 | while( ( ran > dndl[l] ) && ( l < 19 ) ) l++;
|
|---|
| 599 | x = (G4double(l-1) + G4UniformRand())/19.;
|
|---|
| 600 | currentParticle.SetMomentum( x*et*GeV ); // set the z-momentum
|
|---|
| 601 |
|
|---|
| 602 | if (forwardEnergy < forwardKinetic) {
|
|---|
| 603 | totalEnergy = vecMass + 0.04*std::fabs(normal());
|
|---|
| 604 | G4cout << " Not enough forward energy: forwardEnergy = "
|
|---|
| 605 | << forwardEnergy << " forwardKinetic = "
|
|---|
| 606 | << forwardKinetic << " total energy left = "
|
|---|
| 607 | << backwardKEDiff + forwardKEDiff << G4endl;
|
|---|
| 608 | } else {
|
|---|
| 609 | totalEnergy = vecMass + forwardEnergy - forwardKinetic;
|
|---|
| 610 | forwardKinetic = forwardEnergy;
|
|---|
| 611 | }
|
|---|
| 612 | currentParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 613 | pp = std::sqrt(std::abs( totalEnergy*totalEnergy - vecMass*vecMass) )*GeV;
|
|---|
| 614 | pp1 = currentParticle.GetMomentum().mag();
|
|---|
| 615 |
|
|---|
| 616 | if (pp1 < 1.0e-6*GeV) {
|
|---|
| 617 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 618 | currentParticle.SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 619 | } else {
|
|---|
| 620 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 621 | }
|
|---|
| 622 | pseudoParticle[4] = pseudoParticle[4] + currentParticle;
|
|---|
| 623 |
|
|---|
| 624 | // Current particle now finished
|
|---|
| 625 |
|
|---|
| 626 | // Begin target particle
|
|---|
| 627 |
|
|---|
| 628 | if (backwardNucleonCount < 18) {
|
|---|
| 629 | targetParticle.SetSide(-3);
|
|---|
| 630 | ++backwardNucleonCount;
|
|---|
| 631 |
|
|---|
| 632 | } else {
|
|---|
| 633 | // Set pt and phi values, they are changed somewhat in the iteration loop
|
|---|
| 634 | // Set mass parameter for lambda fragmentation model
|
|---|
| 635 |
|
|---|
| 636 | vecMass = targetParticle.GetMass()/GeV;
|
|---|
| 637 | ran = -std::log(1.0-G4UniformRand());
|
|---|
| 638 | aspar = 0.40;
|
|---|
| 639 | pt = std::max( 0.001, std::sqrt( std::pow( ran/4.0, 1.2 ) ) );
|
|---|
| 640 | phi = G4UniformRand()*twopi;
|
|---|
| 641 | targetParticle.SetMomentum(pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV);
|
|---|
| 642 | et = pseudoParticle[1].GetTotalEnergy()/GeV;
|
|---|
| 643 | outerCounter = 0;
|
|---|
| 644 | innerCounter = 0;
|
|---|
| 645 | G4bool marginalEnergy = true;
|
|---|
| 646 | dndl[0] = 0.0;
|
|---|
| 647 | G4double xxx = 0.999;
|
|---|
| 648 | if( extraNucleonCount < 20 ) xxx = 0.95+0.05*extraNucleonCount/20.0;
|
|---|
| 649 | G4ThreeVector momentum;
|
|---|
| 650 |
|
|---|
| 651 | while (++outerCounter < 4) {
|
|---|
| 652 | FragmentationIntegral(pt, et, aspar, vecMass);
|
|---|
| 653 |
|
|---|
| 654 | for (innerCounter = 0; innerCounter < 6; innerCounter++) {
|
|---|
| 655 | ran = G4UniformRand()*dndl[19];
|
|---|
| 656 | l = 1;
|
|---|
| 657 | while( ( ran > dndl[l] ) && ( l < 19 ) ) l++;
|
|---|
| 658 | x = -(G4double(l-1) + G4UniformRand())/19.;
|
|---|
| 659 | targetParticle.SetMomentum( x*et*GeV ); // set the z-momentum
|
|---|
| 660 | totalEnergy = std::sqrt(x*et*x*et + pt*pt + vecMass*vecMass);
|
|---|
| 661 | targetParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 662 |
|
|---|
| 663 | if ((backwardKinetic+totalEnergy-vecMass) < xxx*backwardEnergy) {
|
|---|
| 664 | pseudoParticle[5] = pseudoParticle[5] + targetParticle;
|
|---|
| 665 | backwardKinetic += totalEnergy - vecMass;
|
|---|
| 666 | outerCounter = 3; // leave outer loop
|
|---|
| 667 | marginalEnergy = false;
|
|---|
| 668 | break; // leave inner loop
|
|---|
| 669 | }
|
|---|
| 670 | momentum = targetParticle.GetMomentum();
|
|---|
| 671 | targetParticle.SetMomentum(momentum.x() * 0.9, momentum.y() * 0.9);
|
|---|
| 672 | pt *= 0.9;
|
|---|
| 673 | dndl[19] *= 0.9;
|
|---|
| 674 | }
|
|---|
| 675 | }
|
|---|
| 676 |
|
|---|
| 677 | if (marginalEnergy) {
|
|---|
| 678 | G4cout << " Extra backward kinetic energy = "
|
|---|
| 679 | << 0.999*backwardEnergy - backwardKinetic << G4endl;
|
|---|
| 680 | totalEnergy = vecMass + 0.999*backwardEnergy - backwardKinetic;
|
|---|
| 681 | targetParticle.SetTotalEnergy(totalEnergy*GeV);
|
|---|
| 682 | pp = std::sqrt(std::abs(totalEnergy*totalEnergy - vecMass*vecMass) )*GeV;
|
|---|
| 683 | targetParticle.SetMomentum(momentum.x()/0.9, momentum.y()/0.9);
|
|---|
| 684 | pp1 = targetParticle.GetMomentum().mag();
|
|---|
| 685 | targetParticle.SetMomentum(targetParticle.GetMomentum() * pp/pp1 );
|
|---|
| 686 | pseudoParticle[5] = pseudoParticle[5] + targetParticle;
|
|---|
| 687 | backwardKinetic = 0.999*backwardEnergy;
|
|---|
| 688 | }
|
|---|
| 689 |
|
|---|
| 690 | }
|
|---|
| 691 |
|
|---|
| 692 | if (backwardEnergy < backwardKinetic)
|
|---|
| 693 | G4cout << " Backward Edif = " << backwardEnergy - backwardKinetic << G4endl;
|
|---|
| 694 | if (forwardEnergy != forwardKinetic)
|
|---|
| 695 | G4cout << " Forward Edif = " << forwardEnergy - forwardKinetic << G4endl;
|
|---|
| 696 |
|
|---|
| 697 | // Target particle finished.
|
|---|
| 698 | // Now produce backward nucleons with a cluster model
|
|---|
| 699 | // ps[2] = CM frame of projectile + target
|
|---|
| 700 | // ps[3] = sum of projectile + nucleon cluster in lab frame
|
|---|
| 701 | // ps[6] = proj + cluster 4-vector boosted into CM frame of proj + targ
|
|---|
| 702 | // with secondaries, current and target particles subtracted
|
|---|
| 703 | // = total 4-momentum of backward nucleon cluster
|
|---|
| 704 |
|
|---|
| 705 | pseudoParticle[6].Lorentz( pseudoParticle[3], pseudoParticle[2] );
|
|---|
| 706 | pseudoParticle[6] = pseudoParticle[6] - pseudoParticle[4];
|
|---|
| 707 | pseudoParticle[6] = pseudoParticle[6] - pseudoParticle[5];
|
|---|
| 708 |
|
|---|
| 709 | if (backwardNucleonCount == 1) {
|
|---|
| 710 | // Target particle is the only backward nucleon. Give it the remainder
|
|---|
| 711 | // of the backward kinetic energy.
|
|---|
| 712 |
|
|---|
| 713 | G4double ekin =
|
|---|
| 714 | std::min(backwardEnergy-backwardKinetic, centerofmassEnergy/2.0-protonMass/GeV);
|
|---|
| 715 |
|
|---|
| 716 | if( ekin < 0.04 )ekin = 0.04 * std::fabs( normal() );
|
|---|
| 717 | vecMass = targetParticle.GetMass()/GeV;
|
|---|
| 718 | totalEnergy = ekin + vecMass;
|
|---|
| 719 | targetParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 720 | pp = std::sqrt(std::abs(totalEnergy*totalEnergy - vecMass*vecMass) )*GeV;
|
|---|
| 721 | pp1 = pseudoParticle[6].GetMomentum().mag();
|
|---|
| 722 | if (pp1 < 1.0e-6*GeV) {
|
|---|
| 723 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 724 | targetParticle.SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 725 | } else {
|
|---|
| 726 | targetParticle.SetMomentum( pseudoParticle[6].GetMomentum() * (pp/pp1));
|
|---|
| 727 | }
|
|---|
| 728 | pseudoParticle[5] = pseudoParticle[5] + targetParticle;
|
|---|
| 729 |
|
|---|
| 730 | } else if (backwardNucleonCount > 1) {
|
|---|
| 731 | // Share remaining energy with up to 17 backward nucleons
|
|---|
| 732 |
|
|---|
| 733 | G4int tempCount = 5;
|
|---|
| 734 | if (backwardNucleonCount < 5) tempCount = backwardNucleonCount;
|
|---|
| 735 | tempCount -= 2;
|
|---|
| 736 |
|
|---|
| 737 | G4double clusterMass = 0.;
|
|---|
| 738 | if (targetParticle.GetSide() == -3)
|
|---|
| 739 | clusterMass = targetParticle.GetMass()/GeV;
|
|---|
| 740 | for (i = 0; i < vecLen; ++i)
|
|---|
| 741 | if (vec[i]->GetSide() == -3) clusterMass += vec[i]->GetMass()/GeV;
|
|---|
| 742 | clusterMass += backwardEnergy - backwardKinetic;
|
|---|
| 743 |
|
|---|
| 744 | totalEnergy = pseudoParticle[6].GetTotalEnergy()/GeV;
|
|---|
| 745 | pseudoParticle[6].SetMass(clusterMass*GeV);
|
|---|
| 746 |
|
|---|
| 747 | pp = std::sqrt(std::abs(totalEnergy*totalEnergy -
|
|---|
| 748 | clusterMass*clusterMass) )*GeV;
|
|---|
| 749 | pp1 = pseudoParticle[6].GetMomentum().mag();
|
|---|
| 750 | if (pp1 < 1.0e-6*GeV) {
|
|---|
| 751 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 752 | pseudoParticle[6].SetMomentum(iso.x(), iso.y(), iso.z());
|
|---|
| 753 | } else {
|
|---|
| 754 | pseudoParticle[6].SetMomentum(pseudoParticle[6].GetMomentum() * (-pp/pp1));
|
|---|
| 755 | }
|
|---|
| 756 |
|
|---|
| 757 | std::vector<G4ReactionProduct*> tempList; // ptrs to backward nucleons
|
|---|
| 758 | if (targetParticle.GetSide() == -3) tempList.push_back(&targetParticle);
|
|---|
| 759 | for (i = 0; i < vecLen; ++i)
|
|---|
| 760 | if (vec[i]->GetSide() == -3) tempList.push_back(vec[i]);
|
|---|
| 761 |
|
|---|
| 762 | constantCrossSection = true;
|
|---|
| 763 |
|
|---|
| 764 | if (tempList.size() > 1) {
|
|---|
| 765 | G4int n_entry = 0;
|
|---|
| 766 | wgt = GenerateNBodyEventT(pseudoParticle[6].GetMass(),
|
|---|
| 767 | constantCrossSection, tempList);
|
|---|
| 768 |
|
|---|
| 769 | if (targetParticle.GetSide() == -3) {
|
|---|
| 770 | targetParticle = *tempList[0];
|
|---|
| 771 | targetParticle.Lorentz(targetParticle, pseudoParticle[6]);
|
|---|
| 772 | n_entry++;
|
|---|
| 773 | }
|
|---|
| 774 |
|
|---|
| 775 | for (i = 0; i < vecLen; ++i) {
|
|---|
| 776 | if (vec[i]->GetSide() == -3) {
|
|---|
| 777 | *vec[i] = *tempList[n_entry];
|
|---|
| 778 | vec[i]->Lorentz(*vec[i], pseudoParticle[6]);
|
|---|
| 779 | n_entry++;
|
|---|
| 780 | }
|
|---|
| 781 | }
|
|---|
| 782 | }
|
|---|
| 783 | } else return false;
|
|---|
| 784 |
|
|---|
| 785 | if (vecLen == 0) return false; // all the secondaries have been eliminated
|
|---|
| 786 |
|
|---|
| 787 | // Lorentz transformation to lab frame
|
|---|
| 788 |
|
|---|
| 789 | currentParticle.Lorentz( currentParticle, pseudoParticle[1] );
|
|---|
| 790 | targetParticle.Lorentz( targetParticle, pseudoParticle[1] );
|
|---|
| 791 | for (i = 0; i < vecLen; ++i) vec[i]->Lorentz(*vec[i], pseudoParticle[1]);
|
|---|
| 792 |
|
|---|
| 793 | // Set leading strange particle flag.
|
|---|
| 794 | // leadFlag will be true if original particle and incident particle are
|
|---|
| 795 | // both strange, in which case the incident particle becomes the leading
|
|---|
| 796 | // particle.
|
|---|
| 797 | // leadFlag will also be true if the target particle is strange, but the
|
|---|
| 798 | // incident particle is not, in which case the target particle becomes the
|
|---|
| 799 | // leading particle.
|
|---|
| 800 |
|
|---|
| 801 | G4bool leadingStrangeParticleHasChanged = true;
|
|---|
| 802 | if (leadFlag)
|
|---|
| 803 | {
|
|---|
| 804 | if (currentParticle.GetDefinition() == leadingStrangeParticle.GetDefinition())
|
|---|
| 805 | leadingStrangeParticleHasChanged = false;
|
|---|
| 806 | if (leadingStrangeParticleHasChanged &&
|
|---|
| 807 | (targetParticle.GetDefinition() == leadingStrangeParticle.GetDefinition()) )
|
|---|
| 808 | leadingStrangeParticleHasChanged = false;
|
|---|
| 809 | if( leadingStrangeParticleHasChanged )
|
|---|
| 810 | {
|
|---|
| 811 | for( i=0; i<vecLen; i++ )
|
|---|
| 812 | {
|
|---|
| 813 | if( vec[i]->GetDefinition() == leadingStrangeParticle.GetDefinition() )
|
|---|
| 814 | {
|
|---|
| 815 | leadingStrangeParticleHasChanged = false;
|
|---|
| 816 | break;
|
|---|
| 817 | }
|
|---|
| 818 | }
|
|---|
| 819 | }
|
|---|
| 820 | if( leadingStrangeParticleHasChanged )
|
|---|
| 821 | {
|
|---|
| 822 | G4bool leadTest =
|
|---|
| 823 | (leadingStrangeParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 824 | leadingStrangeParticle.GetDefinition()->GetParticleSubType() == "pi");
|
|---|
| 825 | G4bool targetTest =
|
|---|
| 826 | (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 827 | targetParticle.GetDefinition()->GetParticleSubType() == "pi");
|
|---|
| 828 |
|
|---|
| 829 | // following modified by JLC 22-Oct-97
|
|---|
| 830 |
|
|---|
| 831 | if( (leadTest&&targetTest) || !(leadTest||targetTest) ) // both true or both false
|
|---|
| 832 | {
|
|---|
| 833 | targetParticle.SetDefinitionAndUpdateE( leadingStrangeParticle.GetDefinition() );
|
|---|
| 834 | targetHasChanged = true;
|
|---|
| 835 | }
|
|---|
| 836 | else
|
|---|
| 837 | {
|
|---|
| 838 | currentParticle.SetDefinitionAndUpdateE( leadingStrangeParticle.GetDefinition() );
|
|---|
| 839 | incidentHasChanged = false;
|
|---|
| 840 | }
|
|---|
| 841 | }
|
|---|
| 842 | } // end of if( leadFlag )
|
|---|
| 843 |
|
|---|
| 844 | // Get number of final state nucleons and nucleons remaining in
|
|---|
| 845 | // target nucleus
|
|---|
| 846 |
|
|---|
| 847 | std::pair<G4int, G4int> finalStateNucleons =
|
|---|
| 848 | GetFinalStateNucleons(originalTarget, vec, vecLen);
|
|---|
| 849 |
|
|---|
| 850 | G4int protonsInFinalState = finalStateNucleons.first;
|
|---|
| 851 | G4int neutronsInFinalState = finalStateNucleons.second;
|
|---|
| 852 |
|
|---|
| 853 | G4int numberofFinalStateNucleons =
|
|---|
| 854 | protonsInFinalState + neutronsInFinalState;
|
|---|
| 855 |
|
|---|
| 856 | if (currentParticle.GetDefinition()->GetBaryonNumber() == 1 &&
|
|---|
| 857 | targetParticle.GetDefinition()->GetBaryonNumber() == 1 &&
|
|---|
| 858 | originalIncident->GetDefinition()->GetPDGMass() <
|
|---|
| 859 | G4Lambda::Lambda()->GetPDGMass())
|
|---|
| 860 | numberofFinalStateNucleons++;
|
|---|
| 861 |
|
|---|
| 862 | numberofFinalStateNucleons = std::max(1, numberofFinalStateNucleons);
|
|---|
| 863 |
|
|---|
| 864 | G4int PinNucleus = std::max(0,
|
|---|
| 865 | G4int(targetNucleus.GetZ()) - protonsInFinalState);
|
|---|
| 866 | G4int NinNucleus = std::max(0,
|
|---|
| 867 | G4int(targetNucleus.GetN()-targetNucleus.GetZ()) - neutronsInFinalState);
|
|---|
| 868 |
|
|---|
| 869 | pseudoParticle[3].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 870 | pseudoParticle[3].SetMass( mOriginal*GeV );
|
|---|
| 871 | pseudoParticle[3].SetTotalEnergy(
|
|---|
| 872 | std::sqrt( pOriginal*pOriginal + mOriginal*mOriginal )*GeV );
|
|---|
| 873 |
|
|---|
| 874 | G4ParticleDefinition * aOrgDef = modifiedOriginal.GetDefinition();
|
|---|
| 875 | G4int diff = 0;
|
|---|
| 876 | if(aOrgDef == G4Proton::Proton() || aOrgDef == G4Neutron::Neutron() ) diff = 1;
|
|---|
| 877 | if(numberofFinalStateNucleons == 1) diff = 0;
|
|---|
| 878 | pseudoParticle[4].SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 879 | pseudoParticle[4].SetMass( protonMass*(numberofFinalStateNucleons-diff) );
|
|---|
| 880 | pseudoParticle[4].SetTotalEnergy( protonMass*(numberofFinalStateNucleons-diff) );
|
|---|
| 881 |
|
|---|
| 882 | G4double theoreticalKinetic =
|
|---|
| 883 | pseudoParticle[3].GetTotalEnergy() + pseudoParticle[4].GetTotalEnergy() -
|
|---|
| 884 | currentParticle.GetMass() - targetParticle.GetMass();
|
|---|
| 885 | for (i = 0; i < vecLen; ++i) theoreticalKinetic -= vec[i]->GetMass();
|
|---|
| 886 |
|
|---|
| 887 | G4double simulatedKinetic =
|
|---|
| 888 | currentParticle.GetKineticEnergy() + targetParticle.GetKineticEnergy();
|
|---|
| 889 | for (i = 0; i < vecLen; ++i)
|
|---|
| 890 | simulatedKinetic += vec[i]->GetKineticEnergy();
|
|---|
| 891 |
|
|---|
| 892 | pseudoParticle[5] = pseudoParticle[3] + pseudoParticle[4];
|
|---|
| 893 | pseudoParticle[3].Lorentz( pseudoParticle[3], pseudoParticle[5] );
|
|---|
| 894 | pseudoParticle[4].Lorentz( pseudoParticle[4], pseudoParticle[5] );
|
|---|
| 895 |
|
|---|
| 896 | pseudoParticle[7].SetZero();
|
|---|
| 897 | pseudoParticle[7] = pseudoParticle[7] + currentParticle;
|
|---|
| 898 | pseudoParticle[7] = pseudoParticle[7] + targetParticle;
|
|---|
| 899 | for (i = 0; i < vecLen; ++i)
|
|---|
| 900 | pseudoParticle[7] = pseudoParticle[7] + *vec[i];
|
|---|
| 901 |
|
|---|
| 902 | /*
|
|---|
| 903 | // This code does not appear to do anything to the energy or angle spectra
|
|---|
| 904 | if( vecLen <= 16 && vecLen > 0 )
|
|---|
| 905 | {
|
|---|
| 906 | // must create a new set of ReactionProducts here because GenerateNBody will
|
|---|
| 907 | // modify the momenta for the particles, and we don't want to do this
|
|---|
| 908 | //
|
|---|
| 909 | G4ReactionProduct tempR[130];
|
|---|
| 910 | tempR[0] = currentParticle;
|
|---|
| 911 | tempR[1] = targetParticle;
|
|---|
| 912 | for( i=0; i<vecLen; ++i )tempR[i+2] = *vec[i];
|
|---|
| 913 | G4FastVector<G4ReactionProduct,256> tempV1;
|
|---|
| 914 | tempV1.Initialize( vecLen+2 );
|
|---|
| 915 | G4int tempLen1 = 0;
|
|---|
| 916 | for( i=0; i<vecLen+2; ++i )tempV1.SetElement( tempLen1++, &tempR[i] );
|
|---|
| 917 | constantCrossSection = true;
|
|---|
| 918 |
|
|---|
| 919 | wgt = GenerateNBodyEvent(pseudoParticle[3].GetTotalEnergy() +
|
|---|
| 920 | pseudoParticle[4].GetTotalEnergy(),
|
|---|
| 921 | constantCrossSection, tempV1, tempLen1);
|
|---|
| 922 | if (wgt == -1) {
|
|---|
| 923 | G4double Qvalue = 0;
|
|---|
| 924 | for (i = 0; i < tempLen1; i++) Qvalue += tempV1[i]->GetMass();
|
|---|
| 925 | wgt = GenerateNBodyEvent(Qvalue,
|
|---|
| 926 | constantCrossSection, tempV1, tempLen1);
|
|---|
| 927 | }
|
|---|
| 928 | if(wgt>-.5)
|
|---|
| 929 | {
|
|---|
| 930 | theoreticalKinetic = 0.0;
|
|---|
| 931 | for( i=0; i<tempLen1; ++i )
|
|---|
| 932 | {
|
|---|
| 933 | pseudoParticle[6].Lorentz( *tempV1[i], pseudoParticle[4] );
|
|---|
| 934 | theoreticalKinetic += pseudoParticle[6].GetKineticEnergy();
|
|---|
| 935 | }
|
|---|
| 936 | }
|
|---|
| 937 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 938 | }
|
|---|
| 939 | */
|
|---|
| 940 |
|
|---|
| 941 | //
|
|---|
| 942 | // Make sure that the kinetic energies are correct
|
|---|
| 943 | //
|
|---|
| 944 |
|
|---|
| 945 | if (simulatedKinetic != 0.0) {
|
|---|
| 946 | wgt = theoreticalKinetic/simulatedKinetic;
|
|---|
| 947 | theoreticalKinetic = currentParticle.GetKineticEnergy() * wgt;
|
|---|
| 948 | simulatedKinetic = theoreticalKinetic;
|
|---|
| 949 | currentParticle.SetKineticEnergy(theoreticalKinetic);
|
|---|
| 950 | pp = currentParticle.GetTotalMomentum();
|
|---|
| 951 | pp1 = currentParticle.GetMomentum().mag();
|
|---|
| 952 | if (pp1 < 1.0e-6*GeV) {
|
|---|
| 953 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 954 | currentParticle.SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 955 | } else {
|
|---|
| 956 | currentParticle.SetMomentum(currentParticle.GetMomentum() * (pp/pp1));
|
|---|
| 957 | }
|
|---|
| 958 |
|
|---|
| 959 | theoreticalKinetic = targetParticle.GetKineticEnergy() * wgt;
|
|---|
| 960 | targetParticle.SetKineticEnergy(theoreticalKinetic);
|
|---|
| 961 | simulatedKinetic += theoreticalKinetic;
|
|---|
| 962 | pp = targetParticle.GetTotalMomentum();
|
|---|
| 963 | pp1 = targetParticle.GetMomentum().mag();
|
|---|
| 964 |
|
|---|
| 965 | if (pp1 < 1.0e-6*GeV) {
|
|---|
| 966 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 967 | targetParticle.SetMomentum(iso.x(), iso.y(), iso.z() );
|
|---|
| 968 | } else {
|
|---|
| 969 | targetParticle.SetMomentum(targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 970 | }
|
|---|
| 971 |
|
|---|
| 972 | for (i = 0; i < vecLen; ++i ) {
|
|---|
| 973 | theoreticalKinetic = vec[i]->GetKineticEnergy() * wgt;
|
|---|
| 974 | simulatedKinetic += theoreticalKinetic;
|
|---|
| 975 | vec[i]->SetKineticEnergy(theoreticalKinetic);
|
|---|
| 976 | pp = vec[i]->GetTotalMomentum();
|
|---|
| 977 | pp1 = vec[i]->GetMomentum().mag();
|
|---|
| 978 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 979 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 980 | vec[i]->SetMomentum(iso.x(), iso.y(), iso.z() );
|
|---|
| 981 | } else {
|
|---|
| 982 | vec[i]->SetMomentum(vec[i]->GetMomentum() * (pp/pp1) );
|
|---|
| 983 | }
|
|---|
| 984 | }
|
|---|
| 985 | }
|
|---|
| 986 |
|
|---|
| 987 | // Rotate(numberofFinalStateNucleons, pseudoParticle[3].GetMomentum(),
|
|---|
| 988 | // modifiedOriginal, originalIncident, targetNucleus,
|
|---|
| 989 | // currentParticle, targetParticle, vec, vecLen );
|
|---|
| 990 |
|
|---|
| 991 | // Add black track particles
|
|---|
| 992 | // the total number of particles produced is restricted to 198
|
|---|
| 993 | // this may have influence on very high energies
|
|---|
| 994 |
|
|---|
| 995 | if( atomicWeight >= 1.5 )
|
|---|
| 996 | {
|
|---|
| 997 | // npnb is number of proton/neutron black track particles
|
|---|
| 998 | // ndta is the number of deuterons, tritons, and alphas produced
|
|---|
| 999 | // epnb is the kinetic energy available for proton/neutron black track
|
|---|
| 1000 | // particles
|
|---|
| 1001 | // edta is the kinetic energy available for deuteron/triton/alpha particles
|
|---|
| 1002 |
|
|---|
| 1003 | G4int npnb = 0;
|
|---|
| 1004 | G4int ndta = 0;
|
|---|
| 1005 |
|
|---|
| 1006 | G4double epnb, edta;
|
|---|
| 1007 | if (veryForward) {
|
|---|
| 1008 | epnb = targetNucleus.GetAnnihilationPNBlackTrackEnergy();
|
|---|
| 1009 | edta = targetNucleus.GetAnnihilationDTABlackTrackEnergy();
|
|---|
| 1010 | } else {
|
|---|
| 1011 | epnb = targetNucleus.GetPNBlackTrackEnergy();
|
|---|
| 1012 | edta = targetNucleus.GetDTABlackTrackEnergy();
|
|---|
| 1013 | }
|
|---|
| 1014 | /*
|
|---|
| 1015 | G4ReactionProduct* fudge = new G4ReactionProduct();
|
|---|
| 1016 | fudge->SetDefinition( aProton );
|
|---|
| 1017 | G4double TT = epnb + edta;
|
|---|
| 1018 | G4double MM = fudge->GetMass()/GeV;
|
|---|
| 1019 | fudge->SetTotalEnergy(MM*GeV + TT*GeV);
|
|---|
| 1020 | G4double pzz = std::sqrt(TT*(TT + 2.*MM));
|
|---|
| 1021 | fudge->SetMomentum(0.0, 0.0, pzz*GeV);
|
|---|
| 1022 | vec.SetElement(vecLen++, fudge);
|
|---|
| 1023 | // G4cout << " Fudge = " << vec[vecLen-1]->GetKineticEnergy()/GeV
|
|---|
| 1024 | << G4endl;
|
|---|
| 1025 | */
|
|---|
| 1026 |
|
|---|
| 1027 | const G4double pnCutOff = 0.001;
|
|---|
| 1028 | const G4double dtaCutOff = 0.001;
|
|---|
| 1029 | // const G4double kineticMinimum = 1.e-6;
|
|---|
| 1030 | // const G4double kineticFactor = -0.010;
|
|---|
| 1031 | // G4double sprob = 0.0; // sprob = probability of self-absorption in
|
|---|
| 1032 | // heavy molecules
|
|---|
| 1033 | // Not currently used (DHW 9 June 2008) const G4double ekIncident = originalIncident->GetKineticEnergy()/GeV;
|
|---|
| 1034 | // if (ekIncident >= 5.0) sprob = std::min(1.0, 0.6*std::log(ekIncident-4.0));
|
|---|
| 1035 | if (epnb > pnCutOff)
|
|---|
| 1036 | {
|
|---|
| 1037 | npnb = G4Poisson((1.5+1.25*numberofFinalStateNucleons)*epnb/(epnb+edta));
|
|---|
| 1038 | if (numberofFinalStateNucleons + npnb > atomicWeight)
|
|---|
| 1039 | npnb = G4int(atomicWeight+0.00001 - numberofFinalStateNucleons);
|
|---|
| 1040 | npnb = std::min( npnb, 127-vecLen );
|
|---|
| 1041 | }
|
|---|
| 1042 | if( edta >= dtaCutOff )
|
|---|
| 1043 | {
|
|---|
| 1044 | ndta = G4Poisson((1.5+1.25*numberofFinalStateNucleons)*edta/(epnb+edta));
|
|---|
| 1045 | ndta = std::min( ndta, 127-vecLen );
|
|---|
| 1046 | }
|
|---|
| 1047 | if (npnb == 0 && ndta == 0) npnb = 1;
|
|---|
| 1048 |
|
|---|
| 1049 | AddBlackTrackParticles(epnb, npnb, edta, ndta, modifiedOriginal,
|
|---|
| 1050 | PinNucleus, NinNucleus, targetNucleus,
|
|---|
| 1051 | vec, vecLen);
|
|---|
| 1052 | }
|
|---|
| 1053 |
|
|---|
| 1054 | // if( centerofmassEnergy <= (4.0+G4UniformRand()) )
|
|---|
| 1055 | // MomentumCheck( modifiedOriginal, currentParticle, targetParticle,
|
|---|
| 1056 | // vec, vecLen );
|
|---|
| 1057 | //
|
|---|
| 1058 | // calculate time delay for nuclear reactions
|
|---|
| 1059 | //
|
|---|
| 1060 |
|
|---|
| 1061 | if( (atomicWeight >= 1.5) && (atomicWeight <= 230.0) && (ekOriginal <= 0.2) )
|
|---|
| 1062 | currentParticle.SetTOF(
|
|---|
| 1063 | 1.0-500.0*std::exp(-ekOriginal/0.04)*std::log(G4UniformRand()) );
|
|---|
| 1064 | else
|
|---|
| 1065 | currentParticle.SetTOF( 1.0 );
|
|---|
| 1066 | return true;
|
|---|
| 1067 |
|
|---|
| 1068 | }
|
|---|
| 1069 |
|
|---|
| 1070 |
|
|---|
| 1071 | void G4RPGFragmentation::
|
|---|
| 1072 | ReduceEnergiesOfSecondaries(G4int startingIndex,
|
|---|
| 1073 | G4double& forwardKinetic,
|
|---|
| 1074 | G4double& backwardKinetic,
|
|---|
| 1075 | G4FastVector<G4ReactionProduct,256>& vec,
|
|---|
| 1076 | G4int& vecLen,
|
|---|
| 1077 | G4ReactionProduct& forwardPseudoParticle,
|
|---|
| 1078 | G4ReactionProduct& backwardPseudoParticle,
|
|---|
| 1079 | G4double& pt)
|
|---|
| 1080 | {
|
|---|
| 1081 | // Reduce energies and pt of secondaries in order to maintain
|
|---|
| 1082 | // energy conservation
|
|---|
| 1083 |
|
|---|
| 1084 | G4double totalEnergy;
|
|---|
| 1085 | G4double pp;
|
|---|
| 1086 | G4double pp1;
|
|---|
| 1087 | G4double px;
|
|---|
| 1088 | G4double py;
|
|---|
| 1089 | G4double mass;
|
|---|
| 1090 | G4ReactionProduct* pVec;
|
|---|
| 1091 | G4int i;
|
|---|
| 1092 |
|
|---|
| 1093 | forwardKinetic = 0.0;
|
|---|
| 1094 | backwardKinetic = 0.0;
|
|---|
| 1095 | forwardPseudoParticle.SetZero();
|
|---|
| 1096 | backwardPseudoParticle.SetZero();
|
|---|
| 1097 |
|
|---|
| 1098 | for (i = startingIndex; i < vecLen; i++) {
|
|---|
| 1099 | pVec = vec[i];
|
|---|
| 1100 | if (pVec->GetSide() != -3) {
|
|---|
| 1101 | mass = pVec->GetMass();
|
|---|
| 1102 | totalEnergy = 0.95*pVec->GetTotalEnergy() + 0.05*mass;
|
|---|
| 1103 | pVec->SetTotalEnergy(totalEnergy);
|
|---|
| 1104 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - mass*mass ) );
|
|---|
| 1105 | pp1 = pVec->GetMomentum().mag();
|
|---|
| 1106 | if (pp1 < 1.0e-6*GeV) {
|
|---|
| 1107 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 1108 | pVec->SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 1109 | } else {
|
|---|
| 1110 | pVec->SetMomentum(pVec->GetMomentum() * (pp/pp1) );
|
|---|
| 1111 | }
|
|---|
| 1112 |
|
|---|
| 1113 | px = pVec->GetMomentum().x();
|
|---|
| 1114 | py = pVec->GetMomentum().y();
|
|---|
| 1115 | pt = std::max(1.0, std::sqrt( px*px + py*py ) )/GeV;
|
|---|
| 1116 | if (pVec->GetSide() > 0) {
|
|---|
| 1117 | forwardKinetic += pVec->GetKineticEnergy()/GeV;
|
|---|
| 1118 | forwardPseudoParticle = forwardPseudoParticle + (*pVec);
|
|---|
| 1119 | } else {
|
|---|
| 1120 | backwardKinetic += pVec->GetKineticEnergy()/GeV;
|
|---|
| 1121 | backwardPseudoParticle = backwardPseudoParticle + (*pVec);
|
|---|
| 1122 | }
|
|---|
| 1123 | }
|
|---|
| 1124 | }
|
|---|
| 1125 | }
|
|---|
| 1126 |
|
|---|
| 1127 | /* end of file */
|
|---|