source: trunk/source/processes/hadronic/models/rpg/src/G4RPGTwoBody.cc @ 1340

Last change on this file since 1340 was 1340, checked in by garnier, 14 years ago

update ti head

File size: 10.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4RPGTwoBody.cc,v 1.4 2008/05/05 21:21:55 dennis Exp $
27// GEANT4 tag $Name: geant4-09-03-ref-09 $
28//
29
30#include "G4RPGTwoBody.hh"
31#include "Randomize.hh"
32#include "G4Poisson.hh"
33#include <iostream>
34#include "G4HadReentrentException.hh"
35#include <signal.h>
36
37
38G4RPGTwoBody::G4RPGTwoBody()
39  : G4RPGReaction() {}
40
41
42G4bool G4RPGTwoBody::
43ReactionStage(const G4HadProjectile* /*originalIncident*/,
44              G4ReactionProduct& modifiedOriginal,
45              G4bool& /*incidentHasChanged*/,
46              const G4DynamicParticle* originalTarget,
47              G4ReactionProduct& targetParticle,
48              G4bool& /*targetHasChanged*/,
49              const G4Nucleus& targetNucleus,
50              G4ReactionProduct& currentParticle,
51              G4FastVector<G4ReactionProduct,256>& vec,
52              G4int& vecLen,
53              G4bool /*leadFlag*/,
54              G4ReactionProduct& /*leadingStrangeParticle*/)
55{
56  //
57  // Derived from H. Fesefeldt's original FORTRAN code TWOB
58  //
59  // Generation of momenta for elastic and quasi-elastic 2 body reactions
60  //
61  // The simple formula ds/d|t| = s0* std::exp(-b*|t|) is used.
62  // The b values are parametrizations from experimental data.
63  // Unavailable values are taken from those of similar reactions.
64  //
65   
66  const G4double ekOriginal = modifiedOriginal.GetKineticEnergy()/GeV;
67  const G4double etOriginal = modifiedOriginal.GetTotalEnergy()/GeV;
68  const G4double mOriginal = modifiedOriginal.GetMass()/GeV;
69  const G4double pOriginal = modifiedOriginal.GetMomentum().mag()/GeV;
70  G4double currentMass = currentParticle.GetMass()/GeV;
71  G4double targetMass = targetParticle.GetDefinition()->GetPDGMass()/GeV;
72
73  targetMass = targetParticle.GetMass()/GeV;
74  const G4double atomicWeight = targetNucleus.GetN();
75   
76  G4double etCurrent = currentParticle.GetTotalEnergy()/GeV;
77  G4double pCurrent = currentParticle.GetTotalMomentum()/GeV;
78
79  G4double cmEnergy = std::sqrt( currentMass*currentMass +
80                            targetMass*targetMass +
81                            2.0*targetMass*etCurrent );  // in GeV
82
83  if (cmEnergy < 0.01) { // 2-body scattering not possible
84    targetParticle.SetMass( 0.0 );  // flag that the target particle doesn't exist
85
86  } else {
87    // Projectile momentum in cm
88
89    G4double pf = targetMass*pCurrent/cmEnergy;
90
91    //
92    // Set beam and target in centre of mass system
93    //
94    G4ReactionProduct pseudoParticle[3];
95     
96    if (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
97        targetParticle.GetDefinition()->GetParticleSubType() == "pi") {
98
99      //      G4double pf1 = pOriginal*mOriginal/std::sqrt(2.*mOriginal*(mOriginal+etOriginal));
100
101      pseudoParticle[0].SetMass( targetMass*GeV );
102      pseudoParticle[0].SetTotalEnergy( etOriginal*GeV );
103      pseudoParticle[0].SetMomentum( 0.0, 0.0, pOriginal*GeV );
104     
105      pseudoParticle[1].SetMomentum( 0.0, 0.0, 0.0 );
106      pseudoParticle[1].SetMass( mOriginal*GeV );
107      pseudoParticle[1].SetKineticEnergy( 0.0 );
108
109    } else {
110      pseudoParticle[0].SetMass( currentMass*GeV );
111      pseudoParticle[0].SetTotalEnergy( etCurrent*GeV );
112      pseudoParticle[0].SetMomentum( 0.0, 0.0, pCurrent*GeV );
113     
114      pseudoParticle[1].SetMomentum( 0.0, 0.0, 0.0 );
115      pseudoParticle[1].SetMass( targetMass*GeV );
116      pseudoParticle[1].SetKineticEnergy( 0.0 );
117    }
118    //
119    // Transform into center of mass system
120    //
121    pseudoParticle[2] = pseudoParticle[0] + pseudoParticle[1];
122    pseudoParticle[0].Lorentz( pseudoParticle[0], pseudoParticle[2] );
123    pseudoParticle[1].Lorentz( pseudoParticle[1], pseudoParticle[2] );
124    //
125    // Set final state masses and energies in centre of mass system
126    //
127    currentParticle.SetTotalEnergy( std::sqrt(pf*pf+currentMass*currentMass)*GeV );
128    targetParticle.SetTotalEnergy( std::sqrt(pf*pf+targetMass*targetMass)*GeV );
129
130    //
131    // Calculate slope b for elastic scattering on proton/neutron
132    //
133    const G4double cb = 0.01;
134    const G4double b1 = 4.225;
135    const G4double b2 = 1.795;
136    G4double b = std::max( cb, b1+b2*std::log(pOriginal) );
137     
138    //
139    // Get cm scattering angle by sampling t from tmin to tmax
140    //
141    G4double btrang = b * 4.0 * pf * pseudoParticle[0].GetMomentum().mag()/GeV;
142    G4double exindt = std::exp(-btrang) - 1.0;
143    G4double costheta = 1.0 + 2*std::log( 1.0+G4UniformRand()*exindt ) /btrang;
144    costheta = std::max(-1., std::min(1., costheta) );
145    G4double sintheta = std::sqrt((1.0-costheta)*(1.0+costheta));
146    G4double phi = twopi * G4UniformRand();
147
148    //
149    // Calculate final state momenta in centre of mass system
150    //
151    if (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
152        targetParticle.GetDefinition()->GetParticleSubType() == "pi") {
153
154      currentParticle.SetMomentum( -pf*sintheta*std::cos(phi)*GeV,
155                                   -pf*sintheta*std::sin(phi)*GeV,
156                                   -pf*costheta*GeV );
157    } else {
158
159      currentParticle.SetMomentum( pf*sintheta*std::cos(phi)*GeV,
160                                   pf*sintheta*std::sin(phi)*GeV,
161                                   pf*costheta*GeV );
162    }
163    targetParticle.SetMomentum( -currentParticle.GetMomentum() );
164
165    //
166    // Transform into lab system
167    //
168    currentParticle.Lorentz( currentParticle, pseudoParticle[1] );
169    targetParticle.Lorentz( targetParticle, pseudoParticle[1] );
170
171    // Rotate final state particle vectors wrt incident momentum
172     
173    Defs1( modifiedOriginal, currentParticle, targetParticle, vec, vecLen );
174
175    // Subtract binding energy
176
177    G4double pp, pp1, ekin;
178    if( atomicWeight >= 1.5 )
179    {
180      const G4double cfa = 0.025*((atomicWeight-1.)/120.)*std::exp(-(atomicWeight-1.)/120.);
181      pp1 = currentParticle.GetMomentum().mag()/MeV;
182      if( pp1 >= 1.0 )
183      {
184        ekin = currentParticle.GetKineticEnergy()/MeV - cfa*(1.0+0.5*normal())*GeV;
185        ekin = std::max( 0.0001*GeV, ekin );
186        currentParticle.SetKineticEnergy( ekin*MeV );
187        pp = currentParticle.GetTotalMomentum()/MeV;
188        currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
189      }
190      pp1 = targetParticle.GetMomentum().mag()/MeV;
191      if( pp1 >= 1.0 )
192      {
193        ekin = targetParticle.GetKineticEnergy()/MeV - cfa*(1.0+normal()/2.)*GeV;
194        ekin = std::max( 0.0001*GeV, ekin );
195        targetParticle.SetKineticEnergy( ekin*MeV );
196        pp = targetParticle.GetTotalMomentum()/MeV;
197        targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
198      }
199    }
200  }
201
202  // Get number of final state nucleons and nucleons remaining in
203  // target nucleus
204
205  std::pair<G4int, G4int> finalStateNucleons = 
206    GetFinalStateNucleons(originalTarget, vec, vecLen);
207  G4int protonsInFinalState = finalStateNucleons.first;
208  G4int neutronsInFinalState = finalStateNucleons.second;
209
210  G4int PinNucleus = std::max(0, 
211    G4int(targetNucleus.GetZ()) - protonsInFinalState);
212  G4int NinNucleus = std::max(0,
213    G4int(targetNucleus.GetN()-targetNucleus.GetZ()) - neutronsInFinalState);
214
215  if( atomicWeight >= 1.5 )
216  {
217    // Add black track particles
218    // npnb: number of proton/neutron black track particles
219    // ndta: number of deuterons, tritons, and alphas produced
220    // epnb: kinetic energy available for proton/neutron black track
221    //   particles
222    // edta: kinetic energy available for deuteron/triton/alpha particles
223
224    G4double epnb, edta;
225    G4int npnb=0, ndta=0;
226     
227    epnb = targetNucleus.GetPNBlackTrackEnergy();   // was enp1 in fortran code
228    edta = targetNucleus.GetDTABlackTrackEnergy();  // was enp3 in fortran code
229    const G4double pnCutOff = 0.0001;       // GeV
230    const G4double dtaCutOff = 0.0001;      // GeV
231    //    const G4double kineticMinimum = 0.0001;
232    //    const G4double kineticFactor = -0.010;
233    //    G4double sprob = 0.0; // sprob = probability of self-absorption in heavy molecules
234    if( epnb >= pnCutOff )
235    {
236      npnb = G4Poisson( epnb/0.02 );
237      if( npnb > atomicWeight )npnb = G4int(atomicWeight);
238      if( (epnb > pnCutOff) && (npnb <= 0) )npnb = 1;
239      npnb = std::min( npnb, 127-vecLen );
240    }
241    if( edta >= dtaCutOff )
242    {
243      ndta = G4int(2.0 * std::log(atomicWeight));
244      ndta = std::min( ndta, 127-vecLen );
245    }
246
247    if (npnb == 0 && ndta == 0) npnb = 1;
248
249    AddBlackTrackParticles(epnb, npnb, edta, ndta, modifiedOriginal, 
250                           PinNucleus, NinNucleus, targetNucleus,
251                           vec, vecLen);
252  }
253
254  //
255  //  calculate time delay for nuclear reactions
256  //
257  if( (atomicWeight >= 1.5) && (atomicWeight <= 230.0) && (ekOriginal <= 0.2) )
258    currentParticle.SetTOF( 1.0-500.0*std::exp(-ekOriginal/0.04)*std::log(G4UniformRand()) );
259  else
260    currentParticle.SetTOF( 1.0 );
261
262  return true;
263}
264 
265/* end of file */
Note: See TracBrowser for help on using the repository browser.