// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // #ifndef G4NuclearFermiDensity_h #define G4NuclearFermiDensity_h 1 #include "globals.hh" #include "G4ThreeVector.hh" #include "G4VNuclearDensity.hh" #include // pi, fermi,.. #include // pow class G4NuclearFermiDensity : public G4VNuclearDensity { public: G4NuclearFermiDensity(G4int anA, G4int aZ); ~G4NuclearFermiDensity(); G4double GetRelativeDensity(const G4ThreeVector & aPosition) const { return 1./(1.+std::exp((aPosition.mag()-theR)/a)); } G4double GetRadius(const G4double maxRelativeDenisty) const { return (maxRelativeDenisty>0 && maxRelativeDenisty <= 1 ) ? (theR + a*std::log((1-maxRelativeDenisty+std::exp(-1*theR/a))/maxRelativeDenisty)) : DBL_MAX; } G4double GetDeriv(const G4ThreeVector & aPosition) const { G4double currentR=aPosition.mag(); if (currentR > 40*theR ) {return 0;} else return -std::exp((currentR-theR)/a) * sqr(GetDensity(aPosition)) / (a*Getrho0()); } private: G4int theA; G4int theZ; G4double theR; // Nuclear Radius const G4double a; // Determines the nuclear surface thickness }; #endif