// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // // ------------------------------------------------------------ // GEANT 4 class implementation file // // ---------------- G4Fancy3DNucleus ---------------- // by Gunter Folger, May 1998. // class for a 3D nucleus, arranging nucleons in space and momentum. // ------------------------------------------------------------ #include "G4Fancy3DNucleus.hh" #include "G4NuclearFermiDensity.hh" #include "G4NuclearShellModelDensity.hh" #include "G4NucleiProperties.hh" #include "Randomize.hh" #include "G4ios.hh" #include #include "G4HadronicException.hh" G4Fancy3DNucleus::G4Fancy3DNucleus() : nucleondistance(0.8*fermi) { theDensity=0; theNucleons=0; currentNucleon=-1; myA=0; myZ=0; //G4cout <<"G4Fancy3DNucleus::G4Fancy3DNucleus()"<theA-G4int(theA) ) ? G4int(theA) : G4int(theA)+1; theNucleons = new G4Nucleon[myA]; // G4cout << "myA, myZ" << myA << ", " << myZ << G4endl; if(theDensity) delete theDensity; if ( myA < 17 ) { theDensity = new G4NuclearShellModelDensity(myA, myZ); } else { theDensity = new G4NuclearFermiDensity(myA, myZ); } theFermi.Init(myA, myZ); ChooseNucleons(); ChoosePositions(); // CenterNucleons(); // This would introduce a bias ChooseFermiMomenta(); G4double Ebinding= BindingEnergy()/myA; for (G4int aNucleon=0; aNucleon < myA; aNucleon++) { theNucleons[aNucleon].SetBindingEnergy(Ebinding); } return; } G4bool G4Fancy3DNucleus::StartLoop() { currentNucleon=0; return theNucleons; } G4Nucleon * G4Fancy3DNucleus::GetNextNucleon() { return ( currentNucleon>=0 && currentNucleon & G4Fancy3DNucleus::GetNucleons() { if ( theRWNucleons.size()==0 ) { for (G4int i=0; i< myA; i++) { theRWNucleons.push_back(theNucleons+i); } } return theRWNucleons; } //void G4Fancy3DNucleus::SortNucleonsIncZ() // on increased Z-coordinates Uzhi 29.08.08 bool G4Fancy3DNucleusHelperForSortInZ(const G4Nucleon* nuc1, const G4Nucleon* nuc2) { return nuc1->GetPosition().z() < nuc2->GetPosition().z(); } //void G4Fancy3DNucleus::SortNucleonsInZ() void G4Fancy3DNucleus::SortNucleonsIncZ() // on increased Z-coordinates Uzhi 29.08.08 { GetNucleons(); // make sure theRWNucleons is initialised if (theRWNucleons.size() < 2 ) return; sort( theRWNucleons.begin(),theRWNucleons.end(),G4Fancy3DNucleusHelperForSortInZ); // now copy sorted nucleons to theNucleons array. TheRWNucleons are pointers in theNucleons // so we need to copy to new, and then swap. G4Nucleon * sortedNucleons = new G4Nucleon[myA]; for ( unsigned int i=0; iGetRadius(maxRelativeDensity); } G4double G4Fancy3DNucleus::GetOuterRadius() { G4double maxradius2=0; for (int i=0; i maxradius2 ) { maxradius2=theNucleons[i].GetPosition().mag2(); } } return std::sqrt(maxradius2)+nucleondistance; } G4double G4Fancy3DNucleus::GetMass() { return myZ*G4Proton::Proton()->GetPDGMass() + (myA-myZ)*G4Neutron::Neutron()->GetPDGMass() - BindingEnergy(); } void G4Fancy3DNucleus::DoLorentzBoost(const G4LorentzVector & theBoost) { for (G4int i=0; i places; places.reserve(myA); G4bool freeplace; static G4double nd2 = sqr(nucleondistance); G4double maxR=GetNuclearRadius(0.001); // there are no nucleons at a // relative Density of 0.01 G4int jr=0; G4int jx,jy; G4double arand[600]; G4double *prand=arand; while ( i < myA ) { do { if ( jr < 3 ) { jr=std::min(600,9*(myA - i)); CLHEP::RandFlat::shootArray(jr, prand ); } jx=--jr; jy=--jr; aPos=G4ThreeVector( (2*arand[jx]-1.), (2*arand[jy]-1.), (2*arand[--jr]-1.)); } while (aPos.mag2() > 1. ); aPos *=maxR; G4double density=theDensity->GetRelativeDensity(aPos); if (G4UniformRand() < density) { freeplace= true; std::vector::iterator iplace; for( iplace=places.begin(); iplace!=places.end() && freeplace;++iplace) { delta = *iplace - aPos; freeplace= delta.mag2() > nd2; } if ( freeplace ) { G4double pFermi=theFermi.GetFermiMomentum(theDensity->GetDensity(aPos)); // protons must at least have binding energy of CoulombBarrier, so // assuming the Fermi energy corresponds to a potential, we must place these such // that the Fermi Energy > CoulombBarrier if (theNucleons[i].GetDefinition() == G4Proton::Proton()) { G4double eFermi= std::sqrt( sqr(pFermi) + sqr(theNucleons[i].GetDefinition()->GetPDGMass()) ) - theNucleons[i].GetDefinition()->GetPDGMass(); if (eFermi <= CoulombBarrier() ) freeplace=false; } } if ( freeplace ) { theNucleons[i].SetPosition(aPos); places.push_back(aPos); ++i; } } } } void G4Fancy3DNucleus::ChooseFermiMomenta() { G4int i; G4double density; G4ThreeVector * momentum=new G4ThreeVector[myA]; G4double * fermiM=new G4double[myA]; for (G4int ntry=0; ntry<1 ; ntry ++ ) { for (i=0; i < myA; i++ ) // momenta for all, including last, in case we swap nucleons { density = theDensity->GetDensity(theNucleons[i].GetPosition()); fermiM[i] = theFermi.GetFermiMomentum(density); G4ThreeVector mom=theFermi.GetMomentum(density); if (theNucleons[i].GetDefinition() == G4Proton::Proton()) { G4double eMax = std::sqrt(sqr(fermiM[i]) +sqr(theNucleons[i].GetDefinition()->GetPDGMass()) ) - CoulombBarrier(); if ( eMax > theNucleons[i].GetDefinition()->GetPDGMass() ) { G4double pmax2= sqr(eMax) - sqr(theNucleons[i].GetDefinition()->GetPDGMass()); fermiM[i] = std::sqrt(pmax2); while ( mom.mag2() > pmax2 ) { mom=theFermi.GetMomentum(density, fermiM[i]); } } else { G4cerr << "G4Fancy3DNucleus: difficulty finding proton momentum" << G4endl; mom=G4ThreeVector(0,0,0); } } momentum[i]= mom; } if (ReduceSum(momentum,fermiM) ) break; // G4cout <<" G4FancyNucleus: iterating to find momenta: "<< ntry<< G4endl; } // G4ThreeVector sum; // for (G4int index=0; indexGetPDGMass() - BindingEnergy()/myA; G4LorentzVector tempV(momentum[i],energy); theNucleons[i].SetMomentum(tempV); } delete [] momentum; delete [] fermiM; } class G4Fancy3DNucleusHelper // Helper class { public: G4Fancy3DNucleusHelper(const G4ThreeVector &vec,const G4double size,const G4int index) : Vector(vec), Size(size), anInt(index) {} int operator ==(const G4Fancy3DNucleusHelper &right) const { return this==&right; } int operator < (const G4Fancy3DNucleusHelper &right) const { return size() testSums; // Sorted on delta.mag() for ( G4int aNucleon=0; aNucleon < myA-1; aNucleon++){ G4ThreeVector delta=2*((momentum[aNucleon]*testDir)* testDir); testSums.push_back(G4Fancy3DNucleusHelper(delta,delta.mag(),aNucleon)); } std::sort(testSums.begin(), testSums.end()); // reduce Momentum Sum until the next would be allowed. G4int index=testSums.size(); while ( (sum-testSums[--index].vector()).mag()>PFermi && index>0) { // Only take one which improve, ie. don't change sign and overshoot... if ( sum.mag() > (sum-testSums[index].vector()).mag() ) { momentum[testSums[index].index()]-=testSums[index].vector(); sum-=testSums[index].vector(); } } if ( (sum-testSums[index].vector()).mag() <= PFermi ) { G4int best=-1; G4double pBest=2*PFermi; // anything larger than PFermi for ( G4int aNucleon=0; aNucleon<=index; aNucleon++) { // find the momentum closest to choosen momentum for last Nucleon. G4double pTry=(testSums[aNucleon].vector()-sum).mag(); if ( pTry < PFermi && std::abs(momentum[myA-1].mag() - pTry ) < pBest ) { pBest=std::abs(momentum[myA-1].mag() - pTry ); best=aNucleon; } } if ( best < 0 ) { G4String text = "G4Fancy3DNucleus.cc: Logic error in ReduceSum()"; throw G4HadronicException(__FILE__, __LINE__, text); } momentum[testSums[best].index()]-=testSums[best].vector(); momentum[myA-1]=testSums[best].vector()-sum; testSums.clear(); return true; } testSums.clear(); // try to compensate momentum using another Nucleon.... G4int swapit=-1; while (swapit PFermi ) break; } if (swapit == myA-1 ) return false; // Now we have a nucleon with a bigger Fermi Momentum. // Exchange with last nucleon.. and iterate. G4Nucleon swap= theNucleons[swapit]; G4ThreeVector mom_swap=momentum[swapit]; G4double pf=pFermiM[swapit]; theNucleons[swapit]=theNucleons[myA-1]; momentum[swapit]=momentum[myA-1]; pFermiM[swapit]=pFermiM[myA-1]; theNucleons[myA-1]=swap; momentum[myA-1]=mom_swap; pFermiM[myA-1]=pf; return ReduceSum(momentum,pFermiM); } G4double G4Fancy3DNucleus::CoulombBarrier() { G4double coulombBarrier = (1.44/1.14) * MeV * myZ / (1.0 + std::pow(G4double(myA),1./3.)); return coulombBarrier; }