| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| [962] | 26 | // $Id: G4RPGTwoBody.cc,v 1.4 2008/05/05 21:21:55 dennis Exp $
|
|---|
| [1228] | 27 | // GEANT4 tag $Name: geant4-09-03 $
|
|---|
| [819] | 28 | //
|
|---|
| 29 |
|
|---|
| 30 | #include "G4RPGTwoBody.hh"
|
|---|
| 31 | #include "Randomize.hh"
|
|---|
| 32 | #include "G4Poisson.hh"
|
|---|
| 33 | #include <iostream>
|
|---|
| 34 | #include "G4HadReentrentException.hh"
|
|---|
| 35 | #include <signal.h>
|
|---|
| 36 |
|
|---|
| 37 |
|
|---|
| 38 | G4RPGTwoBody::G4RPGTwoBody()
|
|---|
| 39 | : G4RPGReaction() {}
|
|---|
| 40 |
|
|---|
| 41 |
|
|---|
| 42 | G4bool G4RPGTwoBody::
|
|---|
| 43 | ReactionStage(const G4HadProjectile* /*originalIncident*/,
|
|---|
| 44 | G4ReactionProduct& modifiedOriginal,
|
|---|
| 45 | G4bool& /*incidentHasChanged*/,
|
|---|
| 46 | const G4DynamicParticle* originalTarget,
|
|---|
| 47 | G4ReactionProduct& targetParticle,
|
|---|
| 48 | G4bool& /*targetHasChanged*/,
|
|---|
| 49 | const G4Nucleus& targetNucleus,
|
|---|
| 50 | G4ReactionProduct& currentParticle,
|
|---|
| 51 | G4FastVector<G4ReactionProduct,256>& vec,
|
|---|
| 52 | G4int& vecLen,
|
|---|
| 53 | G4bool /*leadFlag*/,
|
|---|
| 54 | G4ReactionProduct& /*leadingStrangeParticle*/)
|
|---|
| 55 | {
|
|---|
| 56 | //
|
|---|
| 57 | // Derived from H. Fesefeldt's original FORTRAN code TWOB
|
|---|
| 58 | //
|
|---|
| 59 | // Generation of momenta for elastic and quasi-elastic 2 body reactions
|
|---|
| 60 | //
|
|---|
| 61 | // The simple formula ds/d|t| = s0* std::exp(-b*|t|) is used.
|
|---|
| 62 | // The b values are parametrizations from experimental data.
|
|---|
| 63 | // Unavailable values are taken from those of similar reactions.
|
|---|
| 64 | //
|
|---|
| 65 |
|
|---|
| 66 | const G4double ekOriginal = modifiedOriginal.GetKineticEnergy()/GeV;
|
|---|
| 67 | const G4double etOriginal = modifiedOriginal.GetTotalEnergy()/GeV;
|
|---|
| 68 | const G4double mOriginal = modifiedOriginal.GetMass()/GeV;
|
|---|
| 69 | const G4double pOriginal = modifiedOriginal.GetMomentum().mag()/GeV;
|
|---|
| 70 | G4double currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 71 | G4double targetMass = targetParticle.GetDefinition()->GetPDGMass()/GeV;
|
|---|
| 72 |
|
|---|
| 73 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 74 | const G4double atomicWeight = targetNucleus.GetN();
|
|---|
| 75 |
|
|---|
| 76 | G4double etCurrent = currentParticle.GetTotalEnergy()/GeV;
|
|---|
| 77 | G4double pCurrent = currentParticle.GetTotalMomentum()/GeV;
|
|---|
| 78 |
|
|---|
| 79 | G4double cmEnergy = std::sqrt( currentMass*currentMass +
|
|---|
| 80 | targetMass*targetMass +
|
|---|
| 81 | 2.0*targetMass*etCurrent ); // in GeV
|
|---|
| 82 |
|
|---|
| [962] | 83 | if (cmEnergy < 0.01) { // 2-body scattering not possible
|
|---|
| [819] | 84 | targetParticle.SetMass( 0.0 ); // flag that the target particle doesn't exist
|
|---|
| [962] | 85 |
|
|---|
| 86 | } else {
|
|---|
| [819] | 87 | // Projectile momentum in cm
|
|---|
| 88 |
|
|---|
| 89 | G4double pf = targetMass*pCurrent/cmEnergy;
|
|---|
| 90 |
|
|---|
| 91 | //
|
|---|
| 92 | // Set beam and target in centre of mass system
|
|---|
| 93 | //
|
|---|
| 94 | G4ReactionProduct pseudoParticle[3];
|
|---|
| 95 |
|
|---|
| 96 | if (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 97 | targetParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 98 |
|
|---|
| 99 | // G4double pf1 = pOriginal*mOriginal/std::sqrt(2.*mOriginal*(mOriginal+etOriginal));
|
|---|
| 100 |
|
|---|
| 101 | pseudoParticle[0].SetMass( targetMass*GeV );
|
|---|
| 102 | pseudoParticle[0].SetTotalEnergy( etOriginal*GeV );
|
|---|
| 103 | pseudoParticle[0].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 104 |
|
|---|
| 105 | pseudoParticle[1].SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 106 | pseudoParticle[1].SetMass( mOriginal*GeV );
|
|---|
| 107 | pseudoParticle[1].SetKineticEnergy( 0.0 );
|
|---|
| 108 |
|
|---|
| 109 | } else {
|
|---|
| 110 | pseudoParticle[0].SetMass( currentMass*GeV );
|
|---|
| 111 | pseudoParticle[0].SetTotalEnergy( etCurrent*GeV );
|
|---|
| 112 | pseudoParticle[0].SetMomentum( 0.0, 0.0, pCurrent*GeV );
|
|---|
| 113 |
|
|---|
| 114 | pseudoParticle[1].SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 115 | pseudoParticle[1].SetMass( targetMass*GeV );
|
|---|
| 116 | pseudoParticle[1].SetKineticEnergy( 0.0 );
|
|---|
| 117 | }
|
|---|
| 118 | //
|
|---|
| 119 | // Transform into center of mass system
|
|---|
| 120 | //
|
|---|
| 121 | pseudoParticle[2] = pseudoParticle[0] + pseudoParticle[1];
|
|---|
| 122 | pseudoParticle[0].Lorentz( pseudoParticle[0], pseudoParticle[2] );
|
|---|
| 123 | pseudoParticle[1].Lorentz( pseudoParticle[1], pseudoParticle[2] );
|
|---|
| 124 | //
|
|---|
| 125 | // Set final state masses and energies in centre of mass system
|
|---|
| 126 | //
|
|---|
| 127 | currentParticle.SetTotalEnergy( std::sqrt(pf*pf+currentMass*currentMass)*GeV );
|
|---|
| 128 | targetParticle.SetTotalEnergy( std::sqrt(pf*pf+targetMass*targetMass)*GeV );
|
|---|
| 129 |
|
|---|
| 130 | //
|
|---|
| 131 | // Calculate slope b for elastic scattering on proton/neutron
|
|---|
| 132 | //
|
|---|
| 133 | const G4double cb = 0.01;
|
|---|
| 134 | const G4double b1 = 4.225;
|
|---|
| 135 | const G4double b2 = 1.795;
|
|---|
| 136 | G4double b = std::max( cb, b1+b2*std::log(pOriginal) );
|
|---|
| 137 |
|
|---|
| 138 | //
|
|---|
| 139 | // Get cm scattering angle by sampling t from tmin to tmax
|
|---|
| 140 | //
|
|---|
| 141 | G4double btrang = b * 4.0 * pf * pseudoParticle[0].GetMomentum().mag()/GeV;
|
|---|
| 142 | G4double exindt = std::exp(-btrang) - 1.0;
|
|---|
| 143 | G4double costheta = 1.0 + 2*std::log( 1.0+G4UniformRand()*exindt ) /btrang;
|
|---|
| 144 | costheta = std::max(-1., std::min(1., costheta) );
|
|---|
| 145 | G4double sintheta = std::sqrt((1.0-costheta)*(1.0+costheta));
|
|---|
| 146 | G4double phi = twopi * G4UniformRand();
|
|---|
| 147 |
|
|---|
| 148 | //
|
|---|
| 149 | // Calculate final state momenta in centre of mass system
|
|---|
| 150 | //
|
|---|
| 151 | if (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 152 | targetParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 153 |
|
|---|
| 154 | currentParticle.SetMomentum( -pf*sintheta*std::cos(phi)*GeV,
|
|---|
| 155 | -pf*sintheta*std::sin(phi)*GeV,
|
|---|
| 156 | -pf*costheta*GeV );
|
|---|
| 157 | } else {
|
|---|
| 158 |
|
|---|
| 159 | currentParticle.SetMomentum( pf*sintheta*std::cos(phi)*GeV,
|
|---|
| 160 | pf*sintheta*std::sin(phi)*GeV,
|
|---|
| 161 | pf*costheta*GeV );
|
|---|
| 162 | }
|
|---|
| 163 | targetParticle.SetMomentum( -currentParticle.GetMomentum() );
|
|---|
| 164 |
|
|---|
| 165 | //
|
|---|
| 166 | // Transform into lab system
|
|---|
| 167 | //
|
|---|
| 168 | currentParticle.Lorentz( currentParticle, pseudoParticle[1] );
|
|---|
| 169 | targetParticle.Lorentz( targetParticle, pseudoParticle[1] );
|
|---|
| 170 |
|
|---|
| 171 | // Rotate final state particle vectors wrt incident momentum
|
|---|
| 172 |
|
|---|
| 173 | Defs1( modifiedOriginal, currentParticle, targetParticle, vec, vecLen );
|
|---|
| 174 |
|
|---|
| 175 | // Subtract binding energy
|
|---|
| 176 |
|
|---|
| 177 | G4double pp, pp1, ekin;
|
|---|
| 178 | if( atomicWeight >= 1.5 )
|
|---|
| 179 | {
|
|---|
| 180 | const G4double cfa = 0.025*((atomicWeight-1.)/120.)*std::exp(-(atomicWeight-1.)/120.);
|
|---|
| 181 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 182 | if( pp1 >= 1.0 )
|
|---|
| 183 | {
|
|---|
| 184 | ekin = currentParticle.GetKineticEnergy()/MeV - cfa*(1.0+0.5*normal())*GeV;
|
|---|
| 185 | ekin = std::max( 0.0001*GeV, ekin );
|
|---|
| 186 | currentParticle.SetKineticEnergy( ekin*MeV );
|
|---|
| 187 | pp = currentParticle.GetTotalMomentum()/MeV;
|
|---|
| 188 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 189 | }
|
|---|
| 190 | pp1 = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 191 | if( pp1 >= 1.0 )
|
|---|
| 192 | {
|
|---|
| 193 | ekin = targetParticle.GetKineticEnergy()/MeV - cfa*(1.0+normal()/2.)*GeV;
|
|---|
| 194 | ekin = std::max( 0.0001*GeV, ekin );
|
|---|
| 195 | targetParticle.SetKineticEnergy( ekin*MeV );
|
|---|
| 196 | pp = targetParticle.GetTotalMomentum()/MeV;
|
|---|
| 197 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 198 | }
|
|---|
| 199 | }
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 | // Get number of final state nucleons and nucleons remaining in
|
|---|
| 203 | // target nucleus
|
|---|
| 204 |
|
|---|
| 205 | std::pair<G4int, G4int> finalStateNucleons =
|
|---|
| 206 | GetFinalStateNucleons(originalTarget, vec, vecLen);
|
|---|
| 207 | G4int protonsInFinalState = finalStateNucleons.first;
|
|---|
| 208 | G4int neutronsInFinalState = finalStateNucleons.second;
|
|---|
| 209 |
|
|---|
| 210 | G4int PinNucleus = std::max(0,
|
|---|
| 211 | G4int(targetNucleus.GetZ()) - protonsInFinalState);
|
|---|
| 212 | G4int NinNucleus = std::max(0,
|
|---|
| 213 | G4int(targetNucleus.GetN()-targetNucleus.GetZ()) - neutronsInFinalState);
|
|---|
| 214 |
|
|---|
| 215 | if( atomicWeight >= 1.5 )
|
|---|
| 216 | {
|
|---|
| 217 | // Add black track particles
|
|---|
| 218 | // npnb: number of proton/neutron black track particles
|
|---|
| 219 | // ndta: number of deuterons, tritons, and alphas produced
|
|---|
| 220 | // epnb: kinetic energy available for proton/neutron black track
|
|---|
| 221 | // particles
|
|---|
| 222 | // edta: kinetic energy available for deuteron/triton/alpha particles
|
|---|
| 223 |
|
|---|
| 224 | G4double epnb, edta;
|
|---|
| 225 | G4int npnb=0, ndta=0;
|
|---|
| 226 |
|
|---|
| 227 | epnb = targetNucleus.GetPNBlackTrackEnergy(); // was enp1 in fortran code
|
|---|
| 228 | edta = targetNucleus.GetDTABlackTrackEnergy(); // was enp3 in fortran code
|
|---|
| 229 | const G4double pnCutOff = 0.0001; // GeV
|
|---|
| 230 | const G4double dtaCutOff = 0.0001; // GeV
|
|---|
| [962] | 231 | // const G4double kineticMinimum = 0.0001;
|
|---|
| 232 | // const G4double kineticFactor = -0.010;
|
|---|
| 233 | // G4double sprob = 0.0; // sprob = probability of self-absorption in heavy molecules
|
|---|
| [819] | 234 | if( epnb >= pnCutOff )
|
|---|
| 235 | {
|
|---|
| 236 | npnb = G4Poisson( epnb/0.02 );
|
|---|
| 237 | if( npnb > atomicWeight )npnb = G4int(atomicWeight);
|
|---|
| 238 | if( (epnb > pnCutOff) && (npnb <= 0) )npnb = 1;
|
|---|
| 239 | npnb = std::min( npnb, 127-vecLen );
|
|---|
| 240 | }
|
|---|
| 241 | if( edta >= dtaCutOff )
|
|---|
| 242 | {
|
|---|
| 243 | ndta = G4int(2.0 * std::log(atomicWeight));
|
|---|
| 244 | ndta = std::min( ndta, 127-vecLen );
|
|---|
| 245 | }
|
|---|
| 246 |
|
|---|
| 247 | if (npnb == 0 && ndta == 0) npnb = 1;
|
|---|
| 248 |
|
|---|
| [962] | 249 | AddBlackTrackParticles(epnb, npnb, edta, ndta, modifiedOriginal,
|
|---|
| [819] | 250 | PinNucleus, NinNucleus, targetNucleus,
|
|---|
| 251 | vec, vecLen);
|
|---|
| 252 | }
|
|---|
| 253 |
|
|---|
| 254 | //
|
|---|
| 255 | // calculate time delay for nuclear reactions
|
|---|
| 256 | //
|
|---|
| 257 | if( (atomicWeight >= 1.5) && (atomicWeight <= 230.0) && (ekOriginal <= 0.2) )
|
|---|
| 258 | currentParticle.SetTOF( 1.0-500.0*std::exp(-ekOriginal/0.04)*std::log(G4UniformRand()) );
|
|---|
| 259 | else
|
|---|
| 260 | currentParticle.SetTOF( 1.0 );
|
|---|
| 261 |
|
|---|
| 262 | return true;
|
|---|
| 263 | }
|
|---|
| 264 |
|
|---|
| 265 | /* end of file */
|
|---|