| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | //
|
|---|
| 28 | // original by H.P. Wellisch
|
|---|
| 29 | // modified by J.L. Chuma, TRIUMF, 19-Nov-1996
|
|---|
| 30 | // last modified: 27-Mar-1997
|
|---|
| 31 | // J.P.Wellisch: 23-Apr-97: minor simplifications
|
|---|
| 32 | // modified by J.L.Chuma 24-Jul-97 to set the total momentum in Cinema and
|
|---|
| 33 | // EvaporationEffects
|
|---|
| 34 | // modified by J.L.Chuma 21-Oct-97 put std::abs() around the totalE^2-mass^2
|
|---|
| 35 | // in calculation of total momentum in
|
|---|
| 36 | // Cinema and EvaporationEffects
|
|---|
| 37 | // Chr. Volcker, 10-Nov-1997: new methods and class variables.
|
|---|
| 38 | // HPW added utilities for low energy neutron transport. (12.04.1998)
|
|---|
| 39 | // M.G. Pia, 2 Oct 1998: modified GetFermiMomentum to avoid memory leaks
|
|---|
| [1315] | 40 | // G.Folger, spring 2010: add integer A/Z interface
|
|---|
| [819] | 41 |
|
|---|
| 42 | #include "G4Nucleus.hh"
|
|---|
| 43 | #include "G4NucleiProperties.hh"
|
|---|
| 44 | #include "Randomize.hh"
|
|---|
| 45 | #include "G4HadronicException.hh"
|
|---|
| 46 |
|
|---|
| 47 | G4Nucleus::G4Nucleus()
|
|---|
| [1347] | 48 | : theA(0), theZ(0), aEff(0.0), zEff(0)
|
|---|
| [819] | 49 | {
|
|---|
| 50 | pnBlackTrackEnergy = 0.0;
|
|---|
| 51 | dtaBlackTrackEnergy = 0.0;
|
|---|
| 52 | pnBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 53 | dtaBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 54 | excitationEnergy = 0.0;
|
|---|
| 55 | momentum = G4ThreeVector(0.,0.,0.);
|
|---|
| 56 | fermiMomentum = 1.52*hbarc/fermi;
|
|---|
| 57 | theTemp = 293.16*kelvin;
|
|---|
| 58 | }
|
|---|
| 59 |
|
|---|
| 60 | G4Nucleus::G4Nucleus( const G4double A, const G4double Z )
|
|---|
| 61 | {
|
|---|
| 62 | SetParameters( A, Z );
|
|---|
| 63 | pnBlackTrackEnergy = 0.0;
|
|---|
| 64 | dtaBlackTrackEnergy = 0.0;
|
|---|
| 65 | pnBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 66 | dtaBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 67 | excitationEnergy = 0.0;
|
|---|
| 68 | momentum = G4ThreeVector(0.,0.,0.);
|
|---|
| 69 | fermiMomentum = 1.52*hbarc/fermi;
|
|---|
| 70 | theTemp = 293.16*kelvin;
|
|---|
| 71 | }
|
|---|
| 72 |
|
|---|
| [1315] | 73 | G4Nucleus::G4Nucleus( const G4int A, const G4int Z )
|
|---|
| 74 | {
|
|---|
| 75 | SetParameters( A, Z );
|
|---|
| 76 | pnBlackTrackEnergy = 0.0;
|
|---|
| 77 | dtaBlackTrackEnergy = 0.0;
|
|---|
| 78 | pnBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 79 | dtaBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 80 | excitationEnergy = 0.0;
|
|---|
| 81 | momentum = G4ThreeVector(0.,0.,0.);
|
|---|
| 82 | fermiMomentum = 1.52*hbarc/fermi;
|
|---|
| 83 | theTemp = 293.16*kelvin;
|
|---|
| 84 | }
|
|---|
| 85 |
|
|---|
| [819] | 86 | G4Nucleus::G4Nucleus( const G4Material *aMaterial )
|
|---|
| 87 | {
|
|---|
| 88 | ChooseParameters( aMaterial );
|
|---|
| 89 | pnBlackTrackEnergy = 0.0;
|
|---|
| 90 | dtaBlackTrackEnergy = 0.0;
|
|---|
| 91 | pnBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 92 | dtaBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 93 | excitationEnergy = 0.0;
|
|---|
| 94 | momentum = G4ThreeVector(0.,0.,0.);
|
|---|
| 95 | fermiMomentum = 1.52*hbarc/fermi;
|
|---|
| 96 | theTemp = aMaterial->GetTemperature();
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | G4Nucleus::~G4Nucleus() {}
|
|---|
| 100 |
|
|---|
| 101 | G4ReactionProduct G4Nucleus::
|
|---|
| 102 | GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp) const
|
|---|
| 103 | {
|
|---|
| 104 | G4double velMag = aVelocity.mag();
|
|---|
| 105 | G4ReactionProduct result;
|
|---|
| 106 | G4double value = 0;
|
|---|
| 107 | G4double random = 1;
|
|---|
| 108 | G4double norm = 3.*std::sqrt(k_Boltzmann*temp*aMass*G4Neutron::Neutron()->GetPDGMass());
|
|---|
| 109 | norm /= G4Neutron::Neutron()->GetPDGMass();
|
|---|
| 110 | norm *= 5.;
|
|---|
| 111 | norm += velMag;
|
|---|
| 112 | norm /= velMag;
|
|---|
| 113 | while(value/norm<random)
|
|---|
| 114 | {
|
|---|
| 115 | result = GetThermalNucleus(aMass, temp);
|
|---|
| 116 | G4ThreeVector targetVelocity = 1./result.GetMass()*result.GetMomentum();
|
|---|
| 117 | value = (targetVelocity+aVelocity).mag()/velMag;
|
|---|
| 118 | random = G4UniformRand();
|
|---|
| 119 | }
|
|---|
| 120 | return result;
|
|---|
| 121 | }
|
|---|
| 122 |
|
|---|
| 123 | G4ReactionProduct G4Nucleus::GetThermalNucleus(G4double targetMass, G4double temp) const
|
|---|
| 124 | {
|
|---|
| 125 | G4double currentTemp = temp;
|
|---|
| 126 | if(currentTemp < 0) currentTemp = theTemp;
|
|---|
| 127 | G4ReactionProduct theTarget;
|
|---|
| 128 | theTarget.SetMass(targetMass*G4Neutron::Neutron()->GetPDGMass());
|
|---|
| 129 | G4double px, py, pz;
|
|---|
| 130 | px = GetThermalPz(theTarget.GetMass(), currentTemp);
|
|---|
| 131 | py = GetThermalPz(theTarget.GetMass(), currentTemp);
|
|---|
| 132 | pz = GetThermalPz(theTarget.GetMass(), currentTemp);
|
|---|
| 133 | theTarget.SetMomentum(px, py, pz);
|
|---|
| 134 | G4double tMom = std::sqrt(px*px+py*py+pz*pz);
|
|---|
| 135 | G4double tEtot = std::sqrt((tMom+theTarget.GetMass())*
|
|---|
| 136 | (tMom+theTarget.GetMass())-
|
|---|
| 137 | 2.*tMom*theTarget.GetMass());
|
|---|
| 138 | if(1-tEtot/theTarget.GetMass()>0.001)
|
|---|
| 139 | {
|
|---|
| 140 | theTarget.SetTotalEnergy(tEtot);
|
|---|
| 141 | }
|
|---|
| 142 | else
|
|---|
| 143 | {
|
|---|
| 144 | theTarget.SetKineticEnergy(tMom*tMom/(2.*theTarget.GetMass()));
|
|---|
| 145 | }
|
|---|
| 146 | return theTarget;
|
|---|
| 147 | }
|
|---|
| 148 |
|
|---|
| 149 | void
|
|---|
| 150 | G4Nucleus::ChooseParameters( const G4Material *aMaterial )
|
|---|
| 151 | {
|
|---|
| 152 | G4double random = G4UniformRand();
|
|---|
| [1315] | 153 | G4double sum = aMaterial->GetTotNbOfAtomsPerVolume();
|
|---|
| [819] | 154 | const G4ElementVector *theElementVector = aMaterial->GetElementVector();
|
|---|
| [1315] | 155 | G4double running(0);
|
|---|
| 156 | G4Element* element(0);
|
|---|
| 157 | for(unsigned int i=0; i<aMaterial->GetNumberOfElements(); ++i )
|
|---|
| [819] | 158 | {
|
|---|
| [1315] | 159 | running += aMaterial->GetVecNbOfAtomsPerVolume()[i];
|
|---|
| 160 | if( running > random*sum ) {
|
|---|
| 161 | element=(*theElementVector)[i];
|
|---|
| [819] | 162 | break;
|
|---|
| 163 | }
|
|---|
| 164 | }
|
|---|
| [1315] | 165 | if ( element->GetNumberOfIsotopes() > 0 ) {
|
|---|
| 166 | G4double randomAbundance = G4UniformRand();
|
|---|
| 167 | G4double sumAbundance = element->GetRelativeAbundanceVector()[0];
|
|---|
| 168 | unsigned int iso=0;
|
|---|
| 169 | while ( iso < element->GetNumberOfIsotopes() &&
|
|---|
| 170 | sumAbundance < randomAbundance ) {
|
|---|
| 171 | ++iso;
|
|---|
| 172 | sumAbundance += element->GetRelativeAbundanceVector()[iso];
|
|---|
| 173 | }
|
|---|
| 174 | theA=element->GetIsotope(iso)->GetN();
|
|---|
| 175 | theZ=element->GetIsotope(iso)->GetZ();
|
|---|
| 176 | aEff=theA;
|
|---|
| 177 | zEff=theZ;
|
|---|
| 178 | } else {
|
|---|
| 179 | aEff = element->GetN();
|
|---|
| 180 | zEff = element->GetZ();
|
|---|
| 181 | theZ = G4int(zEff + 0.5);
|
|---|
| 182 | theA = G4int(aEff + 0.5);
|
|---|
| 183 | }
|
|---|
| [819] | 184 | }
|
|---|
| 185 |
|
|---|
| 186 | void
|
|---|
| 187 | G4Nucleus::SetParameters( const G4double A, const G4double Z )
|
|---|
| 188 | {
|
|---|
| [1315] | 189 | theZ = G4int(Z + 0.5);
|
|---|
| 190 | theA = G4int(A + 0.5);
|
|---|
| 191 | if( theA<1 || theZ<0 || theZ>theA )
|
|---|
| [819] | 192 | {
|
|---|
| 193 | throw G4HadronicException(__FILE__, __LINE__,
|
|---|
| 194 | "G4Nucleus::SetParameters called with non-physical parameters");
|
|---|
| 195 | }
|
|---|
| 196 | aEff = A; // atomic weight
|
|---|
| 197 | zEff = Z; // atomic number
|
|---|
| 198 | }
|
|---|
| 199 |
|
|---|
| [1315] | 200 | void
|
|---|
| 201 | G4Nucleus::SetParameters( const G4int A, const G4int Z )
|
|---|
| 202 | {
|
|---|
| 203 | theZ = Z;
|
|---|
| 204 | theA = A;
|
|---|
| 205 | if( theA<1 || theZ<0 || theZ>theA )
|
|---|
| 206 | {
|
|---|
| 207 | throw G4HadronicException(__FILE__, __LINE__,
|
|---|
| 208 | "G4Nucleus::SetParameters called with non-physical parameters");
|
|---|
| 209 | }
|
|---|
| 210 | aEff = A; // atomic weight
|
|---|
| 211 | zEff = Z; // atomic number
|
|---|
| 212 | }
|
|---|
| 213 |
|
|---|
| [819] | 214 | G4DynamicParticle *
|
|---|
| 215 | G4Nucleus::ReturnTargetParticle() const
|
|---|
| 216 | {
|
|---|
| 217 | // choose a proton or a neutron as the target particle
|
|---|
| 218 |
|
|---|
| 219 | G4DynamicParticle *targetParticle = new G4DynamicParticle;
|
|---|
| 220 | if( G4UniformRand() < zEff/aEff )
|
|---|
| 221 | targetParticle->SetDefinition( G4Proton::Proton() );
|
|---|
| 222 | else
|
|---|
| 223 | targetParticle->SetDefinition( G4Neutron::Neutron() );
|
|---|
| 224 | return targetParticle;
|
|---|
| 225 | }
|
|---|
| 226 |
|
|---|
| 227 | G4double
|
|---|
| 228 | G4Nucleus::AtomicMass( const G4double A, const G4double Z ) const
|
|---|
| 229 | {
|
|---|
| 230 | // Now returns (atomic mass - electron masses)
|
|---|
| 231 | return G4NucleiProperties::GetNuclearMass(A, Z);
|
|---|
| 232 | }
|
|---|
| 233 |
|
|---|
| 234 | G4double
|
|---|
| [1315] | 235 | G4Nucleus::AtomicMass( const G4int A, const G4int Z ) const
|
|---|
| 236 | {
|
|---|
| 237 | // Now returns (atomic mass - electron masses)
|
|---|
| 238 | return G4NucleiProperties::GetNuclearMass(A, Z);
|
|---|
| 239 | }
|
|---|
| 240 |
|
|---|
| 241 | G4double
|
|---|
| [819] | 242 | G4Nucleus::GetThermalPz( const G4double mass, const G4double temp ) const
|
|---|
| 243 | {
|
|---|
| 244 | G4double result = G4RandGauss::shoot();
|
|---|
| 245 | result *= std::sqrt(k_Boltzmann*temp*mass); // Das ist impuls (Pz),
|
|---|
| 246 | // nichtrelativistische rechnung
|
|---|
| 247 | // Maxwell verteilung angenommen
|
|---|
| 248 | return result;
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 | G4double
|
|---|
| 252 | G4Nucleus::EvaporationEffects( G4double kineticEnergy )
|
|---|
| 253 | {
|
|---|
| 254 | // derived from original FORTRAN code EXNU by H. Fesefeldt (10-Dec-1986)
|
|---|
| 255 | //
|
|---|
| 256 | // Nuclear evaporation as function of atomic number
|
|---|
| 257 | // and kinetic energy (MeV) of primary particle
|
|---|
| 258 | //
|
|---|
| 259 | // returns kinetic energy (MeV)
|
|---|
| 260 | //
|
|---|
| 261 | if( aEff < 1.5 )
|
|---|
| 262 | {
|
|---|
| 263 | pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0;
|
|---|
| 264 | return 0.0;
|
|---|
| 265 | }
|
|---|
| 266 | G4double ek = kineticEnergy/GeV;
|
|---|
| 267 | G4float ekin = std::min( 4.0, std::max( 0.1, ek ) );
|
|---|
| 268 | const G4float atno = std::min( 120., aEff );
|
|---|
| 269 | const G4float gfa = 2.0*((aEff-1.0)/70.)*std::exp(-(aEff-1.0)/70.);
|
|---|
| 270 | //
|
|---|
| 271 | // 0.35 value at 1 GeV
|
|---|
| 272 | // 0.05 value at 0.1 GeV
|
|---|
| 273 | //
|
|---|
| 274 | G4float cfa = std::max( 0.15, 0.35 + ((0.35-0.05)/2.3)*std::log(ekin) );
|
|---|
| 275 | G4float exnu = 7.716 * cfa * std::exp(-cfa)
|
|---|
| 276 | * ((atno-1.0)/120.)*std::exp(-(atno-1.0)/120.);
|
|---|
| 277 | G4float fpdiv = std::max( 0.5, 1.0-0.25*ekin*ekin );
|
|---|
| 278 | //
|
|---|
| 279 | // pnBlackTrackEnergy is the kinetic energy (in GeV) available for
|
|---|
| 280 | // proton/neutron black track particles
|
|---|
| 281 | // dtaBlackTrackEnergy is the kinetic energy (in GeV) available for
|
|---|
| 282 | // deuteron/triton/alpha black track particles
|
|---|
| 283 | //
|
|---|
| 284 | pnBlackTrackEnergy = exnu*fpdiv;
|
|---|
| 285 | dtaBlackTrackEnergy = exnu*(1.0-fpdiv);
|
|---|
| 286 |
|
|---|
| 287 | if( G4int(zEff+0.1) != 82 )
|
|---|
| 288 | {
|
|---|
| 289 | G4double ran1 = -6.0;
|
|---|
| 290 | G4double ran2 = -6.0;
|
|---|
| 291 | for( G4int i=0; i<12; ++i )
|
|---|
| 292 | {
|
|---|
| 293 | ran1 += G4UniformRand();
|
|---|
| 294 | ran2 += G4UniformRand();
|
|---|
| 295 | }
|
|---|
| 296 | pnBlackTrackEnergy *= 1.0 + ran1*gfa;
|
|---|
| 297 | dtaBlackTrackEnergy *= 1.0 + ran2*gfa;
|
|---|
| 298 | }
|
|---|
| 299 | pnBlackTrackEnergy = std::max( 0.0, pnBlackTrackEnergy );
|
|---|
| 300 | dtaBlackTrackEnergy = std::max( 0.0, dtaBlackTrackEnergy );
|
|---|
| 301 | while( pnBlackTrackEnergy+dtaBlackTrackEnergy >= ek )
|
|---|
| 302 | {
|
|---|
| 303 | pnBlackTrackEnergy *= 1.0 - 0.5*G4UniformRand();
|
|---|
| 304 | dtaBlackTrackEnergy *= 1.0 - 0.5*G4UniformRand();
|
|---|
| 305 | }
|
|---|
| 306 | // G4cout << "EvaporationEffects "<<kineticEnergy<<" "
|
|---|
| 307 | // <<pnBlackTrackEnergy+dtaBlackTrackEnergy<<endl;
|
|---|
| 308 | return (pnBlackTrackEnergy+dtaBlackTrackEnergy)*GeV;
|
|---|
| 309 | }
|
|---|
| 310 |
|
|---|
| 311 | G4double G4Nucleus::AnnihilationEvaporationEffects(G4double kineticEnergy, G4double ekOrg)
|
|---|
| 312 | {
|
|---|
| 313 | // Nuclear evaporation as a function of atomic number and kinetic
|
|---|
| 314 | // energy (MeV) of primary particle. Modified for annihilation effects.
|
|---|
| 315 | //
|
|---|
| 316 | if( aEff < 1.5 || ekOrg < 0.)
|
|---|
| 317 | {
|
|---|
| 318 | pnBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 319 | dtaBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 320 | return 0.0;
|
|---|
| 321 | }
|
|---|
| 322 | G4double ek = kineticEnergy/GeV;
|
|---|
| 323 | G4float ekin = std::min( 4.0, std::max( 0.1, ek ) );
|
|---|
| 324 | const G4float atno = std::min( 120., aEff );
|
|---|
| 325 | const G4float gfa = 2.0*((aEff-1.0)/70.)*std::exp(-(aEff-1.0)/70.);
|
|---|
| 326 |
|
|---|
| 327 | G4float cfa = std::max( 0.15, 0.35 + ((0.35-0.05)/2.3)*std::log(ekin) );
|
|---|
| 328 | G4float exnu = 7.716 * cfa * std::exp(-cfa)
|
|---|
| 329 | * ((atno-1.0)/120.)*std::exp(-(atno-1.0)/120.);
|
|---|
| 330 | G4float fpdiv = std::max( 0.5, 1.0-0.25*ekin*ekin );
|
|---|
| 331 |
|
|---|
| 332 | pnBlackTrackEnergyfromAnnihilation = exnu*fpdiv;
|
|---|
| 333 | dtaBlackTrackEnergyfromAnnihilation = exnu*(1.0-fpdiv);
|
|---|
| 334 |
|
|---|
| 335 | G4double ran1 = -6.0;
|
|---|
| 336 | G4double ran2 = -6.0;
|
|---|
| 337 | for( G4int i=0; i<12; ++i ) {
|
|---|
| 338 | ran1 += G4UniformRand();
|
|---|
| 339 | ran2 += G4UniformRand();
|
|---|
| 340 | }
|
|---|
| 341 | pnBlackTrackEnergyfromAnnihilation *= 1.0 + ran1*gfa;
|
|---|
| 342 | dtaBlackTrackEnergyfromAnnihilation *= 1.0 + ran2*gfa;
|
|---|
| 343 |
|
|---|
| 344 | pnBlackTrackEnergyfromAnnihilation = std::max( 0.0, pnBlackTrackEnergyfromAnnihilation);
|
|---|
| 345 | dtaBlackTrackEnergyfromAnnihilation = std::max( 0.0, dtaBlackTrackEnergyfromAnnihilation);
|
|---|
| 346 | G4double blackSum = pnBlackTrackEnergyfromAnnihilation+dtaBlackTrackEnergyfromAnnihilation;
|
|---|
| 347 | if (blackSum >= ekOrg/GeV) {
|
|---|
| 348 | pnBlackTrackEnergyfromAnnihilation *= ekOrg/GeV/blackSum;
|
|---|
| 349 | dtaBlackTrackEnergyfromAnnihilation *= ekOrg/GeV/blackSum;
|
|---|
| 350 | }
|
|---|
| 351 |
|
|---|
| 352 | return (pnBlackTrackEnergyfromAnnihilation+dtaBlackTrackEnergyfromAnnihilation)*GeV;
|
|---|
| 353 | }
|
|---|
| 354 |
|
|---|
| 355 | G4double
|
|---|
| 356 | G4Nucleus::Cinema( G4double kineticEnergy )
|
|---|
| 357 | {
|
|---|
| 358 | // derived from original FORTRAN code CINEMA by H. Fesefeldt (14-Oct-1987)
|
|---|
| 359 | //
|
|---|
| 360 | // input: kineticEnergy (MeV)
|
|---|
| 361 | // returns modified kinetic energy (MeV)
|
|---|
| 362 | //
|
|---|
| 363 | static const G4double expxu = 82.; // upper bound for arg. of exp
|
|---|
| 364 | static const G4double expxl = -expxu; // lower bound for arg. of exp
|
|---|
| 365 |
|
|---|
| 366 | G4double ek = kineticEnergy/GeV;
|
|---|
| 367 | G4double ekLog = std::log( ek );
|
|---|
| 368 | G4double aLog = std::log( aEff );
|
|---|
| 369 | G4double em = std::min( 1.0, 0.2390 + 0.0408*aLog*aLog );
|
|---|
| 370 | G4double temp1 = -ek * std::min( 0.15, 0.0019*aLog*aLog*aLog );
|
|---|
| 371 | G4double temp2 = std::exp( std::max( expxl, std::min( expxu, -(ekLog-em)*(ekLog-em)*2.0 ) ) );
|
|---|
| 372 | G4double result = 0.0;
|
|---|
| 373 | if( std::abs( temp1 ) < 1.0 )
|
|---|
| 374 | {
|
|---|
| 375 | if( temp2 > 1.0e-10 )result = temp1*temp2;
|
|---|
| 376 | }
|
|---|
| 377 | else result = temp1*temp2;
|
|---|
| 378 | if( result < -ek )result = -ek;
|
|---|
| 379 | return result*GeV;
|
|---|
| 380 | }
|
|---|
| 381 |
|
|---|
| 382 | //
|
|---|
| 383 | // methods for class G4Nucleus ... by Christian Volcker
|
|---|
| 384 | //
|
|---|
| 385 |
|
|---|
| 386 | G4ThreeVector G4Nucleus::GetFermiMomentum()
|
|---|
| 387 | {
|
|---|
| 388 | // chv: .. we assume zero temperature!
|
|---|
| 389 |
|
|---|
| 390 | // momentum is equally distributed in each phasespace volume dpx, dpy, dpz.
|
|---|
| 391 | G4double ranflat1=
|
|---|
| 392 | CLHEP::RandFlat::shoot((G4double)0.,(G4double)fermiMomentum);
|
|---|
| 393 | G4double ranflat2=
|
|---|
| 394 | CLHEP::RandFlat::shoot((G4double)0.,(G4double)fermiMomentum);
|
|---|
| 395 | G4double ranflat3=
|
|---|
| 396 | CLHEP::RandFlat::shoot((G4double)0.,(G4double)fermiMomentum);
|
|---|
| 397 | G4double ranmax = (ranflat1>ranflat2? ranflat1: ranflat2);
|
|---|
| 398 | ranmax = (ranmax>ranflat3? ranmax : ranflat3);
|
|---|
| 399 |
|
|---|
| 400 | // Isotropic momentum distribution
|
|---|
| 401 | G4double costheta = 2.*G4UniformRand() - 1.0;
|
|---|
| 402 | G4double sintheta = std::sqrt(1.0 - costheta*costheta);
|
|---|
| 403 | G4double phi = 2.0*pi*G4UniformRand();
|
|---|
| 404 |
|
|---|
| 405 | G4double pz=costheta*ranmax;
|
|---|
| 406 | G4double px=sintheta*std::cos(phi)*ranmax;
|
|---|
| 407 | G4double py=sintheta*std::sin(phi)*ranmax;
|
|---|
| 408 | G4ThreeVector p(px,py,pz);
|
|---|
| 409 | return p;
|
|---|
| 410 | }
|
|---|
| 411 |
|
|---|
| 412 | G4ReactionProductVector* G4Nucleus::Fragmentate()
|
|---|
| 413 | {
|
|---|
| 414 | // needs implementation!
|
|---|
| 415 | return NULL;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | void G4Nucleus::AddMomentum(const G4ThreeVector aMomentum)
|
|---|
| 419 | {
|
|---|
| 420 | momentum+=(aMomentum);
|
|---|
| 421 | }
|
|---|
| 422 |
|
|---|
| 423 | void G4Nucleus::AddExcitationEnergy( G4double anEnergy )
|
|---|
| 424 | {
|
|---|
| 425 | excitationEnergy+=anEnergy;
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | /* end of file */
|
|---|
| 429 |
|
|---|