source: trunk/source/processes/hadronic/stopping/src/G4KaonMinusAbsorption.cc @ 846

Last change on this file since 846 was 819, checked in by garnier, 16 years ago

import all except CVS

File size: 15.4 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//   G4KaonMinusAbsorption physics process
27//   Larry Felawka (TRIUMF), April 1998
28//---------------------------------------------------------------------
29
30#include "G4KaonMinusAbsorption.hh"
31#include "G4DynamicParticle.hh"
32#include "G4ParticleTypes.hh"
33#include "Randomize.hh"
34#include <string.h>
35#include <cmath>
36#include <stdio.h>
37 
38#define MAX_SECONDARIES 100
39
40// constructor
41 
42G4KaonMinusAbsorption::G4KaonMinusAbsorption(const G4String& processName,
43                                      G4ProcessType   aType ) :
44  G4VRestProcess (processName, aType),       // initialization
45  massKaonMinus(G4KaonMinus::KaonMinus()->GetPDGMass()/GeV),
46  massGamma(G4Gamma::Gamma()->GetPDGMass()/GeV),
47  massPionZero(G4PionZero::PionZero()->GetPDGMass()/GeV),
48  massProton(G4Proton::Proton()->GetPDGMass()/GeV),
49  massLambda(G4Lambda::Lambda()->GetPDGMass()/GeV),
50  pdefKaonMinus(G4KaonMinus::KaonMinus()),
51  pdefGamma(G4Gamma::Gamma()),
52  pdefPionZero(G4PionZero::PionZero()),
53  pdefProton(G4Proton::Proton()),
54  pdefNeutron(G4Neutron::Neutron()),
55  pdefLambda(G4Lambda::Lambda()),
56  pdefDeuteron(G4Deuteron::Deuteron()),
57  pdefTriton(G4Triton::Triton()),
58  pdefAlpha(G4Alpha::Alpha())
59{
60  if (verboseLevel>0) {
61    G4cout << GetProcessName() << " is created "<< G4endl;
62  }
63
64  pv   = new G4GHEKinematicsVector [MAX_SECONDARIES+1];
65  eve  = new G4GHEKinematicsVector [MAX_SECONDARIES];
66  gkin = new G4GHEKinematicsVector [MAX_SECONDARIES];
67
68}
69 
70// destructor
71 
72G4KaonMinusAbsorption::~G4KaonMinusAbsorption()
73{
74  delete [] pv;
75  delete [] eve;
76  delete [] gkin;
77}
78 
79 
80// methods.............................................................................
81 
82G4bool G4KaonMinusAbsorption::IsApplicable(
83                                           const G4ParticleDefinition& particle
84                                           )
85{
86   return ( &particle == pdefKaonMinus );
87
88}
89 
90// Warning - this method may be optimized away if made "inline"
91G4int G4KaonMinusAbsorption::GetNumberOfSecondaries()
92{
93  return ( ngkine );
94
95}
96
97// Warning - this method may be optimized away if made "inline"
98G4GHEKinematicsVector* G4KaonMinusAbsorption::GetSecondaryKinematics()
99{
100  return ( &gkin[0] );
101
102}
103
104G4double G4KaonMinusAbsorption::AtRestGetPhysicalInteractionLength(
105                           const G4Track& track,
106                           G4ForceCondition* condition
107                           )
108{
109  // beggining of tracking
110  ResetNumberOfInteractionLengthLeft();
111
112  // condition is set to "Not Forced"
113  *condition = NotForced;
114
115  // get mean life time
116  currentInteractionLength = GetMeanLifeTime(track, condition);
117
118  if ((currentInteractionLength <0.0) || (verboseLevel>2)){
119    G4cout << "G4KaonMinusAbsorptionProcess::AtRestGetPhysicalInteractionLength ";
120    G4cout << "[ " << GetProcessName() << "]" <<G4endl;
121    track.GetDynamicParticle()->DumpInfo();
122    G4cout << " in Material  " << track.GetMaterial()->GetName() <<G4endl;
123    G4cout << "MeanLifeTime = " << currentInteractionLength/ns << "[ns]" <<G4endl;
124  }
125
126  return theNumberOfInteractionLengthLeft * currentInteractionLength;
127
128}
129
130G4VParticleChange* G4KaonMinusAbsorption::AtRestDoIt(
131                                    const G4Track& track,
132                                    const G4Step& 
133                                    )
134//
135// Handles KaonMinus at rest; a KaonMinus can either create secondaries or
136// do nothing (in which case it should be sent back to decay-handling
137// section
138//
139{
140
141//   Initialize ParticleChange
142//     all members of G4VParticleChange are set to equal to
143//     corresponding member in G4Track
144
145  aParticleChange.Initialize(track);
146
147//   Store some global quantities that depend on current material and particle
148
149  globalTime = track.GetGlobalTime()/s;
150  G4Material * aMaterial = track.GetMaterial();
151  const G4int numberOfElements = aMaterial->GetNumberOfElements();
152  const G4ElementVector* theElementVector = aMaterial->GetElementVector();
153
154  const G4double* theAtomicNumberDensity = aMaterial->GetAtomicNumDensityVector();
155  G4double normalization = 0;
156  for ( G4int i1=0; i1 < numberOfElements; i1++ )
157  {
158    normalization += theAtomicNumberDensity[i1] ; // change when nucleon specific
159                                                  // probabilities are included.
160  }
161  G4double runningSum= 0.;
162  G4double random = G4UniformRand()*normalization;
163  for ( G4int i2=0; i2 < numberOfElements; i2++ )
164  {
165    runningSum += theAtomicNumberDensity[i2]; // change when nucleon specific
166                                              // probabilities are included.
167    if (random<=runningSum)
168    {
169      targetCharge = G4double( ((*theElementVector)[i2])->GetZ());
170      targetAtomicMass = (*theElementVector)[i2]->GetN();
171    }
172  }
173  if (random>runningSum)
174  {
175    targetCharge = G4double((*theElementVector)[numberOfElements-1]->GetZ());
176    targetAtomicMass = (*theElementVector)[numberOfElements-1]->GetN();
177
178  }
179
180  if (verboseLevel>1) {
181    G4cout << "G4KaonMinusAbsorption::AtRestDoIt is invoked " <<G4endl;
182    }
183
184  G4ParticleMomentum momentum;
185  G4float localtime;
186
187  G4ThreeVector   position = track.GetPosition();
188
189  GenerateSecondaries(); // Generate secondaries
190
191  aParticleChange.SetNumberOfSecondaries( ngkine ); 
192
193  for ( G4int isec = 0; isec < ngkine; isec++ ) {
194    G4DynamicParticle* aNewParticle = new G4DynamicParticle;
195    aNewParticle->SetDefinition( gkin[isec].GetParticleDef() );
196    aNewParticle->SetMomentum( gkin[isec].GetMomentum() * GeV );
197
198    localtime = globalTime + gkin[isec].GetTOF();
199
200    G4Track* aNewTrack = new G4Track( aNewParticle, localtime*s, position );
201                aNewTrack->SetTouchableHandle(track.GetTouchableHandle());
202    aParticleChange.AddSecondary( aNewTrack );
203
204  }
205
206  aParticleChange.ProposeLocalEnergyDeposit( 0.0*GeV );
207
208  aParticleChange.ProposeTrackStatus(fStopAndKill); // Kill the incident KaonMinus
209
210//   clear InteractionLengthLeft
211
212  ResetNumberOfInteractionLengthLeft();
213
214  return &aParticleChange;
215
216}
217
218
219void G4KaonMinusAbsorption::GenerateSecondaries()
220{
221  static G4int index;
222  static G4int l;
223  static G4int nopt;
224  static G4int i;
225  static G4ParticleDefinition* jnd;
226
227  for (i = 1; i <= MAX_SECONDARIES; ++i) {
228    pv[i].SetZero();
229  }
230
231  ngkine = 0;            // number of generated secondary particles
232  ntot = 0;
233  result.SetZero();
234  result.SetMass( massKaonMinus );
235  result.SetKineticEnergyAndUpdate( 0. );
236  result.SetTOF( 0. );
237  result.SetParticleDef( pdefKaonMinus );
238
239  KaonMinusAbsorption(&nopt);
240
241  // *** CHECK WHETHER THERE ARE NEW PARTICLES GENERATED ***
242  if (ntot != 0 || result.GetParticleDef() != pdefKaonMinus) {
243    // *** CURRENT PARTICLE IS NOT THE SAME AS IN THE BEGINNING OR/AND ***
244    // *** ONE OR MORE SECONDARIES HAVE BEEN GENERATED ***
245
246    // --- INITIAL PARTICLE TYPE HAS BEEN CHANGED ==> PUT NEW TYPE ON ---
247    // --- THE GEANT TEMPORARY STACK ---
248
249    // --- PUT PARTICLE ON THE STACK ---
250    gkin[0] = result;
251    gkin[0].SetTOF( result.GetTOF() * 5e-11 );
252    ngkine = 1;
253
254    // --- ALL QUANTITIES ARE TAKEN FROM THE GHEISHA STACK WHERE THE ---
255    // --- CONVENTION IS THE FOLLOWING ---
256
257    // --- ONE OR MORE SECONDARIES HAVE BEEN GENERATED ---
258    for (l = 1; l <= ntot; ++l) {
259      index = l - 1;
260      jnd = eve[index].GetParticleDef();
261
262      // --- ADD PARTICLE TO THE STACK IF STACK NOT YET FULL ---
263      if (ngkine < MAX_SECONDARIES) {
264        gkin[ngkine] = eve[index];
265        gkin[ngkine].SetTOF( eve[index].GetTOF() * 5e-11 );
266        ++ngkine;
267      }
268    }
269  }
270  else {
271    // --- NO SECONDARIES GENERATED AND PARTICLE IS STILL THE SAME ---
272    // --- ==> COPY EVERYTHING BACK IN THE CURRENT GEANT STACK ---
273    ngkine = 0;
274    ntot = 0;
275    globalTime += result.GetTOF() * G4float(5e-11);
276  }
277
278  // --- LIMIT THE VALUE OF NGKINE IN CASE OF OVERFLOW ---
279  ngkine = G4int(std::min(ngkine,G4int(MAX_SECONDARIES)));
280
281} // GenerateSecondaries
282
283
284void G4KaonMinusAbsorption::Poisso(G4float xav, G4int *iran)
285{
286  static G4int i;
287  static G4float r, p1, p2, p3;
288  static G4int mm;
289  static G4float rr, ran, rrr, ran1;
290
291  // *** GENERATION OF POISSON DISTRIBUTION ***
292  // *** NVE 16-MAR-1988 CERN GENEVA ***
293  // ORIGIN : H.FESEFELDT (27-OCT-1983)
294
295  // --- USE NORMAL DISTRIBUTION FOR <X> > 9.9 ---
296  if (xav > G4float(9.9)) {
297    // ** NORMAL DISTRIBUTION WITH SIGMA**2 = <X>
298    Normal(&ran1);
299    ran1 = xav + ran1 * std::sqrt(xav);
300    *iran = G4int(ran1);
301    if (*iran < 0) {
302      *iran = 0;
303    }
304  }
305  else {
306    mm = G4int(xav * G4float(5.));
307    *iran = 0;
308    if (mm > 0) {
309      r = std::exp(-G4double(xav));
310      ran1 = G4UniformRand();
311      if (ran1 > r) {
312        rr = r;
313        for (i = 1; i <= mm; ++i) {
314          ++(*iran);
315          if (i <= 5) {
316            rrr = std::pow(xav, G4float(i)) / NFac(i);
317          }
318          // ** STIRLING' S FORMULA FOR LARGE NUMBERS
319          if (i > 5) {
320            rrr = std::exp(i * std::log(xav) -
321                      (i + G4float(.5)) * std::log(i * G4float(1.)) +
322                      i - G4float(.9189385));
323          }
324          rr += r * rrr;
325          if (ran1 <= rr) {
326            break;
327          }
328        }
329      }
330    }
331    else {
332      // ** FOR VERY SMALL XAV TRY IRAN=1,2,3
333      p1 = xav * std::exp(-G4double(xav));
334      p2 = xav * p1 / G4float(2.);
335      p3 = xav * p2 / G4float(3.);
336      ran = G4UniformRand();
337      if (ran >= p3) {
338        if (ran >= p2) {
339          if (ran >= p1) {
340            *iran = 0;
341          }
342          else {
343            *iran = 1;
344          }
345        }
346        else {
347          *iran = 2;
348        }
349      }
350      else {
351        *iran = 3;
352      }
353    }
354  }
355
356} // Poisso
357
358
359G4int G4KaonMinusAbsorption::NFac(G4int n)
360{
361  G4int ret_val;
362
363  static G4int i, m;
364
365  // *** NVE 16-MAR-1988 CERN GENEVA ***
366  // ORIGIN : H.FESEFELDT (27-OCT-1983)
367
368  ret_val = 1;
369  m = n;
370  if (m > 1) {
371    if (m > 10) {
372      m = 10;
373    }
374    for (i = 2; i <= m; ++i) {
375      ret_val *= i;
376    }
377  }
378  return ret_val;
379
380} // NFac
381
382
383void G4KaonMinusAbsorption::Normal(G4float *ran)
384{
385  static G4int i;
386
387  // *** NVE 14-APR-1988 CERN GENEVA ***
388  // ORIGIN : H.FESEFELDT (27-OCT-1983)
389
390  *ran = G4float(-6.);
391  for (i = 1; i <= 12; ++i) {
392    *ran += G4UniformRand();
393  }
394
395} // Normal
396
397
398void G4KaonMinusAbsorption::KaonMinusAbsorption(G4int *nopt)
399{
400  static G4int i;
401  static G4int nt, nbl;
402  static G4float ran, pcm;
403  static G4int isw;
404  static G4float tex;
405  static G4float ran2, tof1, ekin, ekin1, ekin2, black;
406  static G4float pnrat;
407  static G4ParticleDefinition* ipa1;
408  static G4ParticleDefinition* inve;
409
410  // *** CHARGED KAON ABSORPTION BY A NUCLEUS ***
411  // *** NVE 04-MAR-1988 CERN GENEVA ***
412  // ORIGIN : H.FESEFELDT (09-JULY-1987)
413
414  // PRODUCTION OF A HYPERFRAGMENT WITH SUBSEQUENT DECAY
415  // PANOFSKY RATIO (K- P --> LAMBDA PI0/K- P --> LAMBDA GAMMA) = 3/2
416
417  pv[1].SetZero();
418  pv[1].SetMass( massKaonMinus );
419  pv[1].SetKineticEnergyAndUpdate( 0. );
420  pv[1].SetTOF( result.GetTOF() );
421  pv[1].SetParticleDef( result.GetParticleDef() );
422  if (targetAtomicMass <= G4float(1.5)) {
423    ran = G4UniformRand();
424    tof1 = std::log(ran) * G4float(-12.5);
425    tof1 *= G4float(20.);
426    ran = G4UniformRand();
427    isw = 1;
428    if (ran < G4float(.33)) {
429      isw = 2;
430    }
431    *nopt = isw;
432    pv[3].SetZero();
433    pv[3].SetMass( massLambda );
434    pv[3].SetKineticEnergyAndUpdate( 0. );
435    pv[3].SetTOF( result.GetTOF() + tof1 );
436    pv[3].SetParticleDef( pdefLambda );
437    pcm = massKaonMinus + massProton - massLambda;
438    if (isw != 1) {
439      pv[2].SetZero();
440      pv[2].SetMass( massGamma );
441      pv[2].SetKineticEnergyAndUpdate( pcm );
442      pv[2].SetTOF( result.GetTOF() + tof1 );
443      pv[2].SetParticleDef( pdefGamma );
444    }
445    else {
446      pcm = pcm * pcm - massPionZero * massPionZero;
447      if (pcm <= G4float(0.)) {
448        pcm = G4float(0.);
449      }
450      pv[2].SetZero();
451      pv[2].SetEnergy( std::sqrt(pcm + massPionZero * massPionZero) );
452      pv[2].SetMassAndUpdate( massPionZero );
453      pv[2].SetTOF( result.GetTOF() + tof1 );
454      pv[2].SetParticleDef( pdefPionZero );
455    }
456    result = pv[2];
457    if (ntot < MAX_SECONDARIES-1) {
458      eve[ntot++] = pv[3];
459    }
460  }
461  else {
462    // **
463    // ** STAR PRODUCTION FOR PION ABSORPTION IN HEAVY ELEMENTS
464    // **
465    evapEnergy1 = G4float(.3);
466    evapEnergy3 = G4float(.15);
467    nt = 1;
468    tex = evapEnergy1;
469    black = std::log(targetAtomicMass) * G4float(.5);
470    Poisso(black, &nbl);
471    if (nt + nbl > (MAX_SECONDARIES - 2)) {
472      nbl = (MAX_SECONDARIES - 2) - nt;
473    }
474    if (nbl <= 0) {
475      nbl = 1;
476    }
477    ekin = tex / nbl;
478    ekin2 = G4float(0.);
479    for (i = 1; i <= nbl; ++i) {
480      if (nt == (MAX_SECONDARIES - 2)) {
481        continue;
482      }
483      ran2 = G4UniformRand();
484      ekin1 = -G4double(ekin) * std::log(ran2);
485      ekin2 += ekin1;
486      ipa1 = pdefNeutron;
487      pnrat = G4float(1.) - targetCharge / targetAtomicMass;
488      if (G4UniformRand() > pnrat) {
489        ipa1 = pdefProton;
490      }
491      ++nt;
492      pv[nt].SetZero();
493      pv[nt].SetMass( ipa1->GetPDGMass()/GeV );
494      pv[nt].SetKineticEnergyAndUpdate( ekin1 );
495      pv[nt].SetTOF( 2. );
496      pv[nt].SetParticleDef( ipa1 );
497      if (ekin2 > tex) {
498        break;
499      }
500    }
501    tex = evapEnergy3;
502    black = std::log(targetAtomicMass) * G4float(.5);
503    Poisso(black, &nbl);
504    if (nt + nbl > (MAX_SECONDARIES - 2)) {
505      nbl = (MAX_SECONDARIES - 2) - nt;
506    }
507    if (nbl <= 0) {
508      nbl = 1;
509    }
510    ekin = tex / nbl;
511    ekin2 = G4float(0.);
512    for (i = 1; i <= nbl; ++i) {
513      if (nt == (MAX_SECONDARIES - 2)) {
514        continue;
515      }
516      ran2 = G4UniformRand();
517      ekin1 = -G4double(ekin) * std::log(ran2);
518      ekin2 += ekin1;
519      ++nt;
520      ran = G4UniformRand();
521      inve = pdefDeuteron;
522      if (ran > G4float(.6)) {
523        inve = pdefTriton;
524      }
525      if (ran > G4float(.9)) {
526        inve = pdefAlpha;
527      }
528//      PV(5,NT)=(ABS(IPA(NT))-28)*RMASS(14)   <-- Wrong! (LF)
529      pv[nt].SetZero();
530      pv[nt].SetMass( inve->GetPDGMass()/GeV );
531      pv[nt].SetKineticEnergyAndUpdate( ekin1 );
532      pv[nt].SetTOF( 2. );
533      pv[nt].SetParticleDef( inve );
534      if (ekin2 > tex) {
535        break;
536      }
537    }
538    // **
539    // ** STORE ON EVENT COMMON
540    // **
541    ran = G4UniformRand();
542    tof1 = std::log(ran) * G4float(-12.5);
543    tof1 *= G4float(20.);
544    for (i = 2; i <= nt; ++i) {
545      pv[i].SetTOF( result.GetTOF() + tof1 );
546    }
547    result = pv[2];
548    for (i = 3; i <= nt; ++i) {
549      if (ntot >= MAX_SECONDARIES) {
550        break;
551      }
552      eve[ntot++] = pv[i];
553    }
554  }
555
556} // KaonMinusAbsorption
Note: See TracBrowser for help on using the repository browser.