source: trunk/source/processes/hadronic/stopping/src/G4NeutronCaptureAtRest.cc @ 1307

Last change on this file since 1307 was 1055, checked in by garnier, 15 years ago

maj sur la beta de geant 4.9.3

File size: 12.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//    G4NeutronCaptureAtRest physics process
27//    Larry Felawka (TRIUMF), April 1998
28//---------------------------------------------------------------------
29
30#include "G4NeutronCaptureAtRest.hh"
31#include "G4DynamicParticle.hh"
32#include "G4ParticleTypes.hh"
33#include "Randomize.hh"
34#include "G4HadronicProcessStore.hh"
35#include <string.h>
36#include <cmath>
37#include <stdio.h>
38 
39#define MAX_SECONDARIES 100
40
41// constructor
42 
43G4NeutronCaptureAtRest::G4NeutronCaptureAtRest(const G4String& processName,
44                                      G4ProcessType   aType ) :
45  G4VRestProcess (processName, aType),       // initialization
46  massProton(G4Proton::Proton()->GetPDGMass()/GeV),
47  massNeutron(G4Neutron::Neutron()->GetPDGMass()/GeV),
48  massElectron(G4Electron::Electron()->GetPDGMass()/GeV),
49  massDeuteron(G4Deuteron::Deuteron()->GetPDGMass()/GeV),
50  massAlpha(G4Alpha::Alpha()->GetPDGMass()/GeV),
51  pdefGamma(G4Gamma::Gamma()),
52  pdefNeutron(G4Neutron::Neutron())
53{
54  if (verboseLevel>0) {
55    G4cout << GetProcessName() << " is created "<< G4endl;
56  }
57  SetProcessSubType(fHadronAtRest);
58  pv   = new G4GHEKinematicsVector [MAX_SECONDARIES+1];
59  eve  = new G4GHEKinematicsVector [MAX_SECONDARIES];
60  gkin = new G4GHEKinematicsVector [MAX_SECONDARIES];
61
62  G4HadronicProcessStore::Instance()->RegisterExtraProcess(this);
63}
64 
65// destructor
66 
67G4NeutronCaptureAtRest::~G4NeutronCaptureAtRest()
68{
69  G4HadronicProcessStore::Instance()->DeRegisterExtraProcess(this);
70  delete [] pv;
71  delete [] eve;
72  delete [] gkin;
73}
74 
75void G4NeutronCaptureAtRest::PreparePhysicsTable(const G4ParticleDefinition& p) 
76{
77  G4HadronicProcessStore::Instance()->RegisterParticleForExtraProcess(this, &p);
78}
79
80void G4NeutronCaptureAtRest::BuildPhysicsTable(const G4ParticleDefinition& p) 
81{
82  G4HadronicProcessStore::Instance()->PrintInfo(&p);
83}
84 
85// methods.............................................................................
86 
87G4bool G4NeutronCaptureAtRest::IsApplicable(
88                                 const G4ParticleDefinition& particle
89                                 )
90{
91   return ( &particle == pdefNeutron );
92
93}
94 
95// Warning - this method may be optimized away if made "inline"
96G4int G4NeutronCaptureAtRest::GetNumberOfSecondaries()
97{
98  return ( ngkine );
99
100}
101
102// Warning - this method may be optimized away if made "inline"
103G4GHEKinematicsVector* G4NeutronCaptureAtRest::GetSecondaryKinematics()
104{
105  return ( &gkin[0] );
106
107}
108
109G4double G4NeutronCaptureAtRest::AtRestGetPhysicalInteractionLength(
110                                   const G4Track& track,
111                                   G4ForceCondition* condition
112                                   )
113{
114  // beggining of tracking
115  ResetNumberOfInteractionLengthLeft();
116
117  // condition is set to "Not Forced"
118  *condition = NotForced;
119
120  // get mean life time
121  currentInteractionLength = GetMeanLifeTime(track, condition);
122
123  if ((currentInteractionLength <0.0) || (verboseLevel>2)){
124    G4cout << "G4NeutronCaptureAtRestProcess::AtRestGetPhysicalInteractionLength ";
125    G4cout << "[ " << GetProcessName() << "]" <<G4endl;
126    track.GetDynamicParticle()->DumpInfo();
127    G4cout << " in Material  " << track.GetMaterial()->GetName() <<G4endl;
128    G4cout << "MeanLifeTime = " << currentInteractionLength/ns << "[ns]" <<G4endl;
129  }
130
131  return theNumberOfInteractionLengthLeft * currentInteractionLength;
132
133}
134
135G4VParticleChange* G4NeutronCaptureAtRest::AtRestDoIt(
136                                            const G4Track& track,
137                                            const G4Step& 
138                                            )
139//
140// Handles Neutrons at rest; a Neutron can either create secondaries or
141// do nothing (in which case it should be sent back to decay-handling
142// section
143//
144{
145
146//   Initialize ParticleChange
147//     all members of G4VParticleChange are set to equal to
148//     corresponding member in G4Track
149
150  aParticleChange.Initialize(track);
151
152//   Store some global quantities that depend on current material and particle
153
154  globalTime = track.GetGlobalTime()/s;
155  G4Material * aMaterial = track.GetMaterial();
156  const G4int numberOfElements = aMaterial->GetNumberOfElements();
157  const G4ElementVector* theElementVector = aMaterial->GetElementVector();
158
159  const G4double* theAtomicNumberDensity = aMaterial->GetAtomicNumDensityVector();
160  G4double normalization = 0;
161  for ( G4int i1=0; i1 < numberOfElements; i1++ )
162  {
163    normalization += theAtomicNumberDensity[i1] ; // change when nucleon specific
164                                                  // probabilities are included.
165  }
166  G4double runningSum= 0.;
167  G4double random = G4UniformRand()*normalization;
168  for ( G4int i2=0; i2 < numberOfElements; i2++ )
169  {
170    runningSum += theAtomicNumberDensity[i2]; // change when nucleon specific
171                                              // probabilities are included.
172    if (random<=runningSum)
173    {
174      targetCharge = G4double((*theElementVector)[i2]->GetZ());
175      targetAtomicMass = (*theElementVector)[i2]->GetN();
176    }
177  }
178  if (random>runningSum)
179  {
180    targetCharge = G4double((*theElementVector)[numberOfElements-1]->GetZ());
181    targetAtomicMass = (*theElementVector)[numberOfElements-1]->GetN();
182
183  }
184
185  if (verboseLevel>1) {
186    G4cout << "G4NeutronCaptureAtRest::AtRestDoIt is invoked " <<G4endl;
187    }
188
189  G4ParticleMomentum momentum;
190  G4float localtime;
191
192  G4ThreeVector   position = track.GetPosition();
193
194  GenerateSecondaries(); // Generate secondaries
195
196  aParticleChange.SetNumberOfSecondaries( ngkine ); 
197
198  for ( G4int isec = 0; isec < ngkine; isec++ ) {
199    G4DynamicParticle* aNewParticle = new G4DynamicParticle;
200    aNewParticle->SetDefinition( gkin[isec].GetParticleDef() );
201    aNewParticle->SetMomentum( gkin[isec].GetMomentum() * GeV );
202
203    localtime = globalTime + gkin[isec].GetTOF();
204
205    G4Track* aNewTrack = new G4Track( aNewParticle, localtime*s, position );
206                aNewTrack->SetTouchableHandle(track.GetTouchableHandle());
207    aParticleChange.AddSecondary( aNewTrack );
208
209  }
210
211  aParticleChange.ProposeLocalEnergyDeposit( 0.0*GeV );
212
213  aParticleChange.ProposeTrackStatus(fStopAndKill); // Kill the incident Neutron
214
215//   clear InteractionLengthLeft
216
217  ResetNumberOfInteractionLengthLeft();
218
219  return &aParticleChange;
220
221}
222
223
224void G4NeutronCaptureAtRest::GenerateSecondaries()
225{
226  static G4int index;
227  static G4int l;
228  static G4int nopt;
229  static G4int i;
230  static G4ParticleDefinition* jnd;
231
232  for (i = 1; i <= MAX_SECONDARIES; ++i) {
233    pv[i].SetZero();
234  }
235
236  ngkine = 0;            // number of generated secondary particles
237  ntot = 0;
238  result.SetZero();
239  result.SetMass( massNeutron );
240  result.SetKineticEnergyAndUpdate( 0. );
241  result.SetTOF( 0. );
242  result.SetParticleDef( pdefNeutron );
243
244  NeutronCapture(&nopt);
245
246  // *** CHECK WHETHER THERE ARE NEW PARTICLES GENERATED ***
247  if (ntot != 0 || result.GetParticleDef() != pdefNeutron) {
248    // *** CURRENT PARTICLE IS NOT THE SAME AS IN THE BEGINNING OR/AND ***
249    // *** ONE OR MORE SECONDARIES HAVE BEEN GENERATED ***
250
251    // --- INITIAL PARTICLE TYPE HAS BEEN CHANGED ==> PUT NEW TYPE ON ---
252    // --- THE GEANT TEMPORARY STACK ---
253
254    // --- PUT PARTICLE ON THE STACK ---
255    gkin[0] = result;
256    gkin[0].SetTOF( result.GetTOF() * 5e-11 );
257    ngkine = 1;
258
259    // --- ALL QUANTITIES ARE TAKEN FROM THE GHEISHA STACK WHERE THE ---
260    // --- CONVENTION IS THE FOLLOWING ---
261
262    // --- ONE OR MORE SECONDARIES HAVE BEEN GENERATED ---
263    for (l = 1; l <= ntot; ++l) {
264      index = l - 1;
265      jnd = eve[index].GetParticleDef();
266
267      // --- ADD PARTICLE TO THE STACK IF STACK NOT YET FULL ---
268      if (ngkine < MAX_SECONDARIES) {
269        gkin[ngkine] = eve[index];
270        gkin[ngkine].SetTOF( eve[index].GetTOF() * 5e-11 );
271        ++ngkine;
272      }
273    }
274  }
275  else {
276    // --- NO SECONDARIES GENERATED AND PARTICLE IS STILL THE SAME ---
277    // --- ==> COPY EVERYTHING BACK IN THE CURRENT GEANT STACK ---
278    ngkine = 0;
279    ntot = 0;
280    globalTime += result.GetTOF() * G4float(5e-11);
281  }
282
283  // --- LIMIT THE VALUE OF NGKINE IN CASE OF OVERFLOW ---
284  ngkine = G4int(std::min(ngkine,G4int(MAX_SECONDARIES)));
285
286} // GenerateSecondaries
287
288
289void G4NeutronCaptureAtRest::Normal(G4float *ran)
290{
291  static G4int i;
292
293  // *** NVE 14-APR-1988 CERN GENEVA ***
294  // ORIGIN : H.FESEFELDT (27-OCT-1983)
295
296  *ran = G4float(-6.);
297  for (i = 1; i <= 12; ++i) {
298    *ran += G4UniformRand();
299  }
300
301} // Normal
302
303
304void G4NeutronCaptureAtRest::NeutronCapture(G4int *nopt)
305{
306  static G4int nt;
307  static G4float xp, pcm;
308  static G4float ran;
309
310  // *** ROUTINE FOR CAPTURE OF NEUTRAL BARYONS ***
311  // *** NVE 04-MAR-1988 CERN GENEVA ***
312  // ORIGIN : H.FESEFELDT (02-DEC-1986)
313
314  *nopt = 1;
315  pv[1] = result;
316  pv[2].SetZero();
317  pv[2].SetMass( AtomAs(targetAtomicMass, targetCharge) );
318  pv[2].SetMomentumAndUpdate( 0., 0., 0. );
319  pv[2].SetTOF( result.GetTOF() );
320  pv[2].SetParticleDef( NULL );
321  pv[MAX_SECONDARIES].Add( pv[1], pv[2] );
322  pv[MAX_SECONDARIES].SetMomentum( -pv[MAX_SECONDARIES].GetMomentum().x(), -pv[MAX_SECONDARIES].GetMomentum().y(), -pv[MAX_SECONDARIES].GetMomentum().z() );
323  pv[MAX_SECONDARIES].SetParticleDef( NULL );
324  Normal(&ran);
325  pcm = ran * G4float(.001) + G4float(.0065);
326  ran = G4UniformRand();
327  result.SetTOF( result.GetTOF() - std::log(ran) * G4float(480.) );
328  pv[3].SetZero();
329  pv[3].SetMass( 0. );
330  pv[3].SetKineticEnergyAndUpdate( pcm );
331  pv[3].SetTOF( result.GetTOF() );
332  pv[3].SetParticleDef( pdefGamma );
333  pv[3].Lor( pv[3], pv[MAX_SECONDARIES] );
334  nt = 3;
335  xp = G4float(.008) - pcm;
336  if (xp >= G4float(0.)) {
337    nt = 4;
338    pv[4].SetZero();
339    pv[4].SetMass( 0. );
340    pv[4].SetKineticEnergyAndUpdate( xp );
341    pv[4].SetTOF( result.GetTOF() );
342    pv[4].SetParticleDef( pdefGamma );
343    pv[4].Lor( pv[4], pv[MAX_SECONDARIES] );
344  }
345  result = pv[3];
346  if (nt == 4) {
347    if (ntot < MAX_SECONDARIES-1) {
348      eve[ntot++] = pv[4];
349    }
350  }
351
352} // NeutronCapture
353
354
355G4double G4NeutronCaptureAtRest::AtomAs(G4float a, G4float z)
356{
357  G4float ret_val;
358  G4double d__1, d__2;
359
360  static G4double aa;
361  static G4int ia, iz;
362  static G4double zz;
363  static G4float rma, rmd;
364  static G4int ipp;
365  static G4float rmn, rmp;
366  static G4int izz;
367  static G4float rmel;
368  static G4double mass;
369
370  // *** DETERMINATION OF THE ATOMIC MASS ***
371  // *** NVE 19-MAY-1988 CERN GENEVA ***
372  // ORIGIN : H.FESEFELDT (02-DEC-1986)
373
374  // --- GET ATOMIC (= ELECTRONS INCL.) MASSES (IN MEV) FROM RMASS ARRAY ---
375  // --- ELECTRON ---
376  rmel = massElectron * G4float(1e3);
377  // --- PROTON ---
378  rmp = massProton * G4float(1e3);
379  // --- NEUTRON ---
380  rmn = massNeutron * G4float(1e3);
381  // --- DEUTERON ---
382  rmd = massDeuteron * G4float(1e3) + rmel;
383  // --- ALPHA ---
384  rma = massAlpha * G4float(1e3) + rmel * G4float(2.);
385
386  ret_val = G4float(0.);
387  aa = a * 1.;
388  zz = z * 1.;
389  ia = G4int(a + G4float(.5));
390  if (ia < 1) {
391    return ret_val;
392  }
393  iz = G4int(z + G4float(.5));
394  if (iz < 0 || iz > ia) {
395    return ret_val;
396  }
397  mass = 0.;
398  if (ia == 1) {
399    if (iz == 0) {
400      mass = rmn;
401    }
402    else if (iz == 1) {
403      mass = rmp + rmel;
404    }
405  }
406  else if (ia == 2 && iz == 1) {
407    mass = rmd;
408  }
409  else if (ia == 4 && iz == 2) {
410    mass = rma;
411  }
412  else if ( (ia == 2 && iz != 1) || ia == 3 || (ia == 4 && iz != 2) || ia > 4) {
413    d__1 = aa / G4float(2.) - zz;
414    d__2 = zz;
415    mass = (aa - zz) * rmn + zz * rmp + zz * rmel - aa * G4float(15.67) +
416      std::pow(aa, .6666667) * G4float(17.23) + d__1 * d__1 * G4float(93.15) / aa +
417      d__2 * d__2 * G4float(.6984523) / std::pow(aa, .3333333);
418    ipp = (ia - iz) % 2;
419    izz = iz % 2;
420    if (ipp == izz) {
421      mass += (ipp + izz - 1) * G4float(12.) * std::pow(aa, -.5);
422    }
423  }
424  ret_val = mass * G4float(.001);
425  return ret_val;
426
427} // AtomAs
Note: See TracBrowser for help on using the repository browser.