| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | //
|
|---|
| 28 | // original by H.P. Wellisch
|
|---|
| 29 | // modified by J.L. Chuma, TRIUMF, 19-Nov-1996
|
|---|
| 30 | // last modified: 27-Mar-1997
|
|---|
| 31 | // J.P.Wellisch: 23-Apr-97: minor simplifications
|
|---|
| 32 | // modified by J.L.Chuma 24-Jul-97 to set the total momentum in Cinema and
|
|---|
| 33 | // EvaporationEffects
|
|---|
| 34 | // modified by J.L.Chuma 21-Oct-97 put std::abs() around the totalE^2-mass^2
|
|---|
| 35 | // in calculation of total momentum in
|
|---|
| 36 | // Cinema and EvaporationEffects
|
|---|
| 37 | // Chr. Volcker, 10-Nov-1997: new methods and class variables.
|
|---|
| 38 | // HPW added utilities for low energy neutron transport. (12.04.1998)
|
|---|
| 39 | // M.G. Pia, 2 Oct 1998: modified GetFermiMomentum to avoid memory leaks
|
|---|
| 40 |
|
|---|
| 41 | #include "G4Nucleus.hh"
|
|---|
| 42 | #include "G4NucleiProperties.hh"
|
|---|
| 43 | #include "Randomize.hh"
|
|---|
| 44 | #include "G4HadronicException.hh"
|
|---|
| 45 |
|
|---|
| 46 | G4Nucleus::G4Nucleus()
|
|---|
| 47 | {
|
|---|
| 48 | pnBlackTrackEnergy = 0.0;
|
|---|
| 49 | dtaBlackTrackEnergy = 0.0;
|
|---|
| 50 | pnBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 51 | dtaBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 52 | excitationEnergy = 0.0;
|
|---|
| 53 | momentum = G4ThreeVector(0.,0.,0.);
|
|---|
| 54 | fermiMomentum = 1.52*hbarc/fermi;
|
|---|
| 55 | theTemp = 293.16*kelvin;
|
|---|
| 56 | }
|
|---|
| 57 |
|
|---|
| 58 | G4Nucleus::G4Nucleus( const G4double A, const G4double Z )
|
|---|
| 59 | {
|
|---|
| 60 | SetParameters( A, Z );
|
|---|
| 61 | pnBlackTrackEnergy = 0.0;
|
|---|
| 62 | dtaBlackTrackEnergy = 0.0;
|
|---|
| 63 | pnBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 64 | dtaBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 65 | excitationEnergy = 0.0;
|
|---|
| 66 | momentum = G4ThreeVector(0.,0.,0.);
|
|---|
| 67 | fermiMomentum = 1.52*hbarc/fermi;
|
|---|
| 68 | theTemp = 293.16*kelvin;
|
|---|
| 69 | }
|
|---|
| 70 |
|
|---|
| 71 | G4Nucleus::G4Nucleus( const G4Material *aMaterial )
|
|---|
| 72 | {
|
|---|
| 73 | ChooseParameters( aMaterial );
|
|---|
| 74 | pnBlackTrackEnergy = 0.0;
|
|---|
| 75 | dtaBlackTrackEnergy = 0.0;
|
|---|
| 76 | pnBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 77 | dtaBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 78 | excitationEnergy = 0.0;
|
|---|
| 79 | momentum = G4ThreeVector(0.,0.,0.);
|
|---|
| 80 | fermiMomentum = 1.52*hbarc/fermi;
|
|---|
| 81 | theTemp = aMaterial->GetTemperature();
|
|---|
| 82 | }
|
|---|
| 83 |
|
|---|
| 84 | G4Nucleus::~G4Nucleus() {}
|
|---|
| 85 |
|
|---|
| 86 | G4ReactionProduct G4Nucleus::
|
|---|
| 87 | GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp) const
|
|---|
| 88 | {
|
|---|
| 89 | G4double velMag = aVelocity.mag();
|
|---|
| 90 | G4ReactionProduct result;
|
|---|
| 91 | G4double value = 0;
|
|---|
| 92 | G4double random = 1;
|
|---|
| 93 | G4double norm = 3.*std::sqrt(k_Boltzmann*temp*aMass*G4Neutron::Neutron()->GetPDGMass());
|
|---|
| 94 | norm /= G4Neutron::Neutron()->GetPDGMass();
|
|---|
| 95 | norm *= 5.;
|
|---|
| 96 | norm += velMag;
|
|---|
| 97 | norm /= velMag;
|
|---|
| 98 | while(value/norm<random)
|
|---|
| 99 | {
|
|---|
| 100 | result = GetThermalNucleus(aMass, temp);
|
|---|
| 101 | G4ThreeVector targetVelocity = 1./result.GetMass()*result.GetMomentum();
|
|---|
| 102 | value = (targetVelocity+aVelocity).mag()/velMag;
|
|---|
| 103 | random = G4UniformRand();
|
|---|
| 104 | }
|
|---|
| 105 | return result;
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | G4ReactionProduct G4Nucleus::GetThermalNucleus(G4double targetMass, G4double temp) const
|
|---|
| 109 | {
|
|---|
| 110 | G4double currentTemp = temp;
|
|---|
| 111 | if(currentTemp < 0) currentTemp = theTemp;
|
|---|
| 112 | G4ReactionProduct theTarget;
|
|---|
| 113 | theTarget.SetMass(targetMass*G4Neutron::Neutron()->GetPDGMass());
|
|---|
| 114 | G4double px, py, pz;
|
|---|
| 115 | px = GetThermalPz(theTarget.GetMass(), currentTemp);
|
|---|
| 116 | py = GetThermalPz(theTarget.GetMass(), currentTemp);
|
|---|
| 117 | pz = GetThermalPz(theTarget.GetMass(), currentTemp);
|
|---|
| 118 | theTarget.SetMomentum(px, py, pz);
|
|---|
| 119 | G4double tMom = std::sqrt(px*px+py*py+pz*pz);
|
|---|
| 120 | G4double tEtot = std::sqrt((tMom+theTarget.GetMass())*
|
|---|
| 121 | (tMom+theTarget.GetMass())-
|
|---|
| 122 | 2.*tMom*theTarget.GetMass());
|
|---|
| 123 | if(1-tEtot/theTarget.GetMass()>0.001)
|
|---|
| 124 | {
|
|---|
| 125 | theTarget.SetTotalEnergy(tEtot);
|
|---|
| 126 | }
|
|---|
| 127 | else
|
|---|
| 128 | {
|
|---|
| 129 | theTarget.SetKineticEnergy(tMom*tMom/(2.*theTarget.GetMass()));
|
|---|
| 130 | }
|
|---|
| 131 | return theTarget;
|
|---|
| 132 | }
|
|---|
| 133 |
|
|---|
| 134 | void
|
|---|
| 135 | G4Nucleus::ChooseParameters( const G4Material *aMaterial )
|
|---|
| 136 | {
|
|---|
| 137 | G4double random = G4UniformRand();
|
|---|
| 138 | G4double sum = 0;
|
|---|
| 139 | const G4ElementVector *theElementVector = aMaterial->GetElementVector();
|
|---|
| 140 | unsigned int i;
|
|---|
| 141 | for(i=0; i<aMaterial->GetNumberOfElements(); ++i )
|
|---|
| 142 | {
|
|---|
| 143 | sum += aMaterial->GetAtomicNumDensityVector()[i];
|
|---|
| 144 | }
|
|---|
| 145 | G4double running = 0;
|
|---|
| 146 | for(i=0; i<aMaterial->GetNumberOfElements(); ++i )
|
|---|
| 147 | {
|
|---|
| 148 | running += aMaterial->GetAtomicNumDensityVector()[i];
|
|---|
| 149 | if( running/sum > random ) {
|
|---|
| 150 | aEff = (*theElementVector)[i]->GetA()*mole/g;
|
|---|
| 151 | zEff = (*theElementVector)[i]->GetZ();
|
|---|
| 152 | break;
|
|---|
| 153 | }
|
|---|
| 154 | }
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 | void
|
|---|
| 158 | G4Nucleus::SetParameters( const G4double A, const G4double Z )
|
|---|
| 159 | {
|
|---|
| 160 | G4int myZ = G4int(Z + 0.5);
|
|---|
| 161 | G4int myA = G4int(A + 0.5);
|
|---|
| 162 | if( myA<1 || myZ<0 || myZ>myA )
|
|---|
| 163 | {
|
|---|
| 164 | throw G4HadronicException(__FILE__, __LINE__,
|
|---|
| 165 | "G4Nucleus::SetParameters called with non-physical parameters");
|
|---|
| 166 | }
|
|---|
| 167 | aEff = A; // atomic weight
|
|---|
| 168 | zEff = Z; // atomic number
|
|---|
| 169 | }
|
|---|
| 170 |
|
|---|
| 171 | G4DynamicParticle *
|
|---|
| 172 | G4Nucleus::ReturnTargetParticle() const
|
|---|
| 173 | {
|
|---|
| 174 | // choose a proton or a neutron as the target particle
|
|---|
| 175 |
|
|---|
| 176 | G4DynamicParticle *targetParticle = new G4DynamicParticle;
|
|---|
| 177 | if( G4UniformRand() < zEff/aEff )
|
|---|
| 178 | targetParticle->SetDefinition( G4Proton::Proton() );
|
|---|
| 179 | else
|
|---|
| 180 | targetParticle->SetDefinition( G4Neutron::Neutron() );
|
|---|
| 181 | return targetParticle;
|
|---|
| 182 | }
|
|---|
| 183 |
|
|---|
| 184 | G4double
|
|---|
| 185 | G4Nucleus::AtomicMass( const G4double A, const G4double Z ) const
|
|---|
| 186 | {
|
|---|
| 187 | // Now returns (atomic mass - electron masses)
|
|---|
| 188 | return G4NucleiProperties::GetNuclearMass(A, Z);
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | G4double
|
|---|
| 192 | G4Nucleus::GetThermalPz( const G4double mass, const G4double temp ) const
|
|---|
| 193 | {
|
|---|
| 194 | G4double result = G4RandGauss::shoot();
|
|---|
| 195 | result *= std::sqrt(k_Boltzmann*temp*mass); // Das ist impuls (Pz),
|
|---|
| 196 | // nichtrelativistische rechnung
|
|---|
| 197 | // Maxwell verteilung angenommen
|
|---|
| 198 | return result;
|
|---|
| 199 | }
|
|---|
| 200 |
|
|---|
| 201 | G4double
|
|---|
| 202 | G4Nucleus::EvaporationEffects( G4double kineticEnergy )
|
|---|
| 203 | {
|
|---|
| 204 | // derived from original FORTRAN code EXNU by H. Fesefeldt (10-Dec-1986)
|
|---|
| 205 | //
|
|---|
| 206 | // Nuclear evaporation as function of atomic number
|
|---|
| 207 | // and kinetic energy (MeV) of primary particle
|
|---|
| 208 | //
|
|---|
| 209 | // returns kinetic energy (MeV)
|
|---|
| 210 | //
|
|---|
| 211 | if( aEff < 1.5 )
|
|---|
| 212 | {
|
|---|
| 213 | pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0;
|
|---|
| 214 | return 0.0;
|
|---|
| 215 | }
|
|---|
| 216 | G4double ek = kineticEnergy/GeV;
|
|---|
| 217 | G4float ekin = std::min( 4.0, std::max( 0.1, ek ) );
|
|---|
| 218 | const G4float atno = std::min( 120., aEff );
|
|---|
| 219 | const G4float gfa = 2.0*((aEff-1.0)/70.)*std::exp(-(aEff-1.0)/70.);
|
|---|
| 220 | //
|
|---|
| 221 | // 0.35 value at 1 GeV
|
|---|
| 222 | // 0.05 value at 0.1 GeV
|
|---|
| 223 | //
|
|---|
| 224 | G4float cfa = std::max( 0.15, 0.35 + ((0.35-0.05)/2.3)*std::log(ekin) );
|
|---|
| 225 | G4float exnu = 7.716 * cfa * std::exp(-cfa)
|
|---|
| 226 | * ((atno-1.0)/120.)*std::exp(-(atno-1.0)/120.);
|
|---|
| 227 | G4float fpdiv = std::max( 0.5, 1.0-0.25*ekin*ekin );
|
|---|
| 228 | //
|
|---|
| 229 | // pnBlackTrackEnergy is the kinetic energy (in GeV) available for
|
|---|
| 230 | // proton/neutron black track particles
|
|---|
| 231 | // dtaBlackTrackEnergy is the kinetic energy (in GeV) available for
|
|---|
| 232 | // deuteron/triton/alpha black track particles
|
|---|
| 233 | //
|
|---|
| 234 | pnBlackTrackEnergy = exnu*fpdiv;
|
|---|
| 235 | dtaBlackTrackEnergy = exnu*(1.0-fpdiv);
|
|---|
| 236 |
|
|---|
| 237 | if( G4int(zEff+0.1) != 82 )
|
|---|
| 238 | {
|
|---|
| 239 | G4double ran1 = -6.0;
|
|---|
| 240 | G4double ran2 = -6.0;
|
|---|
| 241 | for( G4int i=0; i<12; ++i )
|
|---|
| 242 | {
|
|---|
| 243 | ran1 += G4UniformRand();
|
|---|
| 244 | ran2 += G4UniformRand();
|
|---|
| 245 | }
|
|---|
| 246 | pnBlackTrackEnergy *= 1.0 + ran1*gfa;
|
|---|
| 247 | dtaBlackTrackEnergy *= 1.0 + ran2*gfa;
|
|---|
| 248 | }
|
|---|
| 249 | pnBlackTrackEnergy = std::max( 0.0, pnBlackTrackEnergy );
|
|---|
| 250 | dtaBlackTrackEnergy = std::max( 0.0, dtaBlackTrackEnergy );
|
|---|
| 251 | while( pnBlackTrackEnergy+dtaBlackTrackEnergy >= ek )
|
|---|
| 252 | {
|
|---|
| 253 | pnBlackTrackEnergy *= 1.0 - 0.5*G4UniformRand();
|
|---|
| 254 | dtaBlackTrackEnergy *= 1.0 - 0.5*G4UniformRand();
|
|---|
| 255 | }
|
|---|
| 256 | // G4cout << "EvaporationEffects "<<kineticEnergy<<" "
|
|---|
| 257 | // <<pnBlackTrackEnergy+dtaBlackTrackEnergy<<endl;
|
|---|
| 258 | return (pnBlackTrackEnergy+dtaBlackTrackEnergy)*GeV;
|
|---|
| 259 | }
|
|---|
| 260 |
|
|---|
| 261 | G4double G4Nucleus::AnnihilationEvaporationEffects(G4double kineticEnergy, G4double ekOrg)
|
|---|
| 262 | {
|
|---|
| 263 | // Nuclear evaporation as a function of atomic number and kinetic
|
|---|
| 264 | // energy (MeV) of primary particle. Modified for annihilation effects.
|
|---|
| 265 | //
|
|---|
| 266 | if( aEff < 1.5 || ekOrg < 0.)
|
|---|
| 267 | {
|
|---|
| 268 | pnBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 269 | dtaBlackTrackEnergyfromAnnihilation = 0.0;
|
|---|
| 270 | return 0.0;
|
|---|
| 271 | }
|
|---|
| 272 | G4double ek = kineticEnergy/GeV;
|
|---|
| 273 | G4float ekin = std::min( 4.0, std::max( 0.1, ek ) );
|
|---|
| 274 | const G4float atno = std::min( 120., aEff );
|
|---|
| 275 | const G4float gfa = 2.0*((aEff-1.0)/70.)*std::exp(-(aEff-1.0)/70.);
|
|---|
| 276 |
|
|---|
| 277 | G4float cfa = std::max( 0.15, 0.35 + ((0.35-0.05)/2.3)*std::log(ekin) );
|
|---|
| 278 | G4float exnu = 7.716 * cfa * std::exp(-cfa)
|
|---|
| 279 | * ((atno-1.0)/120.)*std::exp(-(atno-1.0)/120.);
|
|---|
| 280 | G4float fpdiv = std::max( 0.5, 1.0-0.25*ekin*ekin );
|
|---|
| 281 |
|
|---|
| 282 | pnBlackTrackEnergyfromAnnihilation = exnu*fpdiv;
|
|---|
| 283 | dtaBlackTrackEnergyfromAnnihilation = exnu*(1.0-fpdiv);
|
|---|
| 284 |
|
|---|
| 285 | G4double ran1 = -6.0;
|
|---|
| 286 | G4double ran2 = -6.0;
|
|---|
| 287 | for( G4int i=0; i<12; ++i ) {
|
|---|
| 288 | ran1 += G4UniformRand();
|
|---|
| 289 | ran2 += G4UniformRand();
|
|---|
| 290 | }
|
|---|
| 291 | pnBlackTrackEnergyfromAnnihilation *= 1.0 + ran1*gfa;
|
|---|
| 292 | dtaBlackTrackEnergyfromAnnihilation *= 1.0 + ran2*gfa;
|
|---|
| 293 |
|
|---|
| 294 | pnBlackTrackEnergyfromAnnihilation = std::max( 0.0, pnBlackTrackEnergyfromAnnihilation);
|
|---|
| 295 | dtaBlackTrackEnergyfromAnnihilation = std::max( 0.0, dtaBlackTrackEnergyfromAnnihilation);
|
|---|
| 296 | G4double blackSum = pnBlackTrackEnergyfromAnnihilation+dtaBlackTrackEnergyfromAnnihilation;
|
|---|
| 297 | if (blackSum >= ekOrg/GeV) {
|
|---|
| 298 | pnBlackTrackEnergyfromAnnihilation *= ekOrg/GeV/blackSum;
|
|---|
| 299 | dtaBlackTrackEnergyfromAnnihilation *= ekOrg/GeV/blackSum;
|
|---|
| 300 | }
|
|---|
| 301 |
|
|---|
| 302 | return (pnBlackTrackEnergyfromAnnihilation+dtaBlackTrackEnergyfromAnnihilation)*GeV;
|
|---|
| 303 | }
|
|---|
| 304 |
|
|---|
| 305 | G4double
|
|---|
| 306 | G4Nucleus::Cinema( G4double kineticEnergy )
|
|---|
| 307 | {
|
|---|
| 308 | // derived from original FORTRAN code CINEMA by H. Fesefeldt (14-Oct-1987)
|
|---|
| 309 | //
|
|---|
| 310 | // input: kineticEnergy (MeV)
|
|---|
| 311 | // returns modified kinetic energy (MeV)
|
|---|
| 312 | //
|
|---|
| 313 | static const G4double expxu = 82.; // upper bound for arg. of exp
|
|---|
| 314 | static const G4double expxl = -expxu; // lower bound for arg. of exp
|
|---|
| 315 |
|
|---|
| 316 | G4double ek = kineticEnergy/GeV;
|
|---|
| 317 | G4double ekLog = std::log( ek );
|
|---|
| 318 | G4double aLog = std::log( aEff );
|
|---|
| 319 | G4double em = std::min( 1.0, 0.2390 + 0.0408*aLog*aLog );
|
|---|
| 320 | G4double temp1 = -ek * std::min( 0.15, 0.0019*aLog*aLog*aLog );
|
|---|
| 321 | G4double temp2 = std::exp( std::max( expxl, std::min( expxu, -(ekLog-em)*(ekLog-em)*2.0 ) ) );
|
|---|
| 322 | G4double result = 0.0;
|
|---|
| 323 | if( std::abs( temp1 ) < 1.0 )
|
|---|
| 324 | {
|
|---|
| 325 | if( temp2 > 1.0e-10 )result = temp1*temp2;
|
|---|
| 326 | }
|
|---|
| 327 | else result = temp1*temp2;
|
|---|
| 328 | if( result < -ek )result = -ek;
|
|---|
| 329 | return result*GeV;
|
|---|
| 330 | }
|
|---|
| 331 |
|
|---|
| 332 | //
|
|---|
| 333 | // methods for class G4Nucleus ... by Christian Volcker
|
|---|
| 334 | //
|
|---|
| 335 |
|
|---|
| 336 | G4ThreeVector G4Nucleus::GetFermiMomentum()
|
|---|
| 337 | {
|
|---|
| 338 | // chv: .. we assume zero temperature!
|
|---|
| 339 |
|
|---|
| 340 | // momentum is equally distributed in each phasespace volume dpx, dpy, dpz.
|
|---|
| 341 | G4double ranflat1=
|
|---|
| 342 | CLHEP::RandFlat::shoot((G4double)0.,(G4double)fermiMomentum);
|
|---|
| 343 | G4double ranflat2=
|
|---|
| 344 | CLHEP::RandFlat::shoot((G4double)0.,(G4double)fermiMomentum);
|
|---|
| 345 | G4double ranflat3=
|
|---|
| 346 | CLHEP::RandFlat::shoot((G4double)0.,(G4double)fermiMomentum);
|
|---|
| 347 | G4double ranmax = (ranflat1>ranflat2? ranflat1: ranflat2);
|
|---|
| 348 | ranmax = (ranmax>ranflat3? ranmax : ranflat3);
|
|---|
| 349 |
|
|---|
| 350 | // Isotropic momentum distribution
|
|---|
| 351 | G4double costheta = 2.*G4UniformRand() - 1.0;
|
|---|
| 352 | G4double sintheta = std::sqrt(1.0 - costheta*costheta);
|
|---|
| 353 | G4double phi = 2.0*pi*G4UniformRand();
|
|---|
| 354 |
|
|---|
| 355 | G4double pz=costheta*ranmax;
|
|---|
| 356 | G4double px=sintheta*std::cos(phi)*ranmax;
|
|---|
| 357 | G4double py=sintheta*std::sin(phi)*ranmax;
|
|---|
| 358 | G4ThreeVector p(px,py,pz);
|
|---|
| 359 | return p;
|
|---|
| 360 | }
|
|---|
| 361 |
|
|---|
| 362 | G4ReactionProductVector* G4Nucleus::Fragmentate()
|
|---|
| 363 | {
|
|---|
| 364 | // needs implementation!
|
|---|
| 365 | return NULL;
|
|---|
| 366 | }
|
|---|
| 367 |
|
|---|
| 368 | void G4Nucleus::AddMomentum(const G4ThreeVector aMomentum)
|
|---|
| 369 | {
|
|---|
| 370 | momentum+=(aMomentum);
|
|---|
| 371 | }
|
|---|
| 372 |
|
|---|
| 373 | void G4Nucleus::AddExcitationEnergy( G4double anEnergy )
|
|---|
| 374 | {
|
|---|
| 375 | excitationEnergy+=anEnergy;
|
|---|
| 376 | }
|
|---|
| 377 |
|
|---|
| 378 | /* end of file */
|
|---|
| 379 |
|
|---|