| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4RPGFragmentation.cc,v 1.3 2007/12/06 01:13:14 dennis Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-01-patch-02 $
|
|---|
| 28 | //
|
|---|
| 29 |
|
|---|
| 30 | #include "G4RPGFragmentation.hh"
|
|---|
| 31 | #include "G4AntiProton.hh"
|
|---|
| 32 | #include "G4AntiNeutron.hh"
|
|---|
| 33 | #include "Randomize.hh"
|
|---|
| 34 | #include "G4Poisson.hh"
|
|---|
| 35 | #include <iostream>
|
|---|
| 36 | #include "G4HadReentrentException.hh"
|
|---|
| 37 | #include <signal.h>
|
|---|
| 38 |
|
|---|
| 39 |
|
|---|
| 40 | G4RPGFragmentation::G4RPGFragmentation()
|
|---|
| 41 | : G4RPGReaction() {}
|
|---|
| 42 |
|
|---|
| 43 |
|
|---|
| 44 | void G4RPGFragmentation::
|
|---|
| 45 | FragmentationIntegral(G4double pt, G4double et, G4double parMass, G4double secMass)
|
|---|
| 46 | {
|
|---|
| 47 | pt = std::max( 0.001, pt );
|
|---|
| 48 | G4double dx = 1./(19.*pt);
|
|---|
| 49 | G4double x;
|
|---|
| 50 | G4double term1;
|
|---|
| 51 | G4double term2;
|
|---|
| 52 |
|
|---|
| 53 | for (G4int i = 1; i < 20; i++) {
|
|---|
| 54 | x = (G4double(i) - 0.5)*dx;
|
|---|
| 55 | term1 = 1. + parMass*parMass*x*x;
|
|---|
| 56 | term2 = pt*x*et*pt*x*et + pt*pt + secMass*secMass;
|
|---|
| 57 | dndl[i] = dx / std::sqrt( term1*term1*term1*term2 )
|
|---|
| 58 | + dndl[i-1];
|
|---|
| 59 | }
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 |
|
|---|
| 63 | G4bool G4RPGFragmentation::
|
|---|
| 64 | ReactionStage(const G4HadProjectile* originalIncident,
|
|---|
| 65 | G4ReactionProduct& modifiedOriginal,
|
|---|
| 66 | G4bool& incidentHasChanged,
|
|---|
| 67 | const G4DynamicParticle* originalTarget,
|
|---|
| 68 | G4ReactionProduct& targetParticle,
|
|---|
| 69 | G4bool& targetHasChanged,
|
|---|
| 70 | const G4Nucleus& targetNucleus,
|
|---|
| 71 | G4ReactionProduct& currentParticle,
|
|---|
| 72 | G4FastVector<G4ReactionProduct,256>& vec,
|
|---|
| 73 | G4int& vecLen,
|
|---|
| 74 | G4bool leadFlag,
|
|---|
| 75 | G4ReactionProduct& leadingStrangeParticle)
|
|---|
| 76 | {
|
|---|
| 77 | //
|
|---|
| 78 | // Derived from H. Fesefeldt's original FORTRAN code GENXPT
|
|---|
| 79 | //
|
|---|
| 80 | // Generation of x- and pT- values for incident, target, and all secondary
|
|---|
| 81 | // particles using a simple single variable description E D3S/DP3= F(Q)
|
|---|
| 82 | // with Q^2 = (M*X)^2 + PT^2. Final state kinematics are produced by an
|
|---|
| 83 | // FF-type iterative cascade method
|
|---|
| 84 | //
|
|---|
| 85 | // Internal units are GeV
|
|---|
| 86 | //
|
|---|
| 87 |
|
|---|
| 88 | // Protection in case no secondary has been created. In that case use
|
|---|
| 89 | // two-body scattering
|
|---|
| 90 | //
|
|---|
| 91 | if(vecLen == 0) return false;
|
|---|
| 92 |
|
|---|
| 93 | G4ParticleDefinition *aPiMinus = G4PionMinus::PionMinus();
|
|---|
| 94 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 95 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 96 | G4ParticleDefinition *aPiPlus = G4PionPlus::PionPlus();
|
|---|
| 97 | G4ParticleDefinition *aPiZero = G4PionZero::PionZero();
|
|---|
| 98 |
|
|---|
| 99 | G4int i, l;
|
|---|
| 100 | G4bool veryForward = false;
|
|---|
| 101 |
|
|---|
| 102 | const G4double ekOriginal = modifiedOriginal.GetKineticEnergy()/GeV;
|
|---|
| 103 | const G4double etOriginal = modifiedOriginal.GetTotalEnergy()/GeV;
|
|---|
| 104 | const G4double mOriginal = modifiedOriginal.GetMass()/GeV;
|
|---|
| 105 | const G4double pOriginal = modifiedOriginal.GetMomentum().mag()/GeV;
|
|---|
| 106 | G4double targetMass = targetParticle.GetDefinition()->GetPDGMass()/GeV;
|
|---|
| 107 | G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
|
|---|
| 108 | targetMass*targetMass +
|
|---|
| 109 | 2.0*targetMass*etOriginal ); // GeV
|
|---|
| 110 | G4double currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 111 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 112 | //
|
|---|
| 113 | // randomize the order of the secondary particles
|
|---|
| 114 | // note that the current and target particles are not affected
|
|---|
| 115 | //
|
|---|
| 116 | for( i=0; i<vecLen; ++i )
|
|---|
| 117 | {
|
|---|
| 118 | G4int itemp = G4int( G4UniformRand()*vecLen );
|
|---|
| 119 | G4ReactionProduct pTemp = *vec[itemp];
|
|---|
| 120 | *vec[itemp] = *vec[i];
|
|---|
| 121 | *vec[i] = pTemp;
|
|---|
| 122 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | if( currentMass == 0.0 && targetMass == 0.0 )
|
|---|
| 126 | {
|
|---|
| 127 | // Target and projectile have annihilated. Replace them with the first
|
|---|
| 128 | // two secondaries in the list. Current particle KE is maintained.
|
|---|
| 129 |
|
|---|
| 130 | G4double ek = currentParticle.GetKineticEnergy();
|
|---|
| 131 | G4ThreeVector m = currentParticle.GetMomentum();
|
|---|
| 132 | currentParticle = *vec[0];
|
|---|
| 133 | targetParticle = *vec[1];
|
|---|
| 134 | for( i=0; i<(vecLen-2); ++i )*vec[i] = *vec[i+2];
|
|---|
| 135 | G4ReactionProduct *temp = vec[vecLen-1];
|
|---|
| 136 | delete temp;
|
|---|
| 137 | temp = vec[vecLen-2];
|
|---|
| 138 | delete temp;
|
|---|
| 139 | vecLen -= 2;
|
|---|
| 140 | currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 141 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 142 | incidentHasChanged = true;
|
|---|
| 143 | targetHasChanged = true;
|
|---|
| 144 | currentParticle.SetKineticEnergy( ek );
|
|---|
| 145 | currentParticle.SetMomentum( m );
|
|---|
| 146 | veryForward = true;
|
|---|
| 147 | }
|
|---|
| 148 | const G4double atomicWeight = targetNucleus.GetN();
|
|---|
| 149 | const G4double atomicNumber = targetNucleus.GetZ();
|
|---|
| 150 | const G4double protonMass = aProton->GetPDGMass()/MeV;
|
|---|
| 151 |
|
|---|
| 152 | if (originalIncident->GetDefinition()->GetParticleSubType() == "kaon"
|
|---|
| 153 | && G4UniformRand() >= 0.7) {
|
|---|
| 154 | G4ReactionProduct temp = currentParticle;
|
|---|
| 155 | currentParticle = targetParticle;
|
|---|
| 156 | targetParticle = temp;
|
|---|
| 157 | incidentHasChanged = true;
|
|---|
| 158 | targetHasChanged = true;
|
|---|
| 159 | currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 160 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 161 | }
|
|---|
| 162 | const G4double afc = std::min( 0.75,
|
|---|
| 163 | 0.312+0.200*std::log(std::log(centerofmassEnergy*centerofmassEnergy))+
|
|---|
| 164 | std::pow(centerofmassEnergy*centerofmassEnergy,1.5)/6000.0 );
|
|---|
| 165 |
|
|---|
| 166 | G4double freeEnergy = centerofmassEnergy-currentMass-targetMass;
|
|---|
| 167 | G4double forwardEnergy = freeEnergy/2.;
|
|---|
| 168 | G4int forwardCount = 1; // number of particles in forward hemisphere
|
|---|
| 169 |
|
|---|
| 170 | G4double backwardEnergy = freeEnergy/2.;
|
|---|
| 171 | G4int backwardCount = 1; // number of particles in backward hemisphere
|
|---|
| 172 |
|
|---|
| 173 | if(veryForward)
|
|---|
| 174 | {
|
|---|
| 175 | if(currentParticle.GetSide()==-1)
|
|---|
| 176 | {
|
|---|
| 177 | forwardEnergy += currentMass;
|
|---|
| 178 | forwardCount --;
|
|---|
| 179 | backwardEnergy -= currentMass;
|
|---|
| 180 | backwardCount ++;
|
|---|
| 181 | }
|
|---|
| 182 | if(targetParticle.GetSide()!=-1)
|
|---|
| 183 | {
|
|---|
| 184 | backwardEnergy += targetMass;
|
|---|
| 185 | backwardCount --;
|
|---|
| 186 | forwardEnergy -= targetMass;
|
|---|
| 187 | forwardCount ++;
|
|---|
| 188 | }
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | for( i=0; i<vecLen; ++i )
|
|---|
| 192 | {
|
|---|
| 193 | if( vec[i]->GetSide() == -1 )
|
|---|
| 194 | {
|
|---|
| 195 | ++backwardCount;
|
|---|
| 196 | backwardEnergy -= vec[i]->GetMass()/GeV;
|
|---|
| 197 | } else {
|
|---|
| 198 | ++forwardCount;
|
|---|
| 199 | forwardEnergy -= vec[i]->GetMass()/GeV;
|
|---|
| 200 | }
|
|---|
| 201 | }
|
|---|
| 202 | //
|
|---|
| 203 | // Add particles from intranuclear cascade.
|
|---|
| 204 | // nuclearExcitationCount = number of new secondaries produced by nuclear excitation
|
|---|
| 205 | // extraCount = number of nucleons within these new secondaries
|
|---|
| 206 | //
|
|---|
| 207 | G4double xtarg;
|
|---|
| 208 | if( centerofmassEnergy < (2.0+G4UniformRand()) )
|
|---|
| 209 | xtarg = afc * (std::pow(atomicWeight,0.33)-1.0) * (2.0*backwardCount+vecLen+2)/2.0;
|
|---|
| 210 | else
|
|---|
| 211 | xtarg = afc * (std::pow(atomicWeight,0.33)-1.0) * (2.0*backwardCount);
|
|---|
| 212 | if( xtarg <= 0.0 )xtarg = 0.01;
|
|---|
| 213 | G4int nuclearExcitationCount = G4Poisson( xtarg );
|
|---|
| 214 | if(atomicWeight<1.0001) nuclearExcitationCount = 0;
|
|---|
| 215 | G4int extraNucleonCount = 0;
|
|---|
| 216 | G4double extraNucleonMass = 0.0;
|
|---|
| 217 | if( nuclearExcitationCount > 0 )
|
|---|
| 218 | {
|
|---|
| 219 | const G4double nucsup[] = { 1.00, 0.7, 0.5, 0.4, 0.35, 0.3 };
|
|---|
| 220 | const G4double psup[] = { 3., 6., 20., 50., 100., 1000. };
|
|---|
| 221 | G4int momentumBin = 0;
|
|---|
| 222 | while( (momentumBin < 6) &&
|
|---|
| 223 | (modifiedOriginal.GetTotalMomentum()/GeV > psup[momentumBin]) )
|
|---|
| 224 | ++momentumBin;
|
|---|
| 225 | momentumBin = std::min( 5, momentumBin );
|
|---|
| 226 | //
|
|---|
| 227 | // NOTE: in GENXPT, these new particles were given negative codes
|
|---|
| 228 | // here I use NewlyAdded = true instead
|
|---|
| 229 | //
|
|---|
| 230 |
|
|---|
| 231 | for( i=0; i<nuclearExcitationCount; ++i )
|
|---|
| 232 | {
|
|---|
| 233 | G4ReactionProduct * pVec = new G4ReactionProduct();
|
|---|
| 234 | if( G4UniformRand() < nucsup[momentumBin] )
|
|---|
| 235 | {
|
|---|
| 236 | if( G4UniformRand() > 1.0-atomicNumber/atomicWeight )
|
|---|
| 237 | pVec->SetDefinition( aProton );
|
|---|
| 238 | else
|
|---|
| 239 | pVec->SetDefinition( aNeutron );
|
|---|
| 240 | pVec->SetSide( -2 ); // -2 means backside nucleon
|
|---|
| 241 | ++extraNucleonCount;
|
|---|
| 242 | backwardEnergy += pVec->GetMass()/GeV;
|
|---|
| 243 | extraNucleonMass += pVec->GetMass()/GeV;
|
|---|
| 244 | }
|
|---|
| 245 | else
|
|---|
| 246 | {
|
|---|
| 247 | G4double ran = G4UniformRand();
|
|---|
| 248 | if( ran < 0.3181 )
|
|---|
| 249 | pVec->SetDefinition( aPiPlus );
|
|---|
| 250 | else if( ran < 0.6819 )
|
|---|
| 251 | pVec->SetDefinition( aPiZero );
|
|---|
| 252 | else
|
|---|
| 253 | pVec->SetDefinition( aPiMinus );
|
|---|
| 254 | pVec->SetSide( -1 ); // backside particle, but not a nucleon
|
|---|
| 255 | }
|
|---|
| 256 | pVec->SetNewlyAdded( true ); // true is the same as IPA(i)<0
|
|---|
| 257 | vec.SetElement( vecLen++, pVec );
|
|---|
| 258 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 259 | backwardEnergy -= pVec->GetMass()/GeV;
|
|---|
| 260 | ++backwardCount;
|
|---|
| 261 | }
|
|---|
| 262 | }
|
|---|
| 263 | //
|
|---|
| 264 | // assume conservation of kinetic energy in forward & backward hemispheres
|
|---|
| 265 | //
|
|---|
| 266 | G4int is, iskip;
|
|---|
| 267 | while( forwardEnergy <= 0.0 ) // must eliminate a particle from the forward side
|
|---|
| 268 | {
|
|---|
| 269 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 270 | iskip = G4int(G4UniformRand()*forwardCount) + 1; // 1 <= iskip <= forwardCount
|
|---|
| 271 | is = 0;
|
|---|
| 272 | G4int forwardParticlesLeft = 0;
|
|---|
| 273 | for( i=(vecLen-1); i>=0; --i )
|
|---|
| 274 | {
|
|---|
| 275 | if( vec[i]->GetSide() == 1 && vec[i]->GetMayBeKilled())
|
|---|
| 276 | {
|
|---|
| 277 | forwardParticlesLeft = 1;
|
|---|
| 278 | if( ++is == iskip )
|
|---|
| 279 | {
|
|---|
| 280 | forwardEnergy += vec[i]->GetMass()/GeV;
|
|---|
| 281 | for( G4int j=i; j<(vecLen-1); j++ )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 282 | --forwardCount;
|
|---|
| 283 | delete vec[vecLen-1];
|
|---|
| 284 | if( --vecLen == 0 )return false; // all the secondaries have been eliminated
|
|---|
| 285 | break; // --+
|
|---|
| 286 | } // |
|
|---|
| 287 | } // |
|
|---|
| 288 | } // break goes down to here
|
|---|
| 289 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 290 | if( forwardParticlesLeft == 0 )
|
|---|
| 291 | {
|
|---|
| 292 | G4int iremove = -1;
|
|---|
| 293 | for (G4int i = 0; i < vecLen; i++) {
|
|---|
| 294 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 295 | iremove = i;
|
|---|
| 296 | break;
|
|---|
| 297 | }
|
|---|
| 298 | }
|
|---|
| 299 | if (iremove == -1) {
|
|---|
| 300 | for (G4int i = 0; i < vecLen; i++) {
|
|---|
| 301 | if (vec[i]->GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 302 | iremove = i;
|
|---|
| 303 | break;
|
|---|
| 304 | }
|
|---|
| 305 | }
|
|---|
| 306 | }
|
|---|
| 307 | if (iremove == -1) iremove = 0;
|
|---|
| 308 |
|
|---|
| 309 | forwardEnergy += vec[iremove]->GetMass()/GeV;
|
|---|
| 310 | if (vec[iremove]->GetSide() > 0) --forwardCount;
|
|---|
| 311 |
|
|---|
| 312 | for (G4int i = iremove; i < vecLen-1; i++) *vec[i] = *vec[i+1];
|
|---|
| 313 | delete vec[vecLen-1];
|
|---|
| 314 | vecLen--;
|
|---|
| 315 | if (vecLen == 0) return false; // all secondaries have been eliminated
|
|---|
| 316 | break;
|
|---|
| 317 | }
|
|---|
| 318 | } // while
|
|---|
| 319 |
|
|---|
| 320 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 321 | while( backwardEnergy <= 0.0 ) // must eliminate a particle from the backward side
|
|---|
| 322 | {
|
|---|
| 323 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 324 | iskip = G4int(G4UniformRand()*backwardCount) + 1; // 1 <= iskip <= backwardCount
|
|---|
| 325 | is = 0;
|
|---|
| 326 | G4int backwardParticlesLeft = 0;
|
|---|
| 327 | for( i=(vecLen-1); i>=0; --i )
|
|---|
| 328 | {
|
|---|
| 329 | if( vec[i]->GetSide() < 0 && vec[i]->GetMayBeKilled())
|
|---|
| 330 | {
|
|---|
| 331 | backwardParticlesLeft = 1;
|
|---|
| 332 | if( ++is == iskip ) // eliminate the i'th particle
|
|---|
| 333 | {
|
|---|
| 334 | if( vec[i]->GetSide() == -2 )
|
|---|
| 335 | {
|
|---|
| 336 | --extraNucleonCount;
|
|---|
| 337 | extraNucleonMass -= vec[i]->GetMass()/GeV;
|
|---|
| 338 | backwardEnergy -= vec[i]->GetTotalEnergy()/GeV;
|
|---|
| 339 | }
|
|---|
| 340 | backwardEnergy += vec[i]->GetTotalEnergy()/GeV;
|
|---|
| 341 | for( G4int j=i; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 342 | --backwardCount;
|
|---|
| 343 | delete vec[vecLen-1];
|
|---|
| 344 | if( --vecLen == 0 )return false; // all the secondaries have been eliminated
|
|---|
| 345 | break;
|
|---|
| 346 | }
|
|---|
| 347 | }
|
|---|
| 348 | }
|
|---|
| 349 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 350 | if( backwardParticlesLeft == 0 )
|
|---|
| 351 | {
|
|---|
| 352 | G4int iremove = -1;
|
|---|
| 353 | for (G4int i = 0; i < vecLen; i++) {
|
|---|
| 354 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 355 | iremove = i;
|
|---|
| 356 | break;
|
|---|
| 357 | }
|
|---|
| 358 | }
|
|---|
| 359 | if (iremove == -1) {
|
|---|
| 360 | for (G4int i = 0; i < vecLen; i++) {
|
|---|
| 361 | if (vec[i]->GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 362 | iremove = i;
|
|---|
| 363 | break;
|
|---|
| 364 | }
|
|---|
| 365 | }
|
|---|
| 366 | }
|
|---|
| 367 | if (iremove == -1) iremove = 0;
|
|---|
| 368 |
|
|---|
| 369 | backwardEnergy += vec[iremove]->GetMass()/GeV;
|
|---|
| 370 | if (vec[iremove]->GetSide() > 0) --backwardCount;
|
|---|
| 371 |
|
|---|
| 372 | for (G4int i = iremove; i < vecLen-1; i++) *vec[i] = *vec[i+1];
|
|---|
| 373 | delete vec[vecLen-1];
|
|---|
| 374 | vecLen--;
|
|---|
| 375 | if (vecLen == 0) return false; // all secondaries have been eliminated
|
|---|
| 376 | break;
|
|---|
| 377 | }
|
|---|
| 378 | } // while
|
|---|
| 379 |
|
|---|
| 380 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 381 | //
|
|---|
| 382 | // define initial state vectors for Lorentz transformations
|
|---|
| 383 | // the pseudoParticles have non-standard masses, hence the "pseudo"
|
|---|
| 384 | //
|
|---|
| 385 | G4ReactionProduct pseudoParticle[8];
|
|---|
| 386 | for( i=0; i<8; ++i )pseudoParticle[i].SetZero();
|
|---|
| 387 |
|
|---|
| 388 | pseudoParticle[0].SetMass( mOriginal*GeV );
|
|---|
| 389 | pseudoParticle[0].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 390 | pseudoParticle[0].SetTotalEnergy(
|
|---|
| 391 | std::sqrt( pOriginal*pOriginal + mOriginal*mOriginal )*GeV );
|
|---|
| 392 |
|
|---|
| 393 | pseudoParticle[1].SetMass( protonMass*MeV ); // this could be targetMass
|
|---|
| 394 | pseudoParticle[1].SetTotalEnergy( protonMass*MeV );
|
|---|
| 395 |
|
|---|
| 396 | pseudoParticle[3].SetMass( protonMass*(1+extraNucleonCount)*MeV );
|
|---|
| 397 | pseudoParticle[3].SetTotalEnergy( protonMass*(1+extraNucleonCount)*MeV );
|
|---|
| 398 |
|
|---|
| 399 | pseudoParticle[2] = pseudoParticle[0] + pseudoParticle[1];
|
|---|
| 400 | pseudoParticle[3] = pseudoParticle[3] + pseudoParticle[0];
|
|---|
| 401 |
|
|---|
| 402 | pseudoParticle[0].Lorentz( pseudoParticle[0], pseudoParticle[2] );
|
|---|
| 403 | pseudoParticle[1].Lorentz( pseudoParticle[1], pseudoParticle[2] );
|
|---|
| 404 |
|
|---|
| 405 | //
|
|---|
| 406 | // main loop for 4-momentum generation
|
|---|
| 407 | // see Pitha-report (Aachen) for a detailed description of the method
|
|---|
| 408 | //
|
|---|
| 409 | G4double aspar, pt, et, x, pp, pp1, wgt;
|
|---|
| 410 | G4int innerCounter, outerCounter;
|
|---|
| 411 | G4bool eliminateThisParticle, resetEnergies, constantCrossSection;
|
|---|
| 412 |
|
|---|
| 413 | G4double forwardKinetic = 0.0, backwardKinetic = 0.0;
|
|---|
| 414 | //
|
|---|
| 415 | // process the secondary particles in reverse order
|
|---|
| 416 | // the incident particle is Done after the secondaries
|
|---|
| 417 | // nucleons, including the target, in the backward hemisphere are also Done later
|
|---|
| 418 | //
|
|---|
| 419 | G4int backwardNucleonCount = 0; // number of nucleons in backward hemisphere
|
|---|
| 420 | G4double totalEnergy, kineticEnergy, vecMass;
|
|---|
| 421 |
|
|---|
| 422 | for( i=(vecLen-1); i>=0; --i )
|
|---|
| 423 | {
|
|---|
| 424 | G4double phi = G4UniformRand()*twopi;
|
|---|
| 425 | if( vec[i]->GetNewlyAdded() ) // added from intranuclear cascade
|
|---|
| 426 | {
|
|---|
| 427 | if( vec[i]->GetSide() == -2 ) // is a nucleon
|
|---|
| 428 | {
|
|---|
| 429 | if( backwardNucleonCount < 18 )
|
|---|
| 430 | {
|
|---|
| 431 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 432 | for(G4int i=0; i<vecLen; i++) delete vec[i];
|
|---|
| 433 | vecLen = 0;
|
|---|
| 434 | throw G4HadReentrentException(__FILE__, __LINE__,
|
|---|
| 435 | "G4RPGFragmentation::ReactionStage : a pion has been counted as a backward nucleon");
|
|---|
| 436 | }
|
|---|
| 437 | vec[i]->SetSide( -3 );
|
|---|
| 438 | ++backwardNucleonCount;
|
|---|
| 439 | continue;
|
|---|
| 440 | }
|
|---|
| 441 | }
|
|---|
| 442 | }
|
|---|
| 443 | //
|
|---|
| 444 | // set pt and phi values, they are changed somewhat in the iteration loop
|
|---|
| 445 | // set mass parameter for lambda fragmentation model
|
|---|
| 446 | //
|
|---|
| 447 | vecMass = vec[i]->GetMass()/GeV;
|
|---|
| 448 | G4double ran = -std::log(1.0-G4UniformRand())/3.5;
|
|---|
| 449 | if( vec[i]->GetSide() == -2 ) // backward nucleon
|
|---|
| 450 | {
|
|---|
| 451 | if (vec[i]->GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 452 | vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 453 | aspar = 0.75;
|
|---|
| 454 | pt = std::sqrt( std::pow( ran, 1.7 ) );
|
|---|
| 455 | } else { // vec[i] must be a proton, neutron,
|
|---|
| 456 | aspar = 0.20; // lambda, sigma, xsi, or ion
|
|---|
| 457 | pt = std::sqrt( std::pow( ran, 1.2 ) );
|
|---|
| 458 | }
|
|---|
| 459 |
|
|---|
| 460 | } else { // not a backward nucleon
|
|---|
| 461 |
|
|---|
| 462 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 463 | aspar = 0.75;
|
|---|
| 464 | pt = std::sqrt( std::pow( ran, 1.7 ) );
|
|---|
| 465 | } else if (vec[i]->GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 466 | aspar = 0.70;
|
|---|
| 467 | pt = std::sqrt( std::pow( ran, 1.7 ) );
|
|---|
| 468 | } else { // vec[i] must be a proton, neutron,
|
|---|
| 469 | aspar = 0.65; // lambda, sigma, xsi, or ion
|
|---|
| 470 | pt = std::sqrt( std::pow( ran, 1.5 ) );
|
|---|
| 471 | }
|
|---|
| 472 | }
|
|---|
| 473 | pt = std::max( 0.001, pt );
|
|---|
| 474 | vec[i]->SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 475 | if( vec[i]->GetSide() > 0 )
|
|---|
| 476 | et = pseudoParticle[0].GetTotalEnergy()/GeV;
|
|---|
| 477 | else
|
|---|
| 478 | et = pseudoParticle[1].GetTotalEnergy()/GeV;
|
|---|
| 479 |
|
|---|
| 480 | //
|
|---|
| 481 | // start of outer iteration loop
|
|---|
| 482 | //
|
|---|
| 483 | outerCounter = 0;
|
|---|
| 484 | eliminateThisParticle = true;
|
|---|
| 485 | resetEnergies = true;
|
|---|
| 486 | dndl[0] = 0.0;
|
|---|
| 487 |
|
|---|
| 488 | while( ++outerCounter < 3 )
|
|---|
| 489 | {
|
|---|
| 490 | FragmentationIntegral(pt, et, aspar, vecMass);
|
|---|
| 491 |
|
|---|
| 492 | innerCounter = 0;
|
|---|
| 493 | vec[i]->SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 494 | //
|
|---|
| 495 | // start of inner iteration loop
|
|---|
| 496 | //
|
|---|
| 497 | while( ++innerCounter < 7 )
|
|---|
| 498 | {
|
|---|
| 499 | ran = G4UniformRand()*dndl[19];
|
|---|
| 500 | l = 1;
|
|---|
| 501 | while( ( ran > dndl[l] ) && ( l < 19 ) ) l++;
|
|---|
| 502 | x = (G4double(l-1) + G4UniformRand())/19.;
|
|---|
| 503 | if( vec[i]->GetSide() < 0 )x *= -1.;
|
|---|
| 504 | vec[i]->SetMomentum( x*et*GeV ); // set the z-momentum
|
|---|
| 505 | totalEnergy = std::sqrt( x*et*x*et + pt*pt + vecMass*vecMass );
|
|---|
| 506 | vec[i]->SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 507 | kineticEnergy = vec[i]->GetKineticEnergy()/GeV;
|
|---|
| 508 | if( vec[i]->GetSide() > 0 ) // forward side
|
|---|
| 509 | {
|
|---|
| 510 | if( (forwardKinetic+kineticEnergy) < 0.95*forwardEnergy )
|
|---|
| 511 | {
|
|---|
| 512 | pseudoParticle[4] = pseudoParticle[4] + (*vec[i]);
|
|---|
| 513 | forwardKinetic += kineticEnergy;
|
|---|
| 514 | outerCounter = 2; // leave outer loop
|
|---|
| 515 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 516 | resetEnergies = false;
|
|---|
| 517 | break; // leave inner loop
|
|---|
| 518 | }
|
|---|
| 519 | if( innerCounter > 5 )break; // leave inner loop
|
|---|
| 520 | if( backwardEnergy >= vecMass ) // switch sides
|
|---|
| 521 | {
|
|---|
| 522 | vec[i]->SetSide( -1 );
|
|---|
| 523 | forwardEnergy += vecMass;
|
|---|
| 524 | backwardEnergy -= vecMass;
|
|---|
| 525 | ++backwardCount;
|
|---|
| 526 | }
|
|---|
| 527 | } else { // backward side
|
|---|
| 528 | if( extraNucleonCount > 19 ) // commented out to duplicate ?bug? in GENXPT
|
|---|
| 529 | x = 0.999;
|
|---|
| 530 | G4double xxx = 0.95+0.05*extraNucleonCount/20.0;
|
|---|
| 531 | if( (backwardKinetic+kineticEnergy) < xxx*backwardEnergy )
|
|---|
| 532 | {
|
|---|
| 533 | pseudoParticle[5] = pseudoParticle[5] + (*vec[i]);
|
|---|
| 534 | backwardKinetic += kineticEnergy;
|
|---|
| 535 | outerCounter = 2; // leave outer loop
|
|---|
| 536 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 537 | resetEnergies = false;
|
|---|
| 538 | break; // leave inner loop
|
|---|
| 539 | }
|
|---|
| 540 | if( innerCounter > 5 )break; // leave inner loop
|
|---|
| 541 | if( forwardEnergy >= vecMass ) // switch sides
|
|---|
| 542 | {
|
|---|
| 543 | vec[i]->SetSide( 1 );
|
|---|
| 544 | forwardEnergy -= vecMass;
|
|---|
| 545 | backwardEnergy += vecMass;
|
|---|
| 546 | backwardCount--;
|
|---|
| 547 | }
|
|---|
| 548 | }
|
|---|
| 549 | G4ThreeVector momentum = vec[i]->GetMomentum();
|
|---|
| 550 | vec[i]->SetMomentum( momentum.x() * 0.9, momentum.y() * 0.9 );
|
|---|
| 551 | pt *= 0.9;
|
|---|
| 552 | dndl[19] *= 0.9;
|
|---|
| 553 | } // closes inner loop
|
|---|
| 554 | if( resetEnergies ) {
|
|---|
| 555 | // If we get to here, the inner loop has been done 6 times.
|
|---|
| 556 | // Reset the kinetic energies of previously done particles, if
|
|---|
| 557 | // they are lighter than protons and in the forward hemisphere,
|
|---|
| 558 | // then continue with outer loop.
|
|---|
| 559 | //
|
|---|
| 560 | forwardKinetic = 0.0;
|
|---|
| 561 | backwardKinetic = 0.0;
|
|---|
| 562 | pseudoParticle[4].SetZero();
|
|---|
| 563 | pseudoParticle[5].SetZero();
|
|---|
| 564 | for( l=i+1; l<vecLen; ++l ) {
|
|---|
| 565 | if (vec[l]->GetSide() > 0 ||
|
|---|
| 566 | vec[l]->GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 567 | vec[l]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 568 |
|
|---|
| 569 | G4double tempMass = vec[l]->GetMass()/MeV;
|
|---|
| 570 | totalEnergy = 0.95*vec[l]->GetTotalEnergy()/MeV + 0.05*tempMass;
|
|---|
| 571 | totalEnergy = std::max( tempMass, totalEnergy );
|
|---|
| 572 | vec[l]->SetTotalEnergy( totalEnergy*MeV );
|
|---|
| 573 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - tempMass*tempMass ) );
|
|---|
| 574 | pp1 = vec[l]->GetMomentum().mag()/MeV;
|
|---|
| 575 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 576 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 577 | vec[l]->SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 578 | } else {
|
|---|
| 579 | vec[l]->SetMomentum( vec[l]->GetMomentum() * (pp/pp1) );
|
|---|
| 580 | }
|
|---|
| 581 | G4double px = vec[l]->GetMomentum().x()/MeV;
|
|---|
| 582 | G4double py = vec[l]->GetMomentum().y()/MeV;
|
|---|
| 583 | pt = std::max( 1.0, std::sqrt( px*px + py*py ) )/GeV;
|
|---|
| 584 | if( vec[l]->GetSide() > 0 )
|
|---|
| 585 | {
|
|---|
| 586 | forwardKinetic += vec[l]->GetKineticEnergy()/GeV;
|
|---|
| 587 | pseudoParticle[4] = pseudoParticle[4] + (*vec[l]);
|
|---|
| 588 | } else {
|
|---|
| 589 | backwardKinetic += vec[l]->GetKineticEnergy()/GeV;
|
|---|
| 590 | pseudoParticle[5] = pseudoParticle[5] + (*vec[l]);
|
|---|
| 591 | }
|
|---|
| 592 | } // if pi, K or forward
|
|---|
| 593 | } // for l
|
|---|
| 594 | } // if resetEnergies
|
|---|
| 595 | } // closes outer loop
|
|---|
| 596 |
|
|---|
| 597 | if( eliminateThisParticle && vec[i]->GetMayBeKilled()) // not enough energy, eliminate this particle
|
|---|
| 598 | {
|
|---|
| 599 | if( vec[i]->GetSide() > 0 )
|
|---|
| 600 | {
|
|---|
| 601 | --forwardCount;
|
|---|
| 602 | forwardEnergy += vecMass;
|
|---|
| 603 | } else {
|
|---|
| 604 | if( vec[i]->GetSide() == -2 )
|
|---|
| 605 | {
|
|---|
| 606 | --extraNucleonCount;
|
|---|
| 607 | extraNucleonMass -= vecMass;
|
|---|
| 608 | backwardEnergy -= vecMass;
|
|---|
| 609 | }
|
|---|
| 610 | --backwardCount;
|
|---|
| 611 | backwardEnergy += vecMass;
|
|---|
| 612 | }
|
|---|
| 613 | for( G4int j=i; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 614 | G4ReactionProduct *temp = vec[vecLen-1];
|
|---|
| 615 | delete temp;
|
|---|
| 616 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 617 | if( --vecLen == 0 )return false; // all the secondaries have been eliminated
|
|---|
| 618 | }
|
|---|
| 619 | } // closes main for loop
|
|---|
| 620 |
|
|---|
| 621 | //
|
|---|
| 622 | // for the incident particle: it was placed in the forward hemisphere
|
|---|
| 623 | // set pt and phi values, they are changed somewhat in the iteration loop
|
|---|
| 624 | // set mass parameter for lambda fragmentation model
|
|---|
| 625 | //
|
|---|
| 626 | G4double phi = G4UniformRand()*twopi;
|
|---|
| 627 | G4double ran = -std::log(1.0-G4UniformRand());
|
|---|
| 628 | if (currentParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 629 | aspar = 0.60;
|
|---|
| 630 | pt = std::sqrt( std::pow( ran/6.0, 1.7 ) );
|
|---|
| 631 | } else if (currentParticle.GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 632 | aspar = 0.50;
|
|---|
| 633 | pt = std::sqrt( std::pow( ran/5.0, 1.4 ) );
|
|---|
| 634 | } else {
|
|---|
| 635 | aspar = 0.40;
|
|---|
| 636 | pt = std::sqrt( std::pow( ran/4.0, 1.2 ) );
|
|---|
| 637 | }
|
|---|
| 638 |
|
|---|
| 639 | currentParticle.SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 640 | et = pseudoParticle[0].GetTotalEnergy()/GeV;
|
|---|
| 641 | dndl[0] = 0.0;
|
|---|
| 642 | vecMass = currentParticle.GetMass()/GeV;
|
|---|
| 643 |
|
|---|
| 644 | FragmentationIntegral(pt, et, aspar, vecMass);
|
|---|
| 645 |
|
|---|
| 646 | ran = G4UniformRand()*dndl[19];
|
|---|
| 647 | l = 1;
|
|---|
| 648 | while( ( ran > dndl[l] ) && ( l < 19 ) ) l++;
|
|---|
| 649 | x = (G4double(l-1) + G4UniformRand())/19.;
|
|---|
| 650 | currentParticle.SetMomentum( x*et*GeV ); // set the z-momentum
|
|---|
| 651 | if( forwardEnergy < forwardKinetic )
|
|---|
| 652 | totalEnergy = vecMass + 0.04*std::fabs(normal());
|
|---|
| 653 | else
|
|---|
| 654 | totalEnergy = vecMass + forwardEnergy - forwardKinetic;
|
|---|
| 655 | currentParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 656 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - vecMass*vecMass ) )*GeV;
|
|---|
| 657 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 658 |
|
|---|
| 659 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 660 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 661 | currentParticle.SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 662 | } else {
|
|---|
| 663 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 664 | }
|
|---|
| 665 | pseudoParticle[4] = pseudoParticle[4] + currentParticle;
|
|---|
| 666 |
|
|---|
| 667 | //
|
|---|
| 668 | // Current particle now finished
|
|---|
| 669 | //
|
|---|
| 670 | // Begin target particle
|
|---|
| 671 | //
|
|---|
| 672 |
|
|---|
| 673 | if( backwardNucleonCount < 18 )
|
|---|
| 674 | {
|
|---|
| 675 | targetParticle.SetSide( -3 );
|
|---|
| 676 | ++backwardNucleonCount;
|
|---|
| 677 | }
|
|---|
| 678 | else
|
|---|
| 679 | {
|
|---|
| 680 | // set pt and phi values, they are changed somewhat in the iteration loop
|
|---|
| 681 | // set mass parameter for lambda fragmentation model
|
|---|
| 682 | //
|
|---|
| 683 | vecMass = targetParticle.GetMass()/GeV;
|
|---|
| 684 | ran = -std::log(1.0-G4UniformRand());
|
|---|
| 685 | aspar = 0.40;
|
|---|
| 686 | pt = std::max( 0.001, std::sqrt( std::pow( ran/4.0, 1.2 ) ) );
|
|---|
| 687 | targetParticle.SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 688 | et = pseudoParticle[1].GetTotalEnergy()/GeV;
|
|---|
| 689 | outerCounter = 0;
|
|---|
| 690 | eliminateThisParticle = true; // should never eliminate the target particle
|
|---|
| 691 | resetEnergies = true;
|
|---|
| 692 | dndl[0] = 0.0;
|
|---|
| 693 |
|
|---|
| 694 | while( ++outerCounter < 3 ) // start of outer iteration loop
|
|---|
| 695 | {
|
|---|
| 696 | FragmentationIntegral(pt, et, aspar, vecMass);
|
|---|
| 697 |
|
|---|
| 698 | innerCounter = 0;
|
|---|
| 699 | while( ++innerCounter < 7 ) // start of inner iteration loop
|
|---|
| 700 | {
|
|---|
| 701 | ran = G4UniformRand()*dndl[19];
|
|---|
| 702 | l = 1;
|
|---|
| 703 | while( ( ran > dndl[l] ) && ( l < 19 ) ) l++;
|
|---|
| 704 | x = (G4double(l-1) + G4UniformRand())/19.;
|
|---|
| 705 | if( targetParticle.GetSide() < 0 )x *= -1.;
|
|---|
| 706 | targetParticle.SetMomentum( x*et*GeV ); // set the z-momentum
|
|---|
| 707 | totalEnergy = std::sqrt( x*et*x*et + pt*pt + vecMass*vecMass );
|
|---|
| 708 | targetParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 709 | if( targetParticle.GetSide() < 0 )
|
|---|
| 710 | {
|
|---|
| 711 | if( extraNucleonCount > 19 )x=0.999;
|
|---|
| 712 | G4double xxx = 0.95+0.05*extraNucleonCount/20.0;
|
|---|
| 713 | if( (backwardKinetic+totalEnergy-vecMass) < xxx*backwardEnergy )
|
|---|
| 714 | {
|
|---|
| 715 | pseudoParticle[5] = pseudoParticle[5] + targetParticle;
|
|---|
| 716 | backwardKinetic += totalEnergy - vecMass;
|
|---|
| 717 | // pseudoParticle[6] = pseudoParticle[4] + pseudoParticle[5];
|
|---|
| 718 | // pseudoParticle[6].SetMomentum( 0.0 ); // set z-momentum
|
|---|
| 719 | outerCounter = 2; // leave outer loop
|
|---|
| 720 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 721 | resetEnergies = false;
|
|---|
| 722 | break; // leave inner loop
|
|---|
| 723 | }
|
|---|
| 724 | if( innerCounter > 5 )break; // leave inner loop
|
|---|
| 725 | if( forwardEnergy >= vecMass ) // switch sides
|
|---|
| 726 | {
|
|---|
| 727 | targetParticle.SetSide( 1 );
|
|---|
| 728 | forwardEnergy -= vecMass;
|
|---|
| 729 | backwardEnergy += vecMass;
|
|---|
| 730 | --backwardCount;
|
|---|
| 731 | }
|
|---|
| 732 | G4ThreeVector momentum = targetParticle.GetMomentum();
|
|---|
| 733 | targetParticle.SetMomentum( momentum.x() * 0.9, momentum.y() * 0.9 );
|
|---|
| 734 | pt *= 0.9;
|
|---|
| 735 | dndl[19] *= 0.9;
|
|---|
| 736 | }
|
|---|
| 737 | else // target has gone to forward side
|
|---|
| 738 | {
|
|---|
| 739 | if( forwardEnergy < forwardKinetic )
|
|---|
| 740 | totalEnergy = vecMass + 0.04*std::fabs(normal());
|
|---|
| 741 | else
|
|---|
| 742 | totalEnergy = vecMass + forwardEnergy - forwardKinetic;
|
|---|
| 743 | targetParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 744 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - vecMass*vecMass ) )*GeV;
|
|---|
| 745 | pp1 = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 746 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 747 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 748 | targetParticle.SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 749 | } else {
|
|---|
| 750 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 751 | }
|
|---|
| 752 |
|
|---|
| 753 | pseudoParticle[4] = pseudoParticle[4] + targetParticle;
|
|---|
| 754 | outerCounter = 2; // leave outer loop
|
|---|
| 755 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 756 | resetEnergies = false;
|
|---|
| 757 | break; // leave inner loop
|
|---|
| 758 | }
|
|---|
| 759 | } // closes inner loop
|
|---|
| 760 |
|
|---|
| 761 | if( resetEnergies ) {
|
|---|
| 762 | // If we get to here, the inner loop has been done 6 times.
|
|---|
| 763 | // Reset the kinetic energies of previously done particles,
|
|---|
| 764 | // if they are lighter than protons and in the forward hemisphere,
|
|---|
| 765 | // then continue with outer loop.
|
|---|
| 766 |
|
|---|
| 767 | forwardKinetic = backwardKinetic = 0.0;
|
|---|
| 768 | pseudoParticle[4].SetZero();
|
|---|
| 769 | pseudoParticle[5].SetZero();
|
|---|
| 770 | for( l=0; l<vecLen; ++l ) {
|
|---|
| 771 | if (vec[l]->GetSide() > 0 ||
|
|---|
| 772 | vec[l]->GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 773 | vec[l]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 774 | G4double tempMass = vec[l]->GetMass()/GeV;
|
|---|
| 775 | totalEnergy =
|
|---|
| 776 | std::max( tempMass, 0.95*vec[l]->GetTotalEnergy()/GeV + 0.05*tempMass );
|
|---|
| 777 | vec[l]->SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 778 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - tempMass*tempMass ) )*GeV;
|
|---|
| 779 | pp1 = vec[l]->GetMomentum().mag()/MeV;
|
|---|
| 780 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 781 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 782 | vec[l]->SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 783 | } else {
|
|---|
| 784 | vec[l]->SetMomentum( vec[l]->GetMomentum() * (pp/pp1) );
|
|---|
| 785 | }
|
|---|
| 786 | pt = std::max( 0.001*GeV, std::sqrt( sqr(vec[l]->GetMomentum().x()/MeV) +
|
|---|
| 787 | sqr(vec[l]->GetMomentum().y()/MeV) ) )/GeV;
|
|---|
| 788 | if( vec[l]->GetSide() > 0)
|
|---|
| 789 | {
|
|---|
| 790 | forwardKinetic += vec[l]->GetKineticEnergy()/GeV;
|
|---|
| 791 | pseudoParticle[4] = pseudoParticle[4] + (*vec[l]);
|
|---|
| 792 | } else {
|
|---|
| 793 | backwardKinetic += vec[l]->GetKineticEnergy()/GeV;
|
|---|
| 794 | pseudoParticle[5] = pseudoParticle[5] + (*vec[l]);
|
|---|
| 795 | }
|
|---|
| 796 | } // if pi, K or forward
|
|---|
| 797 | } // for l
|
|---|
| 798 | } // if (resetEnergies)
|
|---|
| 799 | } // closes outer loop
|
|---|
| 800 |
|
|---|
| 801 | // if( eliminateThisParticle ) // not enough energy, eliminate target
|
|---|
| 802 | // {
|
|---|
| 803 | // G4cerr << "Warning: eliminating target particle" << G4endl;
|
|---|
| 804 | // exit( EXIT_FAILURE );
|
|---|
| 805 | // }
|
|---|
| 806 | }
|
|---|
| 807 | //
|
|---|
| 808 | // Target particle finished.
|
|---|
| 809 | //
|
|---|
| 810 | // Now produce backward nucleons with a cluster model
|
|---|
| 811 | //
|
|---|
| 812 | pseudoParticle[6].Lorentz( pseudoParticle[3], pseudoParticle[2] );
|
|---|
| 813 | pseudoParticle[6] = pseudoParticle[6] - pseudoParticle[4];
|
|---|
| 814 | pseudoParticle[6] = pseudoParticle[6] - pseudoParticle[5];
|
|---|
| 815 | if( backwardNucleonCount == 1 ) // target particle is the only backward nucleon
|
|---|
| 816 | {
|
|---|
| 817 | G4double ekin =
|
|---|
| 818 | std::min( backwardEnergy-backwardKinetic, centerofmassEnergy/2.0-protonMass/GeV );
|
|---|
| 819 |
|
|---|
| 820 | if( ekin < 0.04 )ekin = 0.04 * std::fabs( normal() );
|
|---|
| 821 | vecMass = targetParticle.GetMass()/GeV;
|
|---|
| 822 | totalEnergy = ekin+vecMass;
|
|---|
| 823 | targetParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 824 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - vecMass*vecMass ) )*GeV;
|
|---|
| 825 | pp1 = pseudoParticle[6].GetMomentum().mag()/MeV;
|
|---|
| 826 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 827 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 828 | targetParticle.SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 829 | } else {
|
|---|
| 830 | targetParticle.SetMomentum( pseudoParticle[6].GetMomentum() * (pp/pp1) );
|
|---|
| 831 | }
|
|---|
| 832 | pseudoParticle[5] = pseudoParticle[5] + targetParticle;
|
|---|
| 833 | }
|
|---|
| 834 | else if (backwardNucleonCount > 1)
|
|---|
| 835 | {
|
|---|
| 836 | const G4double cpar[] = { 1.60, 1.35, 1.15, 1.10 };
|
|---|
| 837 | const G4double gpar[] = { 2.60, 1.80, 1.30, 1.20 };
|
|---|
| 838 |
|
|---|
| 839 | G4int tempCount = 5;
|
|---|
| 840 | if (backwardNucleonCount < 5) tempCount = backwardNucleonCount;
|
|---|
| 841 | tempCount -= 2;
|
|---|
| 842 |
|
|---|
| 843 | G4double rmb = 0.;
|
|---|
| 844 | if( targetParticle.GetSide() == -3 ) rmb += targetParticle.GetMass()/GeV;
|
|---|
| 845 | for( i=0; i<vecLen; ++i )
|
|---|
| 846 | {
|
|---|
| 847 | if( vec[i]->GetSide() == -3 ) rmb += vec[i]->GetMass()/GeV;
|
|---|
| 848 | }
|
|---|
| 849 | rmb += std::pow(-std::log(1.0-G4UniformRand()),1./cpar[tempCount]) / gpar[tempCount];
|
|---|
| 850 | totalEnergy = pseudoParticle[6].GetTotalEnergy()/GeV;
|
|---|
| 851 | vecMass = std::min( rmb, totalEnergy );
|
|---|
| 852 | pseudoParticle[6].SetMass( vecMass*GeV );
|
|---|
| 853 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - vecMass*vecMass ) )*GeV;
|
|---|
| 854 | pp1 = pseudoParticle[6].GetMomentum().mag()/MeV;
|
|---|
| 855 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 856 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 857 | pseudoParticle[6].SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 858 | } else {
|
|---|
| 859 | pseudoParticle[6].SetMomentum( pseudoParticle[6].GetMomentum() * (-pp/pp1) );
|
|---|
| 860 | }
|
|---|
| 861 | G4FastVector<G4ReactionProduct,256> tempV; // tempV contains the backward nucleons
|
|---|
| 862 | tempV.Initialize( backwardNucleonCount );
|
|---|
| 863 | G4int tempLen = 0;
|
|---|
| 864 | if( targetParticle.GetSide() == -3 )tempV.SetElement( tempLen++, &targetParticle );
|
|---|
| 865 | for( i=0; i<vecLen; ++i )
|
|---|
| 866 | {
|
|---|
| 867 | if( vec[i]->GetSide() == -3 )tempV.SetElement( tempLen++, vec[i] );
|
|---|
| 868 | }
|
|---|
| 869 | if( tempLen != backwardNucleonCount )
|
|---|
| 870 | {
|
|---|
| 871 | G4cerr << "tempLen is not the same as backwardNucleonCount" << G4endl;
|
|---|
| 872 | G4cerr << "tempLen = " << tempLen;
|
|---|
| 873 | G4cerr << ", backwardNucleonCount = " << backwardNucleonCount << G4endl;
|
|---|
| 874 | G4cerr << "targetParticle side = " << targetParticle.GetSide() << G4endl;
|
|---|
| 875 | G4cerr << "currentParticle side = " << currentParticle.GetSide() << G4endl;
|
|---|
| 876 | for( i=0; i<vecLen; ++i )
|
|---|
| 877 | G4cerr << "particle #" << i << " side = " << vec[i]->GetSide() << G4endl;
|
|---|
| 878 | exit( EXIT_FAILURE );
|
|---|
| 879 | }
|
|---|
| 880 | constantCrossSection = true;
|
|---|
| 881 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 882 | if( tempLen >= 2 )
|
|---|
| 883 | {
|
|---|
| 884 | wgt = GenerateNBodyEvent(
|
|---|
| 885 | pseudoParticle[6].GetMass(), constantCrossSection, tempV, tempLen );
|
|---|
| 886 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 887 | if( targetParticle.GetSide() == -3 )
|
|---|
| 888 | {
|
|---|
| 889 | targetParticle.Lorentz( targetParticle, pseudoParticle[6] );
|
|---|
| 890 | // tempV contains the real stuff
|
|---|
| 891 | pseudoParticle[5] = pseudoParticle[5] + targetParticle;
|
|---|
| 892 | }
|
|---|
| 893 | for( i=0; i<vecLen; ++i )
|
|---|
| 894 | {
|
|---|
| 895 | if( vec[i]->GetSide() == -3 )
|
|---|
| 896 | {
|
|---|
| 897 | vec[i]->Lorentz( *vec[i], pseudoParticle[6] );
|
|---|
| 898 | pseudoParticle[5] = pseudoParticle[5] + (*vec[i]);
|
|---|
| 899 | }
|
|---|
| 900 | }
|
|---|
| 901 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 902 | }
|
|---|
| 903 | }
|
|---|
| 904 | else return false;
|
|---|
| 905 |
|
|---|
| 906 | //
|
|---|
| 907 | // Lorentz transformation in lab system
|
|---|
| 908 | //
|
|---|
| 909 | if( vecLen == 0 )return false; // all the secondaries have been eliminated
|
|---|
| 910 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 911 |
|
|---|
| 912 | currentParticle.Lorentz( currentParticle, pseudoParticle[1] );
|
|---|
| 913 | targetParticle.Lorentz( targetParticle, pseudoParticle[1] );
|
|---|
| 914 | for( i=0; i<vecLen; ++i ) vec[i]->Lorentz( *vec[i], pseudoParticle[1] );
|
|---|
| 915 |
|
|---|
| 916 | // leadFlag will be true if original particle and incident particle are
|
|---|
| 917 | // both strange, in which case the incident particle becomes the leading
|
|---|
| 918 | // particle.
|
|---|
| 919 | // leadFlag will also be true if the target particle is strange, but the
|
|---|
| 920 | // incident particle is not, in which case the target particle becomes the
|
|---|
| 921 | // leading particle.
|
|---|
| 922 |
|
|---|
| 923 | G4bool leadingStrangeParticleHasChanged = true;
|
|---|
| 924 | if( leadFlag )
|
|---|
| 925 | {
|
|---|
| 926 | if( currentParticle.GetDefinition() == leadingStrangeParticle.GetDefinition() )
|
|---|
| 927 | leadingStrangeParticleHasChanged = false;
|
|---|
| 928 | if( leadingStrangeParticleHasChanged &&
|
|---|
| 929 | ( targetParticle.GetDefinition() == leadingStrangeParticle.GetDefinition() ) )
|
|---|
| 930 | leadingStrangeParticleHasChanged = false;
|
|---|
| 931 | if( leadingStrangeParticleHasChanged )
|
|---|
| 932 | {
|
|---|
| 933 | for( i=0; i<vecLen; i++ )
|
|---|
| 934 | {
|
|---|
| 935 | if( vec[i]->GetDefinition() == leadingStrangeParticle.GetDefinition() )
|
|---|
| 936 | {
|
|---|
| 937 | leadingStrangeParticleHasChanged = false;
|
|---|
| 938 | break;
|
|---|
| 939 | }
|
|---|
| 940 | }
|
|---|
| 941 | }
|
|---|
| 942 | if( leadingStrangeParticleHasChanged )
|
|---|
| 943 | {
|
|---|
| 944 | G4bool leadTest =
|
|---|
| 945 | (leadingStrangeParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 946 | leadingStrangeParticle.GetDefinition()->GetParticleSubType() == "pi");
|
|---|
| 947 | G4bool targetTest =
|
|---|
| 948 | (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 949 | targetParticle.GetDefinition()->GetParticleSubType() == "pi");
|
|---|
| 950 |
|
|---|
| 951 | // following modified by JLC 22-Oct-97
|
|---|
| 952 |
|
|---|
| 953 | if( (leadTest&&targetTest) || !(leadTest||targetTest) ) // both true or both false
|
|---|
| 954 | {
|
|---|
| 955 | targetParticle.SetDefinitionAndUpdateE( leadingStrangeParticle.GetDefinition() );
|
|---|
| 956 | targetHasChanged = true;
|
|---|
| 957 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 958 | }
|
|---|
| 959 | else
|
|---|
| 960 | {
|
|---|
| 961 | currentParticle.SetDefinitionAndUpdateE( leadingStrangeParticle.GetDefinition() );
|
|---|
| 962 | incidentHasChanged = false;
|
|---|
| 963 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 964 | }
|
|---|
| 965 | }
|
|---|
| 966 | } // end of if( leadFlag )
|
|---|
| 967 |
|
|---|
| 968 | // Get number of final state nucleons and nucleons remaining in
|
|---|
| 969 | // target nucleus
|
|---|
| 970 |
|
|---|
| 971 | std::pair<G4int, G4int> finalStateNucleons =
|
|---|
| 972 | GetFinalStateNucleons(originalTarget, vec, vecLen);
|
|---|
| 973 |
|
|---|
| 974 | G4int protonsInFinalState = finalStateNucleons.first;
|
|---|
| 975 | G4int neutronsInFinalState = finalStateNucleons.second;
|
|---|
| 976 |
|
|---|
| 977 | G4int numberofFinalStateNucleons =
|
|---|
| 978 | protonsInFinalState + neutronsInFinalState;
|
|---|
| 979 |
|
|---|
| 980 | if (currentParticle.GetDefinition()->GetBaryonNumber() == 1 &&
|
|---|
| 981 | targetParticle.GetDefinition()->GetBaryonNumber() == 1 &&
|
|---|
| 982 | originalIncident->GetDefinition()->GetPDGMass() <
|
|---|
| 983 | G4Lambda::Lambda()->GetPDGMass())
|
|---|
| 984 | numberofFinalStateNucleons++;
|
|---|
| 985 |
|
|---|
| 986 | numberofFinalStateNucleons = std::max(1, numberofFinalStateNucleons);
|
|---|
| 987 |
|
|---|
| 988 | G4int PinNucleus = std::max(0,
|
|---|
| 989 | G4int(targetNucleus.GetZ()) - protonsInFinalState);
|
|---|
| 990 | G4int NinNucleus = std::max(0,
|
|---|
| 991 | G4int(targetNucleus.GetN()-targetNucleus.GetZ()) - neutronsInFinalState);
|
|---|
| 992 |
|
|---|
| 993 | pseudoParticle[3].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 994 | pseudoParticle[3].SetMass( mOriginal*GeV );
|
|---|
| 995 | pseudoParticle[3].SetTotalEnergy(
|
|---|
| 996 | std::sqrt( pOriginal*pOriginal + mOriginal*mOriginal )*GeV );
|
|---|
| 997 |
|
|---|
| 998 | G4ParticleDefinition * aOrgDef = modifiedOriginal.GetDefinition();
|
|---|
| 999 | G4int diff = 0;
|
|---|
| 1000 | if(aOrgDef == G4Proton::Proton() || aOrgDef == G4Neutron::Neutron() ) diff = 1;
|
|---|
| 1001 | if(numberofFinalStateNucleons == 1) diff = 0;
|
|---|
| 1002 | pseudoParticle[4].SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 1003 | pseudoParticle[4].SetMass( protonMass*(numberofFinalStateNucleons-diff)*MeV );
|
|---|
| 1004 | pseudoParticle[4].SetTotalEnergy( protonMass*(numberofFinalStateNucleons-diff)*MeV );
|
|---|
| 1005 |
|
|---|
| 1006 | G4double theoreticalKinetic =
|
|---|
| 1007 | pseudoParticle[3].GetTotalEnergy()/MeV +
|
|---|
| 1008 | pseudoParticle[4].GetTotalEnergy()/MeV -
|
|---|
| 1009 | currentParticle.GetMass()/MeV -
|
|---|
| 1010 | targetParticle.GetMass()/MeV;
|
|---|
| 1011 |
|
|---|
| 1012 | G4double simulatedKinetic =
|
|---|
| 1013 | currentParticle.GetKineticEnergy()/MeV + targetParticle.GetKineticEnergy()/MeV;
|
|---|
| 1014 |
|
|---|
| 1015 | pseudoParticle[5] = pseudoParticle[3] + pseudoParticle[4];
|
|---|
| 1016 | pseudoParticle[3].Lorentz( pseudoParticle[3], pseudoParticle[5] );
|
|---|
| 1017 | pseudoParticle[4].Lorentz( pseudoParticle[4], pseudoParticle[5] );
|
|---|
| 1018 |
|
|---|
| 1019 | pseudoParticle[7].SetZero();
|
|---|
| 1020 | pseudoParticle[7] = pseudoParticle[7] + currentParticle;
|
|---|
| 1021 | pseudoParticle[7] = pseudoParticle[7] + targetParticle;
|
|---|
| 1022 |
|
|---|
| 1023 | for( i=0; i<vecLen; ++i )
|
|---|
| 1024 | {
|
|---|
| 1025 | pseudoParticle[7] = pseudoParticle[7] + *vec[i];
|
|---|
| 1026 | simulatedKinetic += vec[i]->GetKineticEnergy()/MeV;
|
|---|
| 1027 | theoreticalKinetic -= vec[i]->GetMass()/MeV;
|
|---|
| 1028 | }
|
|---|
| 1029 |
|
|---|
| 1030 | if( vecLen <= 16 && vecLen > 0 )
|
|---|
| 1031 | {
|
|---|
| 1032 | // must create a new set of ReactionProducts here because GenerateNBody will
|
|---|
| 1033 | // modify the momenta for the particles, and we don't want to do this
|
|---|
| 1034 | //
|
|---|
| 1035 | G4ReactionProduct tempR[130];
|
|---|
| 1036 | tempR[0] = currentParticle;
|
|---|
| 1037 | tempR[1] = targetParticle;
|
|---|
| 1038 | for( i=0; i<vecLen; ++i )tempR[i+2] = *vec[i];
|
|---|
| 1039 | G4FastVector<G4ReactionProduct,256> tempV;
|
|---|
| 1040 | tempV.Initialize( vecLen+2 );
|
|---|
| 1041 | G4int tempLen = 0;
|
|---|
| 1042 | for( i=0; i<vecLen+2; ++i )tempV.SetElement( tempLen++, &tempR[i] );
|
|---|
| 1043 | constantCrossSection = true;
|
|---|
| 1044 |
|
|---|
| 1045 | wgt = GenerateNBodyEvent( pseudoParticle[3].GetTotalEnergy()/MeV+
|
|---|
| 1046 | pseudoParticle[4].GetTotalEnergy()/MeV,
|
|---|
| 1047 | constantCrossSection, tempV, tempLen );
|
|---|
| 1048 | if (wgt == -1) {
|
|---|
| 1049 | G4double Qvalue = 0;
|
|---|
| 1050 | for (i = 0; i < tempLen; i++) Qvalue += tempV[i]->GetMass();
|
|---|
| 1051 | wgt = GenerateNBodyEvent( Qvalue/MeV,
|
|---|
| 1052 | constantCrossSection, tempV, tempLen );
|
|---|
| 1053 | }
|
|---|
| 1054 | if(wgt>-.5)
|
|---|
| 1055 | {
|
|---|
| 1056 | theoreticalKinetic = 0.0;
|
|---|
| 1057 | for( i=0; i<tempLen; ++i )
|
|---|
| 1058 | {
|
|---|
| 1059 | pseudoParticle[6].Lorentz( *tempV[i], pseudoParticle[4] );
|
|---|
| 1060 | theoreticalKinetic += pseudoParticle[6].GetKineticEnergy()/MeV;
|
|---|
| 1061 | }
|
|---|
| 1062 | }
|
|---|
| 1063 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1064 | }
|
|---|
| 1065 | //
|
|---|
| 1066 | // Make sure, that the kinetic energies are correct
|
|---|
| 1067 | //
|
|---|
| 1068 | if( simulatedKinetic != 0.0 )
|
|---|
| 1069 | {
|
|---|
| 1070 | wgt = (theoreticalKinetic)/simulatedKinetic;
|
|---|
| 1071 | theoreticalKinetic = currentParticle.GetKineticEnergy()/MeV * wgt;
|
|---|
| 1072 | simulatedKinetic = theoreticalKinetic;
|
|---|
| 1073 | currentParticle.SetKineticEnergy( theoreticalKinetic*MeV );
|
|---|
| 1074 | pp = currentParticle.GetTotalMomentum()/MeV;
|
|---|
| 1075 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 1076 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 1077 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 1078 | currentParticle.SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 1079 | } else {
|
|---|
| 1080 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 1081 | }
|
|---|
| 1082 | theoreticalKinetic = targetParticle.GetKineticEnergy()/MeV * wgt;
|
|---|
| 1083 | targetParticle.SetKineticEnergy( theoreticalKinetic*MeV );
|
|---|
| 1084 | simulatedKinetic += theoreticalKinetic;
|
|---|
| 1085 | pp = targetParticle.GetTotalMomentum()/MeV;
|
|---|
| 1086 | pp1 = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 1087 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1088 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 1089 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 1090 | targetParticle.SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 1091 | } else {
|
|---|
| 1092 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 1093 | }
|
|---|
| 1094 |
|
|---|
| 1095 | for( i=0; i<vecLen; ++i ) {
|
|---|
| 1096 | theoreticalKinetic = vec[i]->GetKineticEnergy()/MeV * wgt;
|
|---|
| 1097 | simulatedKinetic += theoreticalKinetic;
|
|---|
| 1098 | vec[i]->SetKineticEnergy( theoreticalKinetic*MeV );
|
|---|
| 1099 | pp = vec[i]->GetTotalMomentum()/MeV;
|
|---|
| 1100 | pp1 = vec[i]->GetMomentum().mag()/MeV;
|
|---|
| 1101 | if( pp1 < 1.0e-6*GeV ) {
|
|---|
| 1102 | G4ThreeVector iso = Isotropic(pp);
|
|---|
| 1103 | vec[i]->SetMomentum( iso.x(), iso.y(), iso.z() );
|
|---|
| 1104 | } else {
|
|---|
| 1105 | vec[i]->SetMomentum( vec[i]->GetMomentum() * (pp/pp1) );
|
|---|
| 1106 | }
|
|---|
| 1107 | }
|
|---|
| 1108 | }
|
|---|
| 1109 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1110 |
|
|---|
| 1111 | Rotate( numberofFinalStateNucleons, pseudoParticle[3].GetMomentum(),
|
|---|
| 1112 | modifiedOriginal, originalIncident, targetNucleus,
|
|---|
| 1113 | currentParticle, targetParticle, vec, vecLen );
|
|---|
| 1114 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1115 | //
|
|---|
| 1116 | // add black track particles
|
|---|
| 1117 | // the total number of particles produced is restricted to 198
|
|---|
| 1118 | // this may have influence on very high energies
|
|---|
| 1119 | //
|
|---|
| 1120 | if( atomicWeight >= 1.5 )
|
|---|
| 1121 | {
|
|---|
| 1122 | // npnb is number of proton/neutron black track particles
|
|---|
| 1123 | // ndta is the number of deuterons, tritons, and alphas produced
|
|---|
| 1124 | // epnb is the kinetic energy available for proton/neutron black track particles
|
|---|
| 1125 | // edta is the kinetic energy available for deuteron/triton/alpha particles
|
|---|
| 1126 | //
|
|---|
| 1127 | G4int npnb = 0;
|
|---|
| 1128 | G4int ndta = 0;
|
|---|
| 1129 |
|
|---|
| 1130 | G4double epnb, edta;
|
|---|
| 1131 | if (veryForward) {
|
|---|
| 1132 | epnb = targetNucleus.GetAnnihilationPNBlackTrackEnergy();
|
|---|
| 1133 | edta = targetNucleus.GetAnnihilationDTABlackTrackEnergy();
|
|---|
| 1134 | } else {
|
|---|
| 1135 | epnb = targetNucleus.GetPNBlackTrackEnergy();
|
|---|
| 1136 | edta = targetNucleus.GetDTABlackTrackEnergy();
|
|---|
| 1137 | }
|
|---|
| 1138 |
|
|---|
| 1139 | const G4double pnCutOff = 0.001;
|
|---|
| 1140 | const G4double dtaCutOff = 0.001;
|
|---|
| 1141 | const G4double kineticMinimum = 1.e-6;
|
|---|
| 1142 | const G4double kineticFactor = -0.010;
|
|---|
| 1143 | G4double sprob = 0.0; // sprob = probability of self-absorption in heavy molecules
|
|---|
| 1144 | const G4double ekIncident = originalIncident->GetKineticEnergy()/GeV;
|
|---|
| 1145 | if( ekIncident >= 5.0 )sprob = std::min( 1.0, 0.6*std::log(ekIncident-4.0) );
|
|---|
| 1146 | if( epnb >= pnCutOff )
|
|---|
| 1147 | {
|
|---|
| 1148 | npnb = G4Poisson((1.5+1.25*numberofFinalStateNucleons)*epnb/(epnb+edta));
|
|---|
| 1149 | if( numberofFinalStateNucleons + npnb > atomicWeight )
|
|---|
| 1150 | npnb = G4int(atomicWeight+0.00001 - numberofFinalStateNucleons);
|
|---|
| 1151 | npnb = std::min( npnb, 127-vecLen );
|
|---|
| 1152 | }
|
|---|
| 1153 | if( edta >= dtaCutOff )
|
|---|
| 1154 | {
|
|---|
| 1155 | ndta = G4Poisson( (1.5+1.25*numberofFinalStateNucleons)*edta/(epnb+edta) );
|
|---|
| 1156 | ndta = std::min( ndta, 127-vecLen );
|
|---|
| 1157 | }
|
|---|
| 1158 | if (npnb == 0 && ndta == 0) npnb = 1;
|
|---|
| 1159 |
|
|---|
| 1160 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1161 |
|
|---|
| 1162 | AddBlackTrackParticles(epnb, npnb, edta, ndta, sprob, kineticMinimum,
|
|---|
| 1163 | kineticFactor, modifiedOriginal,
|
|---|
| 1164 | PinNucleus, NinNucleus, targetNucleus,
|
|---|
| 1165 | vec, vecLen);
|
|---|
| 1166 | }
|
|---|
| 1167 | // if( centerofmassEnergy <= (4.0+G4UniformRand()) )
|
|---|
| 1168 | // MomentumCheck( modifiedOriginal, currentParticle, targetParticle,
|
|---|
| 1169 | // vec, vecLen );
|
|---|
| 1170 | //
|
|---|
| 1171 | // calculate time delay for nuclear reactions
|
|---|
| 1172 | //
|
|---|
| 1173 | if( (atomicWeight >= 1.5) && (atomicWeight <= 230.0) && (ekOriginal <= 0.2) )
|
|---|
| 1174 | currentParticle.SetTOF(
|
|---|
| 1175 | 1.0-500.0*std::exp(-ekOriginal/0.04)*std::log(G4UniformRand()) );
|
|---|
| 1176 | else
|
|---|
| 1177 | currentParticle.SetTOF( 1.0 );
|
|---|
| 1178 | return true;
|
|---|
| 1179 |
|
|---|
| 1180 | }
|
|---|
| 1181 |
|
|---|
| 1182 | /* end of file */
|
|---|