// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4Fragment.cc,v 1.16 2010/05/18 18:52:07 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $ // //--------------------------------------------------------------------- // // Geant4 class G4Fragment // // Hadronic Process: Nuclear De-excitations // by V. Lara (May 1998) // // Modifications: // 03.05.2010 V.Ivanchenko General cleanup; moved obsolete methods from // inline to source // #include "G4Fragment.hh" #include "G4HadronicException.hh" #include "G4HadTmpUtil.hh" #include "G4Gamma.hh" #include "G4Electron.hh" G4int G4Fragment::errCount = 0; // Default constructor G4Fragment::G4Fragment() : theA(0), theZ(0), theExcitationEnergy(0.0), theGroundStateMass(0.0), theMomentum(0), theAngularMomentum(0), numberOfParticles(0), numberOfHoles(0), numberOfCharged(0), theParticleDefinition(0), theCreationTime(0.0) #ifdef PRECOMPOUND_TEST ,theCreatorModel("No name") #endif {} // Copy Constructor G4Fragment::G4Fragment(const G4Fragment &right) { theA = right.theA; theZ = right.theZ; theExcitationEnergy = right.theExcitationEnergy; theGroundStateMass = right.theGroundStateMass; theMomentum = right.theMomentum; theAngularMomentum = right.theAngularMomentum; numberOfParticles = right.numberOfParticles; numberOfHoles = right.numberOfHoles; numberOfCharged = right.numberOfCharged; theParticleDefinition = right.theParticleDefinition; theCreationTime = right.theCreationTime; #ifdef PRECOMPOUND_TEST theCreatorModel = right.theCreatorModel; #endif } G4Fragment::~G4Fragment() {} G4Fragment::G4Fragment(const G4int A, const G4int Z, const G4LorentzVector& aMomentum) : theA(A), theZ(Z), theMomentum(aMomentum), theAngularMomentum(0), numberOfParticles(0), numberOfHoles(0), numberOfCharged(0), theParticleDefinition(0), theCreationTime(0.0) #ifdef PRECOMPOUND_TEST ,theCreatorModel("No name") #endif { theExcitationEnergy = 0.0; theGroundStateMass = 0.0; if(theA > 0) { CalculateGroundStateMass(); CalculateExcitationEnergy(); } /* theExcitationEnergy = theMomentum.mag() - G4ParticleTable::GetParticleTable()->GetIonTable() ->GetIonMass( G4lrint(theZ), G4lrint(theA) ); if (theExcitationEnergy < 0.0) { if (theExcitationEnergy > -10.0 * eV || 0 == G4lrint(theA)) { theExcitationEnergy = 0.0; } else { G4cout << "A, Z, momentum, theExcitationEnergy"<< A<<" "<GetParticleName(); throw G4HadronicException(__FILE__, __LINE__, text); } theGroundStateMass = aParticleDefinition->GetPDGMass(); } const G4Fragment & G4Fragment::operator=(const G4Fragment &right) { if (this != &right) { theA = right.theA; theZ = right.theZ; theExcitationEnergy = right.theExcitationEnergy; theGroundStateMass = right.theGroundStateMass; theMomentum = right.theMomentum; theAngularMomentum = right.theAngularMomentum; numberOfParticles = right.numberOfParticles; numberOfHoles = right.numberOfHoles; numberOfCharged = right.numberOfCharged; theParticleDefinition = right.theParticleDefinition; theCreationTime = right.theCreationTime; #ifdef PRECOMPOUND_TEST theCreatorModel = right.theCreatorModel; #endif } return *this; } G4bool G4Fragment::operator==(const G4Fragment &right) const { return (this == (G4Fragment *) &right); } G4bool G4Fragment::operator!=(const G4Fragment &right) const { return (this != (G4Fragment *) &right); } std::ostream& operator << (std::ostream &out, const G4Fragment *theFragment) { std::ios::fmtflags old_floatfield = out.flags(); out.setf(std::ios::floatfield); out << "Fragment: A = " << std::setprecision(3) << theFragment->theA << ", Z = " << std::setprecision(3) << theFragment->theZ ; out.setf(std::ios::scientific,std::ios::floatfield); out << ", U = " << theFragment->GetExcitationEnergy()/MeV << " MeV" << G4endl << " P = (" << theFragment->theMomentum.x()/MeV << "," << theFragment->theMomentum.y()/MeV << "," << theFragment->theMomentum.z()/MeV << ") MeV E = " << theFragment->theMomentum.t()/MeV << " MeV"; // What about Angular momentum??? if (theFragment->GetNumberOfExcitons() != 0) { out << G4endl; out << " " << "#Particles = " << theFragment->numberOfParticles << ", #Holes = " << theFragment->numberOfHoles << ", #Charged = " << theFragment->numberOfCharged; } out.setf(old_floatfield,std::ios::floatfield); return out; } std::ostream& operator << (std::ostream &out, const G4Fragment &theFragment) { out << &theFragment; return out; } void G4Fragment::ExcitationEnegryWarning() { if (theExcitationEnergy < -10.0 * eV) { ++errCount; if ( errCount <= 10 ) { G4cout << "G4Fragment::CalculateExcitationEnergy(): Excitation Energy = " << theExcitationEnergy/MeV << " MeV for A = " <