// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // // ------------------------------------------------------------ // GEANT 4 class implementation file // // ---------------- G4Parton ---------------- // by Gunter Folger, June 1998. // class for Parton (inside a string) used by Parton String Models // ------------------------------------------------------------ #include "G4Parton.hh" #include "G4HadronicException.hh" G4Parton::G4Parton(G4int PDGcode) { PDGencoding=PDGcode; theX = 0; theDefinition=G4ParticleTable::GetParticleTable()->FindParticle(PDGencoding); if (theDefinition == NULL) { G4cout << "Encoding = "<GetParticleType() == "quarks") { theColour = ((G4int)(3.*G4UniformRand())+1)*(std::abs(PDGencoding)/PDGencoding) ; } // // colour by random in (-1,-2,-3)=(Rbar,Gbar,Bbar)=(GB,RB,RG) for di-quarks and // in (1,2,3)=(R,G,B)=(GB,RB,RG) for anti-di-quarks: // else if (theDefinition->GetParticleType() == "diquarks") { theColour = -((G4int)(3.*G4UniformRand())+1)*(std::abs(PDGencoding)/PDGencoding); } // // colour by random in (-11,-12,...,-33)=(RRbar,RGbar,RBbar,...,BBbar) for gluons: // else if (theDefinition->GetParticleType() == "gluons") { theColour = -(((G4int)(3.*G4UniformRand())+1)*10 + ((G4int)(3.*G4UniformRand())+1)); } else { G4cout << "Encoding = "<GetParticleType() == "quarks") || (theDefinition->GetParticleType() == "diquarks")){ theIsoSpinZ = theDefinition->GetPDGIsospin3(); } // // isospin-z choosen at random from PDG-encoded isospin for gluons (should be zero): // else { G4int thisPDGiIsospin=theDefinition->GetPDGiIsospin(); if (thisPDGiIsospin == 0) { theIsoSpinZ = 0; } else { theIsoSpinZ = ((G4int)((thisPDGiIsospin+1)*G4UniformRand()))-thisPDGiIsospin*0.5; } } // // spin-z choosen at random from PDG-encoded spin: // G4int thisPDGiSpin=theDefinition->GetPDGiSpin(); if (thisPDGiSpin == 0) { theSpinZ = 0; } else { G4int rand=((G4int)((thisPDGiSpin+1)*G4UniformRand())); theSpinZ = rand-thisPDGiSpin*0.5;; } } G4Parton::G4Parton(const G4Parton &right) { PDGencoding = right.PDGencoding; theMomentum = right.theMomentum; thePosition = right.thePosition; theX = right.theX; theDefinition = right.theDefinition; theColour = right.theColour; theIsoSpinZ = right.theIsoSpinZ; theSpinZ = right.theSpinZ; } const G4Parton & G4Parton::operator=(const G4Parton &right) { PDGencoding=right.GetPDGcode(); theMomentum=right.Get4Momentum(); thePosition=right.GetPosition(); theX = right.theX; theDefinition = right.theDefinition; theColour = right.theColour; theIsoSpinZ = right.theIsoSpinZ; theSpinZ = right.theSpinZ; return *this; } G4Parton::~G4Parton() { // cout << "G4Parton::~G4Parton(): this = "<