| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| [962] | 26 | // $Id: G4RPGNeutronInelastic.cc,v 1.4 2008/05/05 21:21:55 dennis Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| [819] | 28 | //
|
|---|
| 29 |
|
|---|
| 30 | #include "G4RPGNeutronInelastic.hh"
|
|---|
| 31 | #include "Randomize.hh"
|
|---|
| 32 |
|
|---|
| [962] | 33 |
|
|---|
| 34 | G4HadFinalState*
|
|---|
| 35 | G4RPGNeutronInelastic::ApplyYourself(const G4HadProjectile& aTrack,
|
|---|
| 36 | G4Nucleus& targetNucleus)
|
|---|
| 37 | {
|
|---|
| 38 | theParticleChange.Clear();
|
|---|
| 39 | const G4HadProjectile* originalIncident = &aTrack;
|
|---|
| 40 |
|
|---|
| 41 | //
|
|---|
| 42 | // create the target particle
|
|---|
| 43 | //
|
|---|
| 44 | G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
|
|---|
| 45 |
|
|---|
| 46 | G4ReactionProduct modifiedOriginal;
|
|---|
| 47 | modifiedOriginal = *originalIncident;
|
|---|
| 48 | G4ReactionProduct targetParticle;
|
|---|
| 49 | targetParticle = *originalTarget;
|
|---|
| 50 | if( originalIncident->GetKineticEnergy()/GeV < 0.01 + 2.*G4UniformRand()/9. )
|
|---|
| [819] | 51 | {
|
|---|
| [962] | 52 | SlowNeutron(originalIncident,modifiedOriginal,targetParticle,targetNucleus );
|
|---|
| 53 | delete originalTarget;
|
|---|
| 54 | return &theParticleChange;
|
|---|
| 55 | }
|
|---|
| 56 |
|
|---|
| 57 | //
|
|---|
| 58 | // Fermi motion and evaporation
|
|---|
| 59 | // As of Geant3, the Fermi energy calculation had not been Done
|
|---|
| 60 | //
|
|---|
| 61 | G4double ek = originalIncident->GetKineticEnergy()/MeV;
|
|---|
| 62 | G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
|
|---|
| [819] | 63 |
|
|---|
| [962] | 64 | G4double tkin = targetNucleus.Cinema( ek );
|
|---|
| 65 | ek += tkin;
|
|---|
| 66 | modifiedOriginal.SetKineticEnergy( ek*MeV );
|
|---|
| 67 | G4double et = ek + amas;
|
|---|
| 68 | G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
|
|---|
| 69 | G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
|
|---|
| 70 | if( pp > 0.0 )
|
|---|
| 71 | {
|
|---|
| 72 | G4ThreeVector momentum = modifiedOriginal.GetMomentum();
|
|---|
| 73 | modifiedOriginal.SetMomentum( momentum * (p/pp) );
|
|---|
| 74 | }
|
|---|
| 75 | //
|
|---|
| 76 | // calculate black track energies
|
|---|
| 77 | //
|
|---|
| 78 | tkin = targetNucleus.EvaporationEffects( ek );
|
|---|
| 79 | ek -= tkin;
|
|---|
| 80 | modifiedOriginal.SetKineticEnergy(ek);
|
|---|
| 81 | et = ek + amas;
|
|---|
| 82 | p = std::sqrt( std::abs((et-amas)*(et+amas)) );
|
|---|
| 83 | pp = modifiedOriginal.GetMomentum().mag();
|
|---|
| 84 | if( pp > 0.0 )
|
|---|
| 85 | {
|
|---|
| 86 | G4ThreeVector momentum = modifiedOriginal.GetMomentum();
|
|---|
| 87 | modifiedOriginal.SetMomentum( momentum * (p/pp) );
|
|---|
| 88 | }
|
|---|
| 89 | const G4double cutOff = 0.1;
|
|---|
| 90 | if( modifiedOriginal.GetKineticEnergy()/MeV <= cutOff )
|
|---|
| 91 | {
|
|---|
| 92 | SlowNeutron( originalIncident, modifiedOriginal, targetParticle, targetNucleus );
|
|---|
| 93 | delete originalTarget;
|
|---|
| 94 | return &theParticleChange;
|
|---|
| 95 | }
|
|---|
| 96 |
|
|---|
| 97 | G4ReactionProduct currentParticle = modifiedOriginal;
|
|---|
| 98 | currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
|
|---|
| 99 | targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
|
|---|
| 100 | G4bool incidentHasChanged = false;
|
|---|
| 101 | G4bool targetHasChanged = false;
|
|---|
| 102 | G4bool quasiElastic = false;
|
|---|
| 103 | G4FastVector<G4ReactionProduct,256> vec; // vec will contain sec. particles
|
|---|
| 104 | G4int vecLen = 0;
|
|---|
| 105 | vec.Initialize( 0 );
|
|---|
| [819] | 106 |
|
|---|
| [962] | 107 | InitialCollision(vec, vecLen, currentParticle, targetParticle,
|
|---|
| 108 | incidentHasChanged, targetHasChanged);
|
|---|
| 109 |
|
|---|
| 110 | CalculateMomenta(vec, vecLen,
|
|---|
| 111 | originalIncident, originalTarget, modifiedOriginal,
|
|---|
| 112 | targetNucleus, currentParticle, targetParticle,
|
|---|
| 113 | incidentHasChanged, targetHasChanged, quasiElastic);
|
|---|
| 114 |
|
|---|
| 115 | SetUpChange(vec, vecLen,
|
|---|
| 116 | currentParticle, targetParticle,
|
|---|
| 117 | incidentHasChanged);
|
|---|
| 118 |
|
|---|
| 119 | delete originalTarget;
|
|---|
| 120 | return &theParticleChange;
|
|---|
| 121 | }
|
|---|
| 122 |
|
|---|
| 123 | void
|
|---|
| 124 | G4RPGNeutronInelastic::SlowNeutron(const G4HadProjectile* originalIncident,
|
|---|
| 125 | G4ReactionProduct& modifiedOriginal,
|
|---|
| 126 | G4ReactionProduct& targetParticle,
|
|---|
| 127 | G4Nucleus& targetNucleus)
|
|---|
| 128 | {
|
|---|
| 129 | const G4double A = targetNucleus.GetN(); // atomic weight
|
|---|
| 130 | const G4double Z = targetNucleus.GetZ(); // atomic number
|
|---|
| 131 |
|
|---|
| 132 | G4double currentKinetic = modifiedOriginal.GetKineticEnergy()/MeV;
|
|---|
| 133 | G4double currentMass = modifiedOriginal.GetMass()/MeV;
|
|---|
| 134 | if( A < 1.5 ) // Hydrogen
|
|---|
| 135 | {
|
|---|
| [819] | 136 | //
|
|---|
| [962] | 137 | // very simple simulation of scattering angle and energy
|
|---|
| 138 | // nonrelativistic approximation with isotropic angular
|
|---|
| 139 | // distribution in the cms system
|
|---|
| [819] | 140 | //
|
|---|
| [962] | 141 | G4double cost1, eka = 0.0;
|
|---|
| 142 | while (eka <= 0.0)
|
|---|
| [819] | 143 | {
|
|---|
| [962] | 144 | cost1 = -1.0 + 2.0*G4UniformRand();
|
|---|
| 145 | eka = 1.0 + 2.0*cost1*A + A*A;
|
|---|
| [819] | 146 | }
|
|---|
| [962] | 147 | G4double cost = std::min( 1.0, std::max( -1.0, (A*cost1+1.0)/std::sqrt(eka) ) );
|
|---|
| 148 | eka /= (1.0+A)*(1.0+A);
|
|---|
| 149 | G4double ek = currentKinetic*MeV/GeV;
|
|---|
| 150 | G4double amas = currentMass*MeV/GeV;
|
|---|
| 151 | ek *= eka;
|
|---|
| 152 | G4double en = ek + amas;
|
|---|
| 153 | G4double p = std::sqrt(std::abs(en*en-amas*amas));
|
|---|
| 154 | G4double sint = std::sqrt(std::abs(1.0-cost*cost));
|
|---|
| 155 | G4double phi = G4UniformRand()*twopi;
|
|---|
| 156 | G4double px = sint*std::sin(phi);
|
|---|
| 157 | G4double py = sint*std::cos(phi);
|
|---|
| 158 | G4double pz = cost;
|
|---|
| 159 | targetParticle.SetMomentum( px*GeV, py*GeV, pz*GeV );
|
|---|
| 160 | G4double pxO = originalIncident->Get4Momentum().x()/GeV;
|
|---|
| 161 | G4double pyO = originalIncident->Get4Momentum().y()/GeV;
|
|---|
| 162 | G4double pzO = originalIncident->Get4Momentum().z()/GeV;
|
|---|
| 163 | G4double ptO = pxO*pxO + pyO+pyO;
|
|---|
| 164 | if( ptO > 0.0 )
|
|---|
| [819] | 165 | {
|
|---|
| [962] | 166 | G4double pO = std::sqrt(pxO*pxO+pyO*pyO+pzO*pzO);
|
|---|
| 167 | cost = pzO/pO;
|
|---|
| 168 | sint = 0.5*(std::sqrt(std::abs((1.0-cost)*(1.0+cost)))+std::sqrt(ptO)/pO);
|
|---|
| 169 | G4double ph = pi/2.0;
|
|---|
| 170 | if( pyO < 0.0 )ph = ph*1.5;
|
|---|
| 171 | if( std::abs(pxO) > 0.000001 )ph = std::atan2(pyO,pxO);
|
|---|
| 172 | G4double cosp = std::cos(ph);
|
|---|
| 173 | G4double sinp = std::sin(ph);
|
|---|
| 174 | px = cost*cosp*px - sinp*py+sint*cosp*pz;
|
|---|
| 175 | py = cost*sinp*px + cosp*py+sint*sinp*pz;
|
|---|
| 176 | pz = -sint*px + cost*pz;
|
|---|
| [819] | 177 | }
|
|---|
| [962] | 178 | else
|
|---|
| [819] | 179 | {
|
|---|
| [962] | 180 | if( pz < 0.0 )pz *= -1.0;
|
|---|
| [819] | 181 | }
|
|---|
| [962] | 182 | G4double pu = std::sqrt(px*px+py*py+pz*pz);
|
|---|
| 183 | modifiedOriginal.SetMomentum( targetParticle.GetMomentum() * (p/pu) );
|
|---|
| 184 | modifiedOriginal.SetKineticEnergy( ek*GeV );
|
|---|
| [819] | 185 |
|
|---|
| [962] | 186 | targetParticle.SetMomentum(
|
|---|
| 187 | originalIncident->Get4Momentum().vect() - modifiedOriginal.GetMomentum() );
|
|---|
| 188 | G4double pp = targetParticle.GetMomentum().mag();
|
|---|
| 189 | G4double tarmas = targetParticle.GetMass();
|
|---|
| 190 | targetParticle.SetTotalEnergy( std::sqrt( pp*pp + tarmas*tarmas ) );
|
|---|
| [819] | 191 |
|
|---|
| [962] | 192 | theParticleChange.SetEnergyChange( modifiedOriginal.GetKineticEnergy() );
|
|---|
| 193 | G4DynamicParticle *pd = new G4DynamicParticle;
|
|---|
| 194 | pd->SetDefinition( targetParticle.GetDefinition() );
|
|---|
| 195 | pd->SetMomentum( targetParticle.GetMomentum() );
|
|---|
| 196 | theParticleChange.AddSecondary( pd );
|
|---|
| 197 | return;
|
|---|
| 198 | }
|
|---|
| 199 |
|
|---|
| 200 | G4FastVector<G4ReactionProduct,4> vec; // vec will contain the secondary particles
|
|---|
| 201 | G4int vecLen = 0;
|
|---|
| 202 | vec.Initialize( 0 );
|
|---|
| [819] | 203 |
|
|---|
| [962] | 204 | G4double theAtomicMass = targetNucleus.AtomicMass( A, Z );
|
|---|
| 205 | G4double massVec[9];
|
|---|
| 206 | massVec[0] = targetNucleus.AtomicMass( A+1.0, Z );
|
|---|
| 207 | massVec[1] = theAtomicMass;
|
|---|
| 208 | massVec[2] = 0.;
|
|---|
| 209 | if (Z > 1.0) massVec[2] = targetNucleus.AtomicMass(A, Z-1.0);
|
|---|
| 210 | massVec[3] = 0.;
|
|---|
| 211 | if (Z > 1.0 && A > 1.0) massVec[3] = targetNucleus.AtomicMass(A-1.0, Z-1.0 );
|
|---|
| 212 | massVec[4] = 0.;
|
|---|
| 213 | if (Z > 1.0 && A > 2.0 && A-2.0 > Z-1.0)
|
|---|
| 214 | massVec[4] = targetNucleus.AtomicMass( A-2.0, Z-1.0 );
|
|---|
| 215 | massVec[5] = 0.;
|
|---|
| 216 | if (Z > 2.0 && A > 3.0 && A-3.0 > Z-2.0)
|
|---|
| 217 | massVec[5] = targetNucleus.AtomicMass( A-3.0, Z-2.0 );
|
|---|
| 218 | massVec[6] = 0.;
|
|---|
| 219 | if (A > 1.0 && A-1.0 > Z) massVec[6] = targetNucleus.AtomicMass(A-1.0, Z);
|
|---|
| 220 | massVec[7] = massVec[3];
|
|---|
| 221 | massVec[8] = 0.;
|
|---|
| 222 | if (Z > 2.0 && A > 1.0) massVec[8] = targetNucleus.AtomicMass( A-1.0,Z-2.0 );
|
|---|
| [819] | 223 |
|
|---|
| [962] | 224 | twoBody.NuclearReaction(vec, vecLen, originalIncident,
|
|---|
| 225 | targetNucleus, theAtomicMass, massVec );
|
|---|
| [819] | 226 |
|
|---|
| [962] | 227 | theParticleChange.SetStatusChange( stopAndKill );
|
|---|
| 228 | theParticleChange.SetEnergyChange( 0.0 );
|
|---|
| [819] | 229 |
|
|---|
| [962] | 230 | G4DynamicParticle* pd;
|
|---|
| 231 | for( G4int i=0; i<vecLen; ++i ) {
|
|---|
| 232 | pd = new G4DynamicParticle();
|
|---|
| 233 | pd->SetDefinition( vec[i]->GetDefinition() );
|
|---|
| 234 | pd->SetMomentum( vec[i]->GetMomentum() );
|
|---|
| 235 | theParticleChange.AddSecondary( pd );
|
|---|
| 236 | delete vec[i];
|
|---|
| [819] | 237 | }
|
|---|
| [962] | 238 | }
|
|---|
| 239 |
|
|---|
| 240 |
|
|---|
| 241 | // Initial Collision
|
|---|
| 242 | // selects the particle types arising from the initial collision of
|
|---|
| 243 | // the neutron and target nucleon. Secondaries are assigned to
|
|---|
| 244 | // forward and backward reaction hemispheres, but final state energies
|
|---|
| 245 | // and momenta are not calculated here.
|
|---|
| 246 |
|
|---|
| 247 | void
|
|---|
| 248 | G4RPGNeutronInelastic::InitialCollision(G4FastVector<G4ReactionProduct,256>& vec,
|
|---|
| 249 | G4int& vecLen,
|
|---|
| 250 | G4ReactionProduct& currentParticle,
|
|---|
| 251 | G4ReactionProduct& targetParticle,
|
|---|
| 252 | G4bool& incidentHasChanged,
|
|---|
| 253 | G4bool& targetHasChanged)
|
|---|
| 254 | {
|
|---|
| 255 | G4double KE = currentParticle.GetKineticEnergy()/GeV;
|
|---|
| [819] | 256 |
|
|---|
| [962] | 257 | G4int mult;
|
|---|
| 258 | G4int partType;
|
|---|
| 259 | std::vector<G4int> fsTypes;
|
|---|
| 260 | G4int part1;
|
|---|
| 261 | G4int part2;
|
|---|
| 262 |
|
|---|
| 263 | G4double testCharge;
|
|---|
| 264 | G4double testBaryon;
|
|---|
| 265 | G4double testStrange;
|
|---|
| 266 |
|
|---|
| 267 | // Get particle types according to incident and target types
|
|---|
| 268 |
|
|---|
| 269 | if (targetParticle.GetDefinition() == particleDef[neu]) {
|
|---|
| 270 | mult = GetMultiplicityT1(KE);
|
|---|
| 271 | fsTypes = GetFSPartTypesForNN(mult, KE);
|
|---|
| 272 |
|
|---|
| 273 | part1 = fsTypes[0];
|
|---|
| 274 | part2 = fsTypes[1];
|
|---|
| 275 | currentParticle.SetDefinition(particleDef[part1]);
|
|---|
| 276 | targetParticle.SetDefinition(particleDef[part2]);
|
|---|
| 277 | if (part1 == pro) {
|
|---|
| 278 | if (part2 == neu) {
|
|---|
| 279 | if (G4UniformRand() > 0.5) {
|
|---|
| 280 | incidentHasChanged = true;
|
|---|
| 281 | } else {
|
|---|
| 282 | targetHasChanged = true;
|
|---|
| 283 | currentParticle.SetDefinition(particleDef[part2]);
|
|---|
| 284 | targetParticle.SetDefinition(particleDef[part1]);
|
|---|
| 285 | }
|
|---|
| 286 | } else {
|
|---|
| 287 | targetHasChanged = true;
|
|---|
| 288 | incidentHasChanged = true;
|
|---|
| [819] | 289 | }
|
|---|
| 290 |
|
|---|
| [962] | 291 | } else { // neutron
|
|---|
| 292 | if (part2 > neu && part2 < xi0) targetHasChanged = true;
|
|---|
| [819] | 293 | }
|
|---|
| [962] | 294 |
|
|---|
| 295 | testCharge = 0.0;
|
|---|
| 296 | testBaryon = 2.0;
|
|---|
| 297 | testStrange = 0.0;
|
|---|
| 298 |
|
|---|
| 299 | } else { // target was a proton
|
|---|
| 300 | mult = GetMultiplicityT0(KE);
|
|---|
| 301 | fsTypes = GetFSPartTypesForNP(mult, KE);
|
|---|
| 302 |
|
|---|
| 303 | part1 = fsTypes[0];
|
|---|
| 304 | part2 = fsTypes[1];
|
|---|
| 305 | currentParticle.SetDefinition(particleDef[part1]);
|
|---|
| 306 | targetParticle.SetDefinition(particleDef[part2]);
|
|---|
| 307 | if (part1 == pro) {
|
|---|
| 308 | if (part2 == pro) {
|
|---|
| 309 | incidentHasChanged = true;
|
|---|
| 310 | } else if (part2 == neu) {
|
|---|
| 311 | if (G4UniformRand() > 0.5) {
|
|---|
| 312 | incidentHasChanged = true;
|
|---|
| 313 | targetHasChanged = true;
|
|---|
| 314 | } else {
|
|---|
| 315 | currentParticle.SetDefinition(particleDef[part2]);
|
|---|
| 316 | targetParticle.SetDefinition(particleDef[part1]);
|
|---|
| 317 | }
|
|---|
| 318 |
|
|---|
| 319 | } else if (part2 > neu && part2 < xi0) {
|
|---|
| 320 | incidentHasChanged = true;
|
|---|
| 321 | targetHasChanged = true;
|
|---|
| [819] | 322 | }
|
|---|
| [962] | 323 |
|
|---|
| 324 | } else { // neutron
|
|---|
| 325 | targetHasChanged = true;
|
|---|
| [819] | 326 | }
|
|---|
| [962] | 327 |
|
|---|
| 328 | testCharge = 1.0;
|
|---|
| 329 | testBaryon = 2.0;
|
|---|
| 330 | testStrange = 0.0;
|
|---|
| [819] | 331 | }
|
|---|
| 332 |
|
|---|
| [962] | 333 | // if (mult == 2 && !incidentHasChanged && !targetHasChanged)
|
|---|
| 334 | // quasiElastic = true;
|
|---|
| 335 |
|
|---|
| 336 | // Remove incident and target from fsTypes
|
|---|
| 337 |
|
|---|
| 338 | fsTypes.erase(fsTypes.begin());
|
|---|
| 339 | fsTypes.erase(fsTypes.begin());
|
|---|
| 340 |
|
|---|
| 341 | // Remaining particles are secondaries. Put them into vec.
|
|---|
| 342 |
|
|---|
| 343 | G4ReactionProduct* rp(0);
|
|---|
| 344 | for(G4int i=0; i < mult-2; ++i ) {
|
|---|
| 345 | partType = fsTypes[i];
|
|---|
| 346 | rp = new G4ReactionProduct();
|
|---|
| 347 | rp->SetDefinition(particleDef[partType]);
|
|---|
| 348 | (G4UniformRand() < 0.5) ? rp->SetSide(-1) : rp->SetSide(1);
|
|---|
| 349 | vec.SetElement(vecLen++, rp);
|
|---|
| 350 | }
|
|---|
| 351 |
|
|---|
| 352 | // Check conservation of charge, strangeness, baryon number
|
|---|
| 353 |
|
|---|
| 354 | CheckQnums(vec, vecLen, currentParticle, targetParticle,
|
|---|
| 355 | testCharge, testBaryon, testStrange);
|
|---|
| 356 |
|
|---|
| 357 | return;
|
|---|
| 358 | }
|
|---|