| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | //
|
|---|
| 28 | // Hadronic Process: Reaction Dynamics
|
|---|
| 29 | // original by H.P. Wellisch
|
|---|
| 30 | // modified by J.L. Chuma, TRIUMF, 19-Nov-1996
|
|---|
| 31 | // Last modified: 27-Mar-1997
|
|---|
| 32 | // modified by H.P. Wellisch, 24-Apr-97
|
|---|
| 33 | // H.P. Wellisch, 25.Apr-97: Side of current and target particle taken into account
|
|---|
| 34 | // H.P. Wellisch, 29.Apr-97: Bug fix in NuclearReaction. (pseudo1 was without energy)
|
|---|
| 35 | // J.L. Chuma, 30-Apr-97: Changed return value for GenerateXandPt. It seems possible
|
|---|
| 36 | // that GenerateXandPt could eliminate some secondaries, but
|
|---|
| 37 | // still finish its calculations, thus we would not want to
|
|---|
| 38 | // then use TwoCluster to again calculate the momenta if vecLen
|
|---|
| 39 | // was less than 6.
|
|---|
| 40 | // J.L. Chuma, 10-Jun-97: Modified NuclearReaction. Was not creating ReactionProduct's
|
|---|
| 41 | // with the new operator, thus they would be meaningless when
|
|---|
| 42 | // going out of scope.
|
|---|
| 43 | // J.L. Chuma, 20-Jun-97: Modified GenerateXandPt and TwoCluster to fix units problems
|
|---|
| 44 | // J.L. Chuma, 23-Jun-97: Modified ProduceStrangeParticlePairs to fix units problems
|
|---|
| 45 | // J.L. Chuma, 26-Jun-97: Modified ProduceStrangeParticlePairs to fix array indices
|
|---|
| 46 | // which were sometimes going out of bounds
|
|---|
| 47 | // J.L. Chuma, 04-Jul-97: Many minor modifications to GenerateXandPt and TwoCluster
|
|---|
| 48 | // J.L. Chuma, 06-Aug-97: Added original incident particle, before Fermi motion and
|
|---|
| 49 | // evaporation effects are included, needed for self absorption
|
|---|
| 50 | // and corrections for single particle spectra (shower particles)
|
|---|
| 51 | // logging stopped 1997
|
|---|
| 52 | // J. Allison, 17-Jun-99: Replaced a min function to get correct behaviour on DEC.
|
|---|
| 53 |
|
|---|
| 54 | #include "G4ReactionDynamics.hh"
|
|---|
| 55 | #include "G4AntiProton.hh"
|
|---|
| 56 | #include "G4AntiNeutron.hh"
|
|---|
| 57 | #include "Randomize.hh"
|
|---|
| 58 | #include <iostream>
|
|---|
| 59 | #include "G4HadReentrentException.hh"
|
|---|
| 60 | #include <signal.h>
|
|---|
| 61 |
|
|---|
| 62 | // #include "DumpFrame.hh"
|
|---|
| 63 |
|
|---|
| 64 | /* G4double GetQValue(G4ReactionProduct * aSec)
|
|---|
| 65 | {
|
|---|
| 66 | double QValue=0;
|
|---|
| 67 | if(aSec->GetDefinition()->GetParticleType() == "baryon")
|
|---|
| 68 | {
|
|---|
| 69 | if(aSec->GetDefinition()->GetBaryonNumber() < 0)
|
|---|
| 70 | {
|
|---|
| 71 | QValue = aSec->GetTotalEnergy();
|
|---|
| 72 | QValue += G4Neutron::Neutron()->GetPDGMass();
|
|---|
| 73 | }
|
|---|
| 74 | else
|
|---|
| 75 | {
|
|---|
| 76 | G4double ss = 0;
|
|---|
| 77 | ss +=aSec->GetDefinition()->GetPDGMass();
|
|---|
| 78 | if(aSec->GetDefinition() == G4Proton::Proton())
|
|---|
| 79 | {
|
|---|
| 80 | ss -=G4Proton::Proton()->GetPDGMass();
|
|---|
| 81 | }
|
|---|
| 82 | else
|
|---|
| 83 | {
|
|---|
| 84 | ss -=G4Neutron::Neutron()->GetPDGMass();
|
|---|
| 85 | }
|
|---|
| 86 | ss += aSec->GetKineticEnergy();
|
|---|
| 87 | QValue = ss;
|
|---|
| 88 | }
|
|---|
| 89 | }
|
|---|
| 90 | else if(aSec->GetDefinition()->GetPDGEncoding() == 0)
|
|---|
| 91 | {
|
|---|
| 92 | QValue = aSec->GetKineticEnergy();
|
|---|
| 93 | }
|
|---|
| 94 | else
|
|---|
| 95 | {
|
|---|
| 96 | QValue = aSec->GetTotalEnergy();
|
|---|
| 97 | }
|
|---|
| 98 | return QValue;
|
|---|
| 99 | }
|
|---|
| 100 | */
|
|---|
| 101 |
|
|---|
| 102 | G4bool G4ReactionDynamics::GenerateXandPt(
|
|---|
| 103 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 104 | G4int &vecLen,
|
|---|
| 105 | G4ReactionProduct &modifiedOriginal, // Fermi motion & evap. effects included
|
|---|
| 106 | const G4HadProjectile *originalIncident, // the original incident particle
|
|---|
| 107 | G4ReactionProduct ¤tParticle,
|
|---|
| 108 | G4ReactionProduct &targetParticle,
|
|---|
| 109 | const G4DynamicParticle* originalTarget,
|
|---|
| 110 | const G4Nucleus &targetNucleus,
|
|---|
| 111 | G4bool &incidentHasChanged,
|
|---|
| 112 | G4bool &targetHasChanged,
|
|---|
| 113 | G4bool leadFlag,
|
|---|
| 114 | G4ReactionProduct &leadingStrangeParticle )
|
|---|
| 115 | {
|
|---|
| 116 | //
|
|---|
| 117 | // derived from original FORTRAN code GENXPT by H. Fesefeldt (11-Oct-1987)
|
|---|
| 118 | //
|
|---|
| 119 | // Generation of X- and PT- values for incident, target, and all secondary particles
|
|---|
| 120 | // A simple single variable description E D3S/DP3= F(Q) with
|
|---|
| 121 | // Q^2 = (M*X)^2 + PT^2 is used. Final state kinematic is produced
|
|---|
| 122 | // by an FF-type iterative cascade method
|
|---|
| 123 | //
|
|---|
| 124 | // internal units are GeV
|
|---|
| 125 | //
|
|---|
| 126 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 127 |
|
|---|
| 128 | // Protection in case no secondary has been created; cascades down to two-body.
|
|---|
| 129 | if(vecLen == 0) return false;
|
|---|
| 130 |
|
|---|
| 131 | G4ParticleDefinition *aPiMinus = G4PionMinus::PionMinus();
|
|---|
| 132 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 133 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 134 | G4ParticleDefinition *aPiPlus = G4PionPlus::PionPlus();
|
|---|
| 135 | G4ParticleDefinition *aPiZero = G4PionZero::PionZero();
|
|---|
| 136 |
|
|---|
| 137 | G4int i, l;
|
|---|
| 138 | G4bool veryForward = false;
|
|---|
| 139 |
|
|---|
| 140 | const G4double ekOriginal = modifiedOriginal.GetKineticEnergy()/GeV;
|
|---|
| 141 | const G4double etOriginal = modifiedOriginal.GetTotalEnergy()/GeV;
|
|---|
| 142 | const G4double mOriginal = modifiedOriginal.GetMass()/GeV;
|
|---|
| 143 | const G4double pOriginal = modifiedOriginal.GetMomentum().mag()/GeV;
|
|---|
| 144 | G4double targetMass = targetParticle.GetDefinition()->GetPDGMass()/GeV;
|
|---|
| 145 | G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
|
|---|
| 146 | targetMass*targetMass +
|
|---|
| 147 | 2.0*targetMass*etOriginal ); // GeV
|
|---|
| 148 | G4double currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 149 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 150 | //
|
|---|
| 151 | // randomize the order of the secondary particles
|
|---|
| 152 | // note that the current and target particles are not affected
|
|---|
| 153 | //
|
|---|
| 154 | for( i=0; i<vecLen; ++i )
|
|---|
| 155 | {
|
|---|
| 156 | G4int itemp = G4int( G4UniformRand()*vecLen );
|
|---|
| 157 | G4ReactionProduct pTemp = *vec[itemp];
|
|---|
| 158 | *vec[itemp] = *vec[i];
|
|---|
| 159 | *vec[i] = pTemp;
|
|---|
| 160 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 161 | }
|
|---|
| 162 |
|
|---|
| 163 | if( currentMass == 0.0 && targetMass == 0.0 )
|
|---|
| 164 | {
|
|---|
| 165 | // Target and projectile have annihilated. Replace them with the first
|
|---|
| 166 | // two secondaries in the list. Current particle KE is maintained.
|
|---|
| 167 |
|
|---|
| 168 | G4double ek = currentParticle.GetKineticEnergy();
|
|---|
| 169 | G4ThreeVector m = currentParticle.GetMomentum();
|
|---|
| 170 | currentParticle = *vec[0];
|
|---|
| 171 | targetParticle = *vec[1];
|
|---|
| 172 | for( i=0; i<(vecLen-2); ++i )*vec[i] = *vec[i+2];
|
|---|
| 173 | G4ReactionProduct *temp = vec[vecLen-1];
|
|---|
| 174 | delete temp;
|
|---|
| 175 | temp = vec[vecLen-2];
|
|---|
| 176 | delete temp;
|
|---|
| 177 | vecLen -= 2;
|
|---|
| 178 | currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 179 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 180 | incidentHasChanged = true;
|
|---|
| 181 | targetHasChanged = true;
|
|---|
| 182 | currentParticle.SetKineticEnergy( ek );
|
|---|
| 183 | currentParticle.SetMomentum( m );
|
|---|
| 184 | veryForward = true;
|
|---|
| 185 | }
|
|---|
| 186 | const G4double atomicWeight = G4double(targetNucleus.GetA_asInt());
|
|---|
| 187 | const G4double atomicNumber = G4double(targetNucleus.GetZ_asInt());
|
|---|
| 188 | const G4double protonMass = aProton->GetPDGMass()/MeV;
|
|---|
| 189 |
|
|---|
| 190 | if (originalIncident->GetDefinition()->GetParticleSubType() == "kaon"
|
|---|
| 191 | && G4UniformRand() >= 0.7) {
|
|---|
| 192 | G4ReactionProduct temp = currentParticle;
|
|---|
| 193 | currentParticle = targetParticle;
|
|---|
| 194 | targetParticle = temp;
|
|---|
| 195 | incidentHasChanged = true;
|
|---|
| 196 | targetHasChanged = true;
|
|---|
| 197 | currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 198 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 199 | }
|
|---|
| 200 | const G4double afc = std::min( 0.75,
|
|---|
| 201 | 0.312+0.200*std::log(std::log(centerofmassEnergy*centerofmassEnergy))+
|
|---|
| 202 | std::pow(centerofmassEnergy*centerofmassEnergy,1.5)/6000.0 );
|
|---|
| 203 |
|
|---|
| 204 | G4double freeEnergy = centerofmassEnergy-currentMass-targetMass;
|
|---|
| 205 | G4double forwardEnergy = freeEnergy/2.;
|
|---|
| 206 | G4int forwardCount = 1; // number of particles in forward hemisphere
|
|---|
| 207 |
|
|---|
| 208 | G4double backwardEnergy = freeEnergy/2.;
|
|---|
| 209 | G4int backwardCount = 1; // number of particles in backward hemisphere
|
|---|
| 210 |
|
|---|
| 211 | if(veryForward)
|
|---|
| 212 | {
|
|---|
| 213 | if(currentParticle.GetSide()==-1)
|
|---|
| 214 | {
|
|---|
| 215 | forwardEnergy += currentMass;
|
|---|
| 216 | forwardCount --;
|
|---|
| 217 | backwardEnergy -= currentMass;
|
|---|
| 218 | backwardCount ++;
|
|---|
| 219 | }
|
|---|
| 220 | if(targetParticle.GetSide()!=-1)
|
|---|
| 221 | {
|
|---|
| 222 | backwardEnergy += targetMass;
|
|---|
| 223 | backwardCount --;
|
|---|
| 224 | forwardEnergy -= targetMass;
|
|---|
| 225 | forwardCount ++;
|
|---|
| 226 | }
|
|---|
| 227 | }
|
|---|
| 228 |
|
|---|
| 229 | for( i=0; i<vecLen; ++i )
|
|---|
| 230 | {
|
|---|
| 231 | if( vec[i]->GetSide() == -1 )
|
|---|
| 232 | {
|
|---|
| 233 | ++backwardCount;
|
|---|
| 234 | backwardEnergy -= vec[i]->GetMass()/GeV;
|
|---|
| 235 | } else {
|
|---|
| 236 | ++forwardCount;
|
|---|
| 237 | forwardEnergy -= vec[i]->GetMass()/GeV;
|
|---|
| 238 | }
|
|---|
| 239 | }
|
|---|
| 240 | //
|
|---|
| 241 | // Add particles from intranuclear cascade.
|
|---|
| 242 | // nuclearExcitationCount = number of new secondaries produced by nuclear excitation
|
|---|
| 243 | // extraCount = number of nucleons within these new secondaries
|
|---|
| 244 | //
|
|---|
| 245 | G4double xtarg;
|
|---|
| 246 | if( centerofmassEnergy < (2.0+G4UniformRand()) )
|
|---|
| 247 | xtarg = afc * (std::pow(atomicWeight,0.33)-1.0) * (2.0*backwardCount+vecLen+2)/2.0;
|
|---|
| 248 | else
|
|---|
| 249 | xtarg = afc * (std::pow(atomicWeight,0.33)-1.0) * (2.0*backwardCount);
|
|---|
| 250 | if( xtarg <= 0.0 )xtarg = 0.01;
|
|---|
| 251 | G4int nuclearExcitationCount = Poisson( xtarg );
|
|---|
| 252 | if(atomicWeight<1.0001) nuclearExcitationCount = 0;
|
|---|
| 253 | G4int extraNucleonCount = 0;
|
|---|
| 254 | G4double extraNucleonMass = 0.0;
|
|---|
| 255 | if( nuclearExcitationCount > 0 )
|
|---|
| 256 | {
|
|---|
| 257 | const G4double nucsup[] = { 1.00, 0.7, 0.5, 0.4, 0.35, 0.3 };
|
|---|
| 258 | const G4double psup[] = { 3., 6., 20., 50., 100., 1000. };
|
|---|
| 259 | G4int momentumBin = 0;
|
|---|
| 260 | while( (momentumBin < 6) &&
|
|---|
| 261 | (modifiedOriginal.GetTotalMomentum()/GeV > psup[momentumBin]) )
|
|---|
| 262 | ++momentumBin;
|
|---|
| 263 | momentumBin = std::min( 5, momentumBin );
|
|---|
| 264 | //
|
|---|
| 265 | // NOTE: in GENXPT, these new particles were given negative codes
|
|---|
| 266 | // here I use NewlyAdded = true instead
|
|---|
| 267 | //
|
|---|
| 268 |
|
|---|
| 269 | for( i=0; i<nuclearExcitationCount; ++i )
|
|---|
| 270 | {
|
|---|
| 271 | G4ReactionProduct * pVec = new G4ReactionProduct();
|
|---|
| 272 | if( G4UniformRand() < nucsup[momentumBin] )
|
|---|
| 273 | {
|
|---|
| 274 | if( G4UniformRand() > 1.0-atomicNumber/atomicWeight )
|
|---|
| 275 | pVec->SetDefinition( aProton );
|
|---|
| 276 | else
|
|---|
| 277 | pVec->SetDefinition( aNeutron );
|
|---|
| 278 | pVec->SetSide( -2 ); // -2 means backside nucleon
|
|---|
| 279 | ++extraNucleonCount;
|
|---|
| 280 | backwardEnergy += pVec->GetMass()/GeV;
|
|---|
| 281 | extraNucleonMass += pVec->GetMass()/GeV;
|
|---|
| 282 | }
|
|---|
| 283 | else
|
|---|
| 284 | {
|
|---|
| 285 | G4double ran = G4UniformRand();
|
|---|
| 286 | if( ran < 0.3181 )
|
|---|
| 287 | pVec->SetDefinition( aPiPlus );
|
|---|
| 288 | else if( ran < 0.6819 )
|
|---|
| 289 | pVec->SetDefinition( aPiZero );
|
|---|
| 290 | else
|
|---|
| 291 | pVec->SetDefinition( aPiMinus );
|
|---|
| 292 | pVec->SetSide( -1 ); // backside particle, but not a nucleon
|
|---|
| 293 | }
|
|---|
| 294 | pVec->SetNewlyAdded( true ); // true is the same as IPA(i)<0
|
|---|
| 295 | vec.SetElement( vecLen++, pVec );
|
|---|
| 296 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 297 | backwardEnergy -= pVec->GetMass()/GeV;
|
|---|
| 298 | ++backwardCount;
|
|---|
| 299 | }
|
|---|
| 300 | }
|
|---|
| 301 | //
|
|---|
| 302 | // assume conservation of kinetic energy in forward & backward hemispheres
|
|---|
| 303 | //
|
|---|
| 304 | G4int is, iskip;
|
|---|
| 305 | while( forwardEnergy <= 0.0 ) // must eliminate a particle from the forward side
|
|---|
| 306 | {
|
|---|
| 307 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 308 | iskip = G4int(G4UniformRand()*forwardCount) + 1; // 1 <= iskip <= forwardCount
|
|---|
| 309 | is = 0;
|
|---|
| 310 | G4int forwardParticlesLeft = 0;
|
|---|
| 311 | for( i=(vecLen-1); i>=0; --i )
|
|---|
| 312 | {
|
|---|
| 313 | if( vec[i]->GetSide() == 1 && vec[i]->GetMayBeKilled())
|
|---|
| 314 | {
|
|---|
| 315 | forwardParticlesLeft = 1;
|
|---|
| 316 | if( ++is == iskip )
|
|---|
| 317 | {
|
|---|
| 318 | forwardEnergy += vec[i]->GetMass()/GeV;
|
|---|
| 319 | for( G4int j=i; j<(vecLen-1); j++ )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 320 | --forwardCount;
|
|---|
| 321 | delete vec[vecLen-1];
|
|---|
| 322 | if( --vecLen == 0 )return false; // all the secondaries have been eliminated
|
|---|
| 323 | break; // --+
|
|---|
| 324 | } // |
|
|---|
| 325 | } // |
|
|---|
| 326 | } // break goes down to here
|
|---|
| 327 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 328 | if( forwardParticlesLeft == 0 )
|
|---|
| 329 | {
|
|---|
| 330 | G4int iremove = -1;
|
|---|
| 331 | for (G4int i = 0; i < vecLen; i++) {
|
|---|
| 332 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 333 | iremove = i;
|
|---|
| 334 | break;
|
|---|
| 335 | }
|
|---|
| 336 | }
|
|---|
| 337 | if (iremove == -1) {
|
|---|
| 338 | for (G4int i = 0; i < vecLen; i++) {
|
|---|
| 339 | if (vec[i]->GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 340 | iremove = i;
|
|---|
| 341 | break;
|
|---|
| 342 | }
|
|---|
| 343 | }
|
|---|
| 344 | }
|
|---|
| 345 | if (iremove == -1) iremove = 0;
|
|---|
| 346 |
|
|---|
| 347 | forwardEnergy += vec[iremove]->GetMass()/GeV;
|
|---|
| 348 | if (vec[iremove]->GetSide() > 0) --forwardCount;
|
|---|
| 349 |
|
|---|
| 350 | for (G4int i = iremove; i < vecLen-1; i++) *vec[i] = *vec[i+1];
|
|---|
| 351 | delete vec[vecLen-1];
|
|---|
| 352 | vecLen--;
|
|---|
| 353 | if (vecLen == 0) return false; // all secondaries have been eliminated
|
|---|
| 354 | break;
|
|---|
| 355 | }
|
|---|
| 356 | } // while
|
|---|
| 357 |
|
|---|
| 358 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 359 | while( backwardEnergy <= 0.0 ) // must eliminate a particle from the backward side
|
|---|
| 360 | {
|
|---|
| 361 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 362 | iskip = G4int(G4UniformRand()*backwardCount) + 1; // 1 <= iskip <= backwardCount
|
|---|
| 363 | is = 0;
|
|---|
| 364 | G4int backwardParticlesLeft = 0;
|
|---|
| 365 | for( i=(vecLen-1); i>=0; --i )
|
|---|
| 366 | {
|
|---|
| 367 | if( vec[i]->GetSide() < 0 && vec[i]->GetMayBeKilled())
|
|---|
| 368 | {
|
|---|
| 369 | backwardParticlesLeft = 1;
|
|---|
| 370 | if( ++is == iskip ) // eliminate the i'th particle
|
|---|
| 371 | {
|
|---|
| 372 | if( vec[i]->GetSide() == -2 )
|
|---|
| 373 | {
|
|---|
| 374 | --extraNucleonCount;
|
|---|
| 375 | extraNucleonMass -= vec[i]->GetMass()/GeV;
|
|---|
| 376 | backwardEnergy -= vec[i]->GetTotalEnergy()/GeV;
|
|---|
| 377 | }
|
|---|
| 378 | backwardEnergy += vec[i]->GetTotalEnergy()/GeV;
|
|---|
| 379 | for( G4int j=i; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 380 | --backwardCount;
|
|---|
| 381 | delete vec[vecLen-1];
|
|---|
| 382 | if( --vecLen == 0 )return false; // all the secondaries have been eliminated
|
|---|
| 383 | break;
|
|---|
| 384 | }
|
|---|
| 385 | }
|
|---|
| 386 | }
|
|---|
| 387 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 388 | if( backwardParticlesLeft == 0 )
|
|---|
| 389 | {
|
|---|
| 390 | G4int iremove = -1;
|
|---|
| 391 | for (G4int i = 0; i < vecLen; i++) {
|
|---|
| 392 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 393 | iremove = i;
|
|---|
| 394 | break;
|
|---|
| 395 | }
|
|---|
| 396 | }
|
|---|
| 397 | if (iremove == -1) {
|
|---|
| 398 | for (G4int i = 0; i < vecLen; i++) {
|
|---|
| 399 | if (vec[i]->GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 400 | iremove = i;
|
|---|
| 401 | break;
|
|---|
| 402 | }
|
|---|
| 403 | }
|
|---|
| 404 | }
|
|---|
| 405 | if (iremove == -1) iremove = 0;
|
|---|
| 406 |
|
|---|
| 407 | backwardEnergy += vec[iremove]->GetMass()/GeV;
|
|---|
| 408 | if (vec[iremove]->GetSide() > 0) --backwardCount;
|
|---|
| 409 |
|
|---|
| 410 | for (G4int i = iremove; i < vecLen-1; i++) *vec[i] = *vec[i+1];
|
|---|
| 411 | delete vec[vecLen-1];
|
|---|
| 412 | vecLen--;
|
|---|
| 413 | if (vecLen == 0) return false; // all secondaries have been eliminated
|
|---|
| 414 | break;
|
|---|
| 415 | }
|
|---|
| 416 | } // while
|
|---|
| 417 |
|
|---|
| 418 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 419 | //
|
|---|
| 420 | // define initial state vectors for Lorentz transformations
|
|---|
| 421 | // the pseudoParticles have non-standard masses, hence the "pseudo"
|
|---|
| 422 | //
|
|---|
| 423 | G4ReactionProduct pseudoParticle[10];
|
|---|
| 424 | for( i=0; i<10; ++i )pseudoParticle[i].SetZero();
|
|---|
| 425 |
|
|---|
| 426 | pseudoParticle[0].SetMass( mOriginal*GeV );
|
|---|
| 427 | pseudoParticle[0].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 428 | pseudoParticle[0].SetTotalEnergy(
|
|---|
| 429 | std::sqrt( pOriginal*pOriginal + mOriginal*mOriginal )*GeV );
|
|---|
| 430 |
|
|---|
| 431 | pseudoParticle[1].SetMass( protonMass*MeV ); // this could be targetMass
|
|---|
| 432 | pseudoParticle[1].SetTotalEnergy( protonMass*MeV );
|
|---|
| 433 |
|
|---|
| 434 | pseudoParticle[3].SetMass( protonMass*(1+extraNucleonCount)*MeV );
|
|---|
| 435 | pseudoParticle[3].SetTotalEnergy( protonMass*(1+extraNucleonCount)*MeV );
|
|---|
| 436 |
|
|---|
| 437 | pseudoParticle[8].SetMomentum( 1.0*GeV, 0.0, 0.0 );
|
|---|
| 438 |
|
|---|
| 439 | pseudoParticle[2] = pseudoParticle[0] + pseudoParticle[1];
|
|---|
| 440 | pseudoParticle[3] = pseudoParticle[3] + pseudoParticle[0];
|
|---|
| 441 |
|
|---|
| 442 | pseudoParticle[0].Lorentz( pseudoParticle[0], pseudoParticle[2] );
|
|---|
| 443 | pseudoParticle[1].Lorentz( pseudoParticle[1], pseudoParticle[2] );
|
|---|
| 444 |
|
|---|
| 445 | G4double dndl[20];
|
|---|
| 446 | //
|
|---|
| 447 | // main loop for 4-momentum generation
|
|---|
| 448 | // see Pitha-report (Aachen) for a detailed description of the method
|
|---|
| 449 | //
|
|---|
| 450 | G4double aspar, pt, et, x, pp, pp1, rmb, wgt;
|
|---|
| 451 | G4int innerCounter, outerCounter;
|
|---|
| 452 | G4bool eliminateThisParticle, resetEnergies, constantCrossSection;
|
|---|
| 453 |
|
|---|
| 454 | G4double forwardKinetic = 0.0, backwardKinetic = 0.0;
|
|---|
| 455 | //
|
|---|
| 456 | // process the secondary particles in reverse order
|
|---|
| 457 | // the incident particle is Done after the secondaries
|
|---|
| 458 | // nucleons, including the target, in the backward hemisphere are also Done later
|
|---|
| 459 | //
|
|---|
| 460 | G4double binl[20] = {0.,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.11,1.25,
|
|---|
| 461 | 1.43,1.67,2.0,2.5,3.33,5.00,10.00};
|
|---|
| 462 | G4int backwardNucleonCount = 0; // number of nucleons in backward hemisphere
|
|---|
| 463 | G4double totalEnergy, kineticEnergy, vecMass;
|
|---|
| 464 |
|
|---|
| 465 | for( i=(vecLen-1); i>=0; --i )
|
|---|
| 466 | {
|
|---|
| 467 | G4double phi = G4UniformRand()*twopi;
|
|---|
| 468 | if( vec[i]->GetNewlyAdded() ) // added from intranuclear cascade
|
|---|
| 469 | {
|
|---|
| 470 | if( vec[i]->GetSide() == -2 ) // is a nucleon
|
|---|
| 471 | {
|
|---|
| 472 | if( backwardNucleonCount < 18 )
|
|---|
| 473 | {
|
|---|
| 474 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 475 | for(G4int i=0; i<vecLen; i++) delete vec[i];
|
|---|
| 476 | vecLen = 0;
|
|---|
| 477 | throw G4HadReentrentException(__FILE__, __LINE__,
|
|---|
| 478 | "G4ReactionDynamics::GenerateXandPt : a pion has been counted as a backward nucleon");
|
|---|
| 479 | }
|
|---|
| 480 | vec[i]->SetSide( -3 );
|
|---|
| 481 | ++backwardNucleonCount;
|
|---|
| 482 | continue;
|
|---|
| 483 | }
|
|---|
| 484 | }
|
|---|
| 485 | }
|
|---|
| 486 | //
|
|---|
| 487 | // set pt and phi values, they are changed somewhat in the iteration loop
|
|---|
| 488 | // set mass parameter for lambda fragmentation model
|
|---|
| 489 | //
|
|---|
| 490 | vecMass = vec[i]->GetMass()/GeV;
|
|---|
| 491 | G4double ran = -std::log(1.0-G4UniformRand())/3.5;
|
|---|
| 492 | if( vec[i]->GetSide() == -2 ) // backward nucleon
|
|---|
| 493 | {
|
|---|
| 494 | if (vec[i]->GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 495 | vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 496 | aspar = 0.75;
|
|---|
| 497 | pt = std::sqrt( std::pow( ran, 1.7 ) );
|
|---|
| 498 | } else { // vec[i] must be a proton, neutron,
|
|---|
| 499 | aspar = 0.20; // lambda, sigma, xsi, or ion
|
|---|
| 500 | pt = std::sqrt( std::pow( ran, 1.2 ) );
|
|---|
| 501 | }
|
|---|
| 502 |
|
|---|
| 503 | } else { // not a backward nucleon
|
|---|
| 504 |
|
|---|
| 505 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 506 | aspar = 0.75;
|
|---|
| 507 | pt = std::sqrt( std::pow( ran, 1.7 ) );
|
|---|
| 508 | } else if (vec[i]->GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 509 | aspar = 0.70;
|
|---|
| 510 | pt = std::sqrt( std::pow( ran, 1.7 ) );
|
|---|
| 511 | } else { // vec[i] must be a proton, neutron,
|
|---|
| 512 | aspar = 0.65; // lambda, sigma, xsi, or ion
|
|---|
| 513 | pt = std::sqrt( std::pow( ran, 1.5 ) );
|
|---|
| 514 | }
|
|---|
| 515 | }
|
|---|
| 516 | pt = std::max( 0.001, pt );
|
|---|
| 517 | vec[i]->SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 518 | for( G4int j=0; j<20; ++j )binl[j] = j/(19.*pt);
|
|---|
| 519 | if( vec[i]->GetSide() > 0 )
|
|---|
| 520 | et = pseudoParticle[0].GetTotalEnergy()/GeV;
|
|---|
| 521 | else
|
|---|
| 522 | et = pseudoParticle[1].GetTotalEnergy()/GeV;
|
|---|
| 523 | dndl[0] = 0.0;
|
|---|
| 524 | //
|
|---|
| 525 | // start of outer iteration loop
|
|---|
| 526 | //
|
|---|
| 527 | outerCounter = 0;
|
|---|
| 528 | eliminateThisParticle = true;
|
|---|
| 529 | resetEnergies = true;
|
|---|
| 530 | while( ++outerCounter < 3 )
|
|---|
| 531 | {
|
|---|
| 532 | for( l=1; l<20; ++l )
|
|---|
| 533 | {
|
|---|
| 534 | x = (binl[l]+binl[l-1])/2.;
|
|---|
| 535 | pt = std::max( 0.001, pt );
|
|---|
| 536 | if( x > 1.0/pt )
|
|---|
| 537 | dndl[l] += dndl[l-1]; // changed from just = on 02 April 98
|
|---|
| 538 | else
|
|---|
| 539 | dndl[l] = et * aspar/std::sqrt( std::pow((1.+aspar*x*aspar*x),3) )
|
|---|
| 540 | * (binl[l]-binl[l-1]) / std::sqrt( pt*x*et*pt*x*et + pt*pt + vecMass*vecMass )
|
|---|
| 541 | + dndl[l-1];
|
|---|
| 542 | }
|
|---|
| 543 | innerCounter = 0;
|
|---|
| 544 | vec[i]->SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 545 | //
|
|---|
| 546 | // start of inner iteration loop
|
|---|
| 547 | //
|
|---|
| 548 | while( ++innerCounter < 7 )
|
|---|
| 549 | {
|
|---|
| 550 | ran = G4UniformRand()*dndl[19];
|
|---|
| 551 | l = 1;
|
|---|
| 552 | while( ( ran >= dndl[l] ) && ( l < 20 ) )l++;
|
|---|
| 553 | l = std::min( 19, l );
|
|---|
| 554 | x = std::min( 1.0, pt*(binl[l-1] + G4UniformRand()*(binl[l]-binl[l-1]) ) );
|
|---|
| 555 | if( vec[i]->GetSide() < 0 )x *= -1.;
|
|---|
| 556 | vec[i]->SetMomentum( x*et*GeV ); // set the z-momentum
|
|---|
| 557 | totalEnergy = std::sqrt( x*et*x*et + pt*pt + vecMass*vecMass );
|
|---|
| 558 | vec[i]->SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 559 | kineticEnergy = vec[i]->GetKineticEnergy()/GeV;
|
|---|
| 560 | if( vec[i]->GetSide() > 0 ) // forward side
|
|---|
| 561 | {
|
|---|
| 562 | if( (forwardKinetic+kineticEnergy) < 0.95*forwardEnergy )
|
|---|
| 563 | {
|
|---|
| 564 | pseudoParticle[4] = pseudoParticle[4] + (*vec[i]);
|
|---|
| 565 | forwardKinetic += kineticEnergy;
|
|---|
| 566 | pseudoParticle[6] = pseudoParticle[4] + pseudoParticle[5];
|
|---|
| 567 | pseudoParticle[6].SetMomentum( 0.0 ); // set the z-momentum
|
|---|
| 568 | phi = pseudoParticle[6].Angle( pseudoParticle[8] );
|
|---|
| 569 | if( pseudoParticle[6].GetMomentum().y()/MeV < 0.0 )phi = twopi - phi;
|
|---|
| 570 | phi += pi + normal()*pi/12.0;
|
|---|
| 571 | if( phi > twopi )phi -= twopi;
|
|---|
| 572 | if( phi < 0.0 )phi = twopi - phi;
|
|---|
| 573 | outerCounter = 2; // leave outer loop
|
|---|
| 574 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 575 | resetEnergies = false;
|
|---|
| 576 | break; // leave inner loop
|
|---|
| 577 | }
|
|---|
| 578 | if( innerCounter > 5 )break; // leave inner loop
|
|---|
| 579 | if( backwardEnergy >= vecMass ) // switch sides
|
|---|
| 580 | {
|
|---|
| 581 | vec[i]->SetSide( -1 );
|
|---|
| 582 | forwardEnergy += vecMass;
|
|---|
| 583 | backwardEnergy -= vecMass;
|
|---|
| 584 | ++backwardCount;
|
|---|
| 585 | }
|
|---|
| 586 | } else { // backward side
|
|---|
| 587 | if( extraNucleonCount > 19 ) // commented out to duplicate ?bug? in GENXPT
|
|---|
| 588 | x = 0.999;
|
|---|
| 589 | G4double xxx = 0.95+0.05*extraNucleonCount/20.0;
|
|---|
| 590 | if( (backwardKinetic+kineticEnergy) < xxx*backwardEnergy )
|
|---|
| 591 | {
|
|---|
| 592 | pseudoParticle[5] = pseudoParticle[5] + (*vec[i]);
|
|---|
| 593 | backwardKinetic += kineticEnergy;
|
|---|
| 594 | pseudoParticle[6] = pseudoParticle[4] + pseudoParticle[5];
|
|---|
| 595 | pseudoParticle[6].SetMomentum( 0.0 ); // set the z-momentum
|
|---|
| 596 | phi = pseudoParticle[6].Angle( pseudoParticle[8] );
|
|---|
| 597 | if( pseudoParticle[6].GetMomentum().y()/MeV < 0.0 )phi = twopi - phi;
|
|---|
| 598 | phi += pi + normal() * pi / 12.0;
|
|---|
| 599 | if( phi > twopi )phi -= twopi;
|
|---|
| 600 | if( phi < 0.0 )phi = twopi - phi;
|
|---|
| 601 | outerCounter = 2; // leave outer loop
|
|---|
| 602 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 603 | resetEnergies = false;
|
|---|
| 604 | break; // leave inner loop
|
|---|
| 605 | }
|
|---|
| 606 | if( innerCounter > 5 )break; // leave inner loop
|
|---|
| 607 | if( forwardEnergy >= vecMass ) // switch sides
|
|---|
| 608 | {
|
|---|
| 609 | vec[i]->SetSide( 1 );
|
|---|
| 610 | forwardEnergy -= vecMass;
|
|---|
| 611 | backwardEnergy += vecMass;
|
|---|
| 612 | backwardCount--;
|
|---|
| 613 | }
|
|---|
| 614 | }
|
|---|
| 615 | G4ThreeVector momentum = vec[i]->GetMomentum();
|
|---|
| 616 | vec[i]->SetMomentum( momentum.x() * 0.9, momentum.y() * 0.9 );
|
|---|
| 617 | pt *= 0.9;
|
|---|
| 618 | dndl[19] *= 0.9;
|
|---|
| 619 | } // closes inner loop
|
|---|
| 620 | if( resetEnergies )
|
|---|
| 621 | {
|
|---|
| 622 | // if we get to here, the inner loop has been Done 6 Times
|
|---|
| 623 | // reset the kinetic energies of previously Done particles, if they are lighter
|
|---|
| 624 | // than protons and in the forward hemisphere
|
|---|
| 625 | // then continue with outer loop
|
|---|
| 626 | //
|
|---|
| 627 | forwardKinetic = 0.0;
|
|---|
| 628 | backwardKinetic = 0.0;
|
|---|
| 629 | pseudoParticle[4].SetZero();
|
|---|
| 630 | pseudoParticle[5].SetZero();
|
|---|
| 631 | for( l=i+1; l<vecLen; ++l )
|
|---|
| 632 | {
|
|---|
| 633 | if (vec[l]->GetSide() > 0 ||
|
|---|
| 634 | vec[l]->GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 635 | vec[l]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 636 |
|
|---|
| 637 | G4double tempMass = vec[l]->GetMass()/MeV;
|
|---|
| 638 | totalEnergy = 0.95*vec[l]->GetTotalEnergy()/MeV + 0.05*tempMass;
|
|---|
| 639 | totalEnergy = std::max( tempMass, totalEnergy );
|
|---|
| 640 | vec[l]->SetTotalEnergy( totalEnergy*MeV );
|
|---|
| 641 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - tempMass*tempMass ) );
|
|---|
| 642 | pp1 = vec[l]->GetMomentum().mag()/MeV;
|
|---|
| 643 | if( pp1 < 1.0e-6*GeV )
|
|---|
| 644 | {
|
|---|
| 645 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 646 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 647 | G4double phi = twopi*G4UniformRand();
|
|---|
| 648 | vec[l]->SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 649 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 650 | pp*costheta*MeV ) ;
|
|---|
| 651 | } else {
|
|---|
| 652 | vec[l]->SetMomentum( vec[l]->GetMomentum() * (pp/pp1) );
|
|---|
| 653 | }
|
|---|
| 654 | G4double px = vec[l]->GetMomentum().x()/MeV;
|
|---|
| 655 | G4double py = vec[l]->GetMomentum().y()/MeV;
|
|---|
| 656 | pt = std::max( 1.0, std::sqrt( px*px + py*py ) )/GeV;
|
|---|
| 657 | if( vec[l]->GetSide() > 0 )
|
|---|
| 658 | {
|
|---|
| 659 | forwardKinetic += vec[l]->GetKineticEnergy()/GeV;
|
|---|
| 660 | pseudoParticle[4] = pseudoParticle[4] + (*vec[l]);
|
|---|
| 661 | } else {
|
|---|
| 662 | backwardKinetic += vec[l]->GetKineticEnergy()/GeV;
|
|---|
| 663 | pseudoParticle[5] = pseudoParticle[5] + (*vec[l]);
|
|---|
| 664 | }
|
|---|
| 665 | } // if pi, K or forward
|
|---|
| 666 | } // for l
|
|---|
| 667 | } // if resetEnergies
|
|---|
| 668 | } // closes outer loop
|
|---|
| 669 |
|
|---|
| 670 | if( eliminateThisParticle && vec[i]->GetMayBeKilled()) // not enough energy, eliminate this particle
|
|---|
| 671 | {
|
|---|
| 672 | if( vec[i]->GetSide() > 0 )
|
|---|
| 673 | {
|
|---|
| 674 | --forwardCount;
|
|---|
| 675 | forwardEnergy += vecMass;
|
|---|
| 676 | } else {
|
|---|
| 677 | if( vec[i]->GetSide() == -2 )
|
|---|
| 678 | {
|
|---|
| 679 | --extraNucleonCount;
|
|---|
| 680 | extraNucleonMass -= vecMass;
|
|---|
| 681 | backwardEnergy -= vecMass;
|
|---|
| 682 | }
|
|---|
| 683 | --backwardCount;
|
|---|
| 684 | backwardEnergy += vecMass;
|
|---|
| 685 | }
|
|---|
| 686 | for( G4int j=i; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 687 | G4ReactionProduct *temp = vec[vecLen-1];
|
|---|
| 688 | delete temp;
|
|---|
| 689 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 690 | if( --vecLen == 0 )return false; // all the secondaries have been eliminated
|
|---|
| 691 | pseudoParticle[6] = pseudoParticle[4] + pseudoParticle[5];
|
|---|
| 692 | pseudoParticle[6].SetMomentum( 0.0 ); // set z-momentum
|
|---|
| 693 | phi = pseudoParticle[6].Angle( pseudoParticle[8] );
|
|---|
| 694 | if( pseudoParticle[6].GetMomentum().y()/MeV < 0.0 )phi = twopi - phi;
|
|---|
| 695 | phi += pi + normal() * pi / 12.0;
|
|---|
| 696 | if( phi > twopi )phi -= twopi;
|
|---|
| 697 | if( phi < 0.0 )phi = twopi - phi;
|
|---|
| 698 | }
|
|---|
| 699 | } // closes main for loop
|
|---|
| 700 |
|
|---|
| 701 | //
|
|---|
| 702 | // for the incident particle: it was placed in the forward hemisphere
|
|---|
| 703 | // set pt and phi values, they are changed somewhat in the iteration loop
|
|---|
| 704 | // set mass parameter for lambda fragmentation model
|
|---|
| 705 | //
|
|---|
| 706 | G4double phi = G4UniformRand()*twopi;
|
|---|
| 707 | G4double ran = -std::log(1.0-G4UniformRand());
|
|---|
| 708 | if (currentParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 709 | aspar = 0.60;
|
|---|
| 710 | pt = std::sqrt( std::pow( ran/6.0, 1.7 ) );
|
|---|
| 711 | } else if (currentParticle.GetDefinition()->GetParticleSubType() == "kaon") {
|
|---|
| 712 | aspar = 0.50;
|
|---|
| 713 | pt = std::sqrt( std::pow( ran/5.0, 1.4 ) );
|
|---|
| 714 | } else {
|
|---|
| 715 | aspar = 0.40;
|
|---|
| 716 | pt = std::sqrt( std::pow( ran/4.0, 1.2 ) );
|
|---|
| 717 | }
|
|---|
| 718 |
|
|---|
| 719 | for( G4int j=0; j<20; ++j )binl[j] = j/(19.*pt);
|
|---|
| 720 | currentParticle.SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 721 | et = pseudoParticle[0].GetTotalEnergy()/GeV;
|
|---|
| 722 | dndl[0] = 0.0;
|
|---|
| 723 | vecMass = currentParticle.GetMass()/GeV;
|
|---|
| 724 | for( l=1; l<20; ++l )
|
|---|
| 725 | {
|
|---|
| 726 | x = (binl[l]+binl[l-1])/2.;
|
|---|
| 727 | if( x > 1.0/pt )
|
|---|
| 728 | dndl[l] += dndl[l-1]; // changed from just = on 02 April 98
|
|---|
| 729 | else
|
|---|
| 730 | dndl[l] = aspar/std::sqrt( std::pow((1.+sqr(aspar*x)),3) ) *
|
|---|
| 731 | (binl[l]-binl[l-1]) * et / std::sqrt( pt*x*et*pt*x*et + pt*pt + vecMass*vecMass ) +
|
|---|
| 732 | dndl[l-1];
|
|---|
| 733 | }
|
|---|
| 734 | ran = G4UniformRand()*dndl[19];
|
|---|
| 735 | l = 1;
|
|---|
| 736 | while( (ran>dndl[l]) && (l<20) )l++;
|
|---|
| 737 | l = std::min( 19, l );
|
|---|
| 738 | x = std::min( 1.0, pt*(binl[l-1] + G4UniformRand()*(binl[l]-binl[l-1]) ) );
|
|---|
| 739 | currentParticle.SetMomentum( x*et*GeV ); // set the z-momentum
|
|---|
| 740 | if( forwardEnergy < forwardKinetic )
|
|---|
| 741 | totalEnergy = vecMass + 0.04*std::fabs(normal());
|
|---|
| 742 | else
|
|---|
| 743 | totalEnergy = vecMass + forwardEnergy - forwardKinetic;
|
|---|
| 744 | currentParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 745 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - vecMass*vecMass ) )*GeV;
|
|---|
| 746 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 747 | if( pp1 < 1.0e-6*GeV )
|
|---|
| 748 | {
|
|---|
| 749 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 750 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 751 | G4double phi = twopi*G4UniformRand();
|
|---|
| 752 | currentParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 753 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 754 | pp*costheta*MeV ) ;
|
|---|
| 755 | } else {
|
|---|
| 756 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 757 | }
|
|---|
| 758 | pseudoParticle[4] = pseudoParticle[4] + currentParticle;
|
|---|
| 759 |
|
|---|
| 760 | //
|
|---|
| 761 | // Current particle now finished
|
|---|
| 762 | //
|
|---|
| 763 | // Begin target particle
|
|---|
| 764 | //
|
|---|
| 765 |
|
|---|
| 766 | if( backwardNucleonCount < 18 )
|
|---|
| 767 | {
|
|---|
| 768 | targetParticle.SetSide( -3 );
|
|---|
| 769 | ++backwardNucleonCount;
|
|---|
| 770 | }
|
|---|
| 771 | else
|
|---|
| 772 | {
|
|---|
| 773 | // set pt and phi values, they are changed somewhat in the iteration loop
|
|---|
| 774 | // set mass parameter for lambda fragmentation model
|
|---|
| 775 | //
|
|---|
| 776 | vecMass = targetParticle.GetMass()/GeV;
|
|---|
| 777 | ran = -std::log(1.0-G4UniformRand());
|
|---|
| 778 | aspar = 0.40;
|
|---|
| 779 | pt = std::max( 0.001, std::sqrt( std::pow( ran/4.0, 1.2 ) ) );
|
|---|
| 780 | targetParticle.SetMomentum( pt*std::cos(phi)*GeV, pt*std::sin(phi)*GeV );
|
|---|
| 781 | for( G4int j=0; j<20; ++j )binl[j] = (j-1.)/(19.*pt);
|
|---|
| 782 | et = pseudoParticle[1].GetTotalEnergy()/GeV;
|
|---|
| 783 | dndl[0] = 0.0;
|
|---|
| 784 | outerCounter = 0;
|
|---|
| 785 | eliminateThisParticle = true; // should never eliminate the target particle
|
|---|
| 786 | resetEnergies = true;
|
|---|
| 787 | while( ++outerCounter < 3 ) // start of outer iteration loop
|
|---|
| 788 | {
|
|---|
| 789 | for( l=1; l<20; ++l )
|
|---|
| 790 | {
|
|---|
| 791 | x = (binl[l]+binl[l-1])/2.;
|
|---|
| 792 | if( x > 1.0/pt )
|
|---|
| 793 | dndl[l] += dndl[l-1]; // changed from just = on 02 April 98
|
|---|
| 794 | else
|
|---|
| 795 | dndl[l] = aspar/std::sqrt( std::pow((1.+aspar*x*aspar*x),3) ) *
|
|---|
| 796 | (binl[l]-binl[l-1])*et / std::sqrt( pt*x*et*pt*x*et+pt*pt+vecMass*vecMass ) +
|
|---|
| 797 | dndl[l-1];
|
|---|
| 798 | }
|
|---|
| 799 | innerCounter = 0;
|
|---|
| 800 | while( ++innerCounter < 7 ) // start of inner iteration loop
|
|---|
| 801 | {
|
|---|
| 802 | l = 1;
|
|---|
| 803 | ran = G4UniformRand()*dndl[19];
|
|---|
| 804 | while( ( ran >= dndl[l] ) && ( l < 20 ) )l++;
|
|---|
| 805 | l = std::min( 19, l );
|
|---|
| 806 | x = std::min( 1.0, pt*(binl[l-1] + G4UniformRand()*(binl[l]-binl[l-1]) ) );
|
|---|
| 807 | if( targetParticle.GetSide() < 0 )x *= -1.;
|
|---|
| 808 | targetParticle.SetMomentum( x*et*GeV ); // set the z-momentum
|
|---|
| 809 | totalEnergy = std::sqrt( x*et*x*et + pt*pt + vecMass*vecMass );
|
|---|
| 810 | targetParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 811 | if( targetParticle.GetSide() < 0 )
|
|---|
| 812 | {
|
|---|
| 813 | if( extraNucleonCount > 19 )x=0.999;
|
|---|
| 814 | G4double xxx = 0.95+0.05*extraNucleonCount/20.0;
|
|---|
| 815 | if( (backwardKinetic+totalEnergy-vecMass) < xxx*backwardEnergy )
|
|---|
| 816 | {
|
|---|
| 817 | pseudoParticle[5] = pseudoParticle[5] + targetParticle;
|
|---|
| 818 | backwardKinetic += totalEnergy - vecMass;
|
|---|
| 819 | pseudoParticle[6] = pseudoParticle[4] + pseudoParticle[5];
|
|---|
| 820 | pseudoParticle[6].SetMomentum( 0.0 ); // set z-momentum
|
|---|
| 821 | phi = pseudoParticle[6].Angle( pseudoParticle[8] );
|
|---|
| 822 | if( pseudoParticle[6].GetMomentum().y()/MeV < 0.0 )phi = twopi - phi;
|
|---|
| 823 | phi += pi + normal() * pi / 12.0;
|
|---|
| 824 | if( phi > twopi )phi -= twopi;
|
|---|
| 825 | if( phi < 0.0 )phi = twopi - phi;
|
|---|
| 826 | outerCounter = 2; // leave outer loop
|
|---|
| 827 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 828 | resetEnergies = false;
|
|---|
| 829 | break; // leave inner loop
|
|---|
| 830 | }
|
|---|
| 831 | if( innerCounter > 5 )break; // leave inner loop
|
|---|
| 832 | if( forwardEnergy >= vecMass ) // switch sides
|
|---|
| 833 | {
|
|---|
| 834 | targetParticle.SetSide( 1 );
|
|---|
| 835 | forwardEnergy -= vecMass;
|
|---|
| 836 | backwardEnergy += vecMass;
|
|---|
| 837 | --backwardCount;
|
|---|
| 838 | }
|
|---|
| 839 | G4ThreeVector momentum = targetParticle.GetMomentum();
|
|---|
| 840 | targetParticle.SetMomentum( momentum.x() * 0.9, momentum.y() * 0.9 );
|
|---|
| 841 | pt *= 0.9;
|
|---|
| 842 | dndl[19] *= 0.9;
|
|---|
| 843 | }
|
|---|
| 844 | else // target has gone to forward side
|
|---|
| 845 | {
|
|---|
| 846 | if( forwardEnergy < forwardKinetic )
|
|---|
| 847 | totalEnergy = vecMass + 0.04*std::fabs(normal());
|
|---|
| 848 | else
|
|---|
| 849 | totalEnergy = vecMass + forwardEnergy - forwardKinetic;
|
|---|
| 850 | targetParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 851 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - vecMass*vecMass ) )*GeV;
|
|---|
| 852 | pp1 = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 853 | if( pp1 < 1.0e-6*GeV )
|
|---|
| 854 | {
|
|---|
| 855 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 856 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 857 | G4double phi = twopi*G4UniformRand();
|
|---|
| 858 | targetParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 859 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 860 | pp*costheta*MeV ) ;
|
|---|
| 861 | }
|
|---|
| 862 | else
|
|---|
| 863 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 864 |
|
|---|
| 865 | pseudoParticle[4] = pseudoParticle[4] + targetParticle;
|
|---|
| 866 | outerCounter = 2; // leave outer loop
|
|---|
| 867 | eliminateThisParticle = false; // don't eliminate this particle
|
|---|
| 868 | resetEnergies = false;
|
|---|
| 869 | break; // leave inner loop
|
|---|
| 870 | }
|
|---|
| 871 | } // closes inner loop
|
|---|
| 872 | if( resetEnergies )
|
|---|
| 873 | {
|
|---|
| 874 | // if we get to here, the inner loop has been Done 6 Times
|
|---|
| 875 | // reset the kinetic energies of previously Done particles, if they are lighter
|
|---|
| 876 | // than protons and in the forward hemisphere
|
|---|
| 877 | // then continue with outer loop
|
|---|
| 878 |
|
|---|
| 879 | forwardKinetic = backwardKinetic = 0.0;
|
|---|
| 880 | pseudoParticle[4].SetZero();
|
|---|
| 881 | pseudoParticle[5].SetZero();
|
|---|
| 882 | for( l=0; l<vecLen; ++l ) // changed from l=1 on 02 April 98
|
|---|
| 883 | {
|
|---|
| 884 | if (vec[l]->GetSide() > 0 ||
|
|---|
| 885 | vec[l]->GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 886 | vec[l]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 887 | G4double tempMass = vec[l]->GetMass()/GeV;
|
|---|
| 888 | totalEnergy =
|
|---|
| 889 | std::max( tempMass, 0.95*vec[l]->GetTotalEnergy()/GeV + 0.05*tempMass );
|
|---|
| 890 | vec[l]->SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 891 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - tempMass*tempMass ) )*GeV;
|
|---|
| 892 | pp1 = vec[l]->GetMomentum().mag()/MeV;
|
|---|
| 893 | if( pp1 < 1.0e-6*GeV )
|
|---|
| 894 | {
|
|---|
| 895 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 896 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 897 | G4double phi = twopi*G4UniformRand();
|
|---|
| 898 | vec[l]->SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 899 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 900 | pp*costheta*MeV ) ;
|
|---|
| 901 | }
|
|---|
| 902 | else
|
|---|
| 903 | vec[l]->SetMomentum( vec[l]->GetMomentum() * (pp/pp1) );
|
|---|
| 904 |
|
|---|
| 905 | pt = std::max( 0.001*GeV, std::sqrt( sqr(vec[l]->GetMomentum().x()/MeV) +
|
|---|
| 906 | sqr(vec[l]->GetMomentum().y()/MeV) ) )/GeV;
|
|---|
| 907 | if( vec[l]->GetSide() > 0)
|
|---|
| 908 | {
|
|---|
| 909 | forwardKinetic += vec[l]->GetKineticEnergy()/GeV;
|
|---|
| 910 | pseudoParticle[4] = pseudoParticle[4] + (*vec[l]);
|
|---|
| 911 | } else {
|
|---|
| 912 | backwardKinetic += vec[l]->GetKineticEnergy()/GeV;
|
|---|
| 913 | pseudoParticle[5] = pseudoParticle[5] + (*vec[l]);
|
|---|
| 914 | }
|
|---|
| 915 | } // if pi, K or forward
|
|---|
| 916 | } // for l
|
|---|
| 917 | } // if (resetEnergies)
|
|---|
| 918 | } // closes outer loop
|
|---|
| 919 | }
|
|---|
| 920 |
|
|---|
| 921 | //
|
|---|
| 922 | // Target particle finished.
|
|---|
| 923 | //
|
|---|
| 924 | // Now produce backward nucleons with a cluster model
|
|---|
| 925 | //
|
|---|
| 926 | pseudoParticle[6].Lorentz( pseudoParticle[3], pseudoParticle[2] );
|
|---|
| 927 | pseudoParticle[6] = pseudoParticle[6] - pseudoParticle[4];
|
|---|
| 928 | pseudoParticle[6] = pseudoParticle[6] - pseudoParticle[5];
|
|---|
| 929 | if( backwardNucleonCount == 1 ) // target particle is the only backward nucleon
|
|---|
| 930 | {
|
|---|
| 931 | G4double ekin =
|
|---|
| 932 | std::min( backwardEnergy-backwardKinetic, centerofmassEnergy/2.0-protonMass/GeV );
|
|---|
| 933 |
|
|---|
| 934 | if( ekin < 0.04 )ekin = 0.04 * std::fabs( normal() );
|
|---|
| 935 | vecMass = targetParticle.GetMass()/GeV;
|
|---|
| 936 | totalEnergy = ekin+vecMass;
|
|---|
| 937 | targetParticle.SetTotalEnergy( totalEnergy*GeV );
|
|---|
| 938 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - vecMass*vecMass ) )*GeV;
|
|---|
| 939 | pp1 = pseudoParticle[6].GetMomentum().mag()/MeV;
|
|---|
| 940 | if( pp1 < 1.0e-6*GeV )
|
|---|
| 941 | {
|
|---|
| 942 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 943 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 944 | G4double phi = twopi*G4UniformRand();
|
|---|
| 945 | targetParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 946 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 947 | pp*costheta*MeV ) ;
|
|---|
| 948 | } else {
|
|---|
| 949 | targetParticle.SetMomentum( pseudoParticle[6].GetMomentum() * (pp/pp1) );
|
|---|
| 950 | }
|
|---|
| 951 | pseudoParticle[5] = pseudoParticle[5] + targetParticle;
|
|---|
| 952 | }
|
|---|
| 953 | else // more than one backward nucleon
|
|---|
| 954 | {
|
|---|
| 955 | const G4double cpar[] = { 0.6, 0.6, 0.35, 0.15, 0.10 };
|
|---|
| 956 | const G4double gpar[] = { 2.6, 2.6, 1.80, 1.30, 1.20 };
|
|---|
| 957 | // Replaced the following min function to get correct behaviour on DEC.
|
|---|
| 958 | // G4int tempCount = std::min( 5, backwardNucleonCount ) - 1;
|
|---|
| 959 | G4int tempCount;
|
|---|
| 960 | if (backwardNucleonCount < 5)
|
|---|
| 961 | {
|
|---|
| 962 | tempCount = backwardNucleonCount;
|
|---|
| 963 | }
|
|---|
| 964 | else
|
|---|
| 965 | {
|
|---|
| 966 | tempCount = 5;
|
|---|
| 967 | }
|
|---|
| 968 | tempCount--;
|
|---|
| 969 | //cout << "backwardNucleonCount " << backwardNucleonCount << G4endl;
|
|---|
| 970 | //cout << "tempCount " << tempCount << G4endl;
|
|---|
| 971 | G4double rmb0 = 0.0;
|
|---|
| 972 | if( targetParticle.GetSide() == -3 )
|
|---|
| 973 | rmb0 += targetParticle.GetMass()/GeV;
|
|---|
| 974 | for( i=0; i<vecLen; ++i )
|
|---|
| 975 | {
|
|---|
| 976 | if( vec[i]->GetSide() == -3 )rmb0 += vec[i]->GetMass()/GeV;
|
|---|
| 977 | }
|
|---|
| 978 | rmb = rmb0 + std::pow(-std::log(1.0-G4UniformRand()),cpar[tempCount]) / gpar[tempCount];
|
|---|
| 979 | totalEnergy = pseudoParticle[6].GetTotalEnergy()/GeV;
|
|---|
| 980 | vecMass = std::min( rmb, totalEnergy );
|
|---|
| 981 | pseudoParticle[6].SetMass( vecMass*GeV );
|
|---|
| 982 | pp = std::sqrt( std::abs( totalEnergy*totalEnergy - vecMass*vecMass ) )*GeV;
|
|---|
| 983 | pp1 = pseudoParticle[6].GetMomentum().mag()/MeV;
|
|---|
| 984 | if( pp1 < 1.0e-6*GeV )
|
|---|
| 985 | {
|
|---|
| 986 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 987 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 988 | G4double phi = twopi*G4UniformRand();
|
|---|
| 989 | pseudoParticle[6].SetMomentum( -pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 990 | -pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 991 | -pp*costheta*MeV ) ;
|
|---|
| 992 | }
|
|---|
| 993 | else
|
|---|
| 994 | pseudoParticle[6].SetMomentum( pseudoParticle[6].GetMomentum() * (-pp/pp1) );
|
|---|
| 995 |
|
|---|
| 996 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> tempV; // tempV contains the backward nucleons
|
|---|
| 997 | tempV.Initialize( backwardNucleonCount );
|
|---|
| 998 | G4int tempLen = 0;
|
|---|
| 999 | if( targetParticle.GetSide() == -3 )tempV.SetElement( tempLen++, &targetParticle );
|
|---|
| 1000 | for( i=0; i<vecLen; ++i )
|
|---|
| 1001 | {
|
|---|
| 1002 | if( vec[i]->GetSide() == -3 )tempV.SetElement( tempLen++, vec[i] );
|
|---|
| 1003 | }
|
|---|
| 1004 | if( tempLen != backwardNucleonCount )
|
|---|
| 1005 | {
|
|---|
| 1006 | G4cerr << "tempLen is not the same as backwardNucleonCount" << G4endl;
|
|---|
| 1007 | G4cerr << "tempLen = " << tempLen;
|
|---|
| 1008 | G4cerr << ", backwardNucleonCount = " << backwardNucleonCount << G4endl;
|
|---|
| 1009 | G4cerr << "targetParticle side = " << targetParticle.GetSide() << G4endl;
|
|---|
| 1010 | G4cerr << "currentParticle side = " << currentParticle.GetSide() << G4endl;
|
|---|
| 1011 | for( i=0; i<vecLen; ++i )
|
|---|
| 1012 | G4cerr << "particle #" << i << " side = " << vec[i]->GetSide() << G4endl;
|
|---|
| 1013 | G4Exception("G4ReactionDynamics::GenerateXandPt", "601",
|
|---|
| 1014 | FatalException, "Mismatch in nucleon count");
|
|---|
| 1015 | }
|
|---|
| 1016 | constantCrossSection = true;
|
|---|
| 1017 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1018 | if( tempLen >= 2 )
|
|---|
| 1019 | {
|
|---|
| 1020 | wgt = GenerateNBodyEvent(
|
|---|
| 1021 | pseudoParticle[6].GetMass(), constantCrossSection, tempV, tempLen );
|
|---|
| 1022 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1023 | if( targetParticle.GetSide() == -3 )
|
|---|
| 1024 | {
|
|---|
| 1025 | targetParticle.Lorentz( targetParticle, pseudoParticle[6] );
|
|---|
| 1026 | // tempV contains the real stuff
|
|---|
| 1027 | pseudoParticle[5] = pseudoParticle[5] + targetParticle;
|
|---|
| 1028 | }
|
|---|
| 1029 | for( i=0; i<vecLen; ++i )
|
|---|
| 1030 | {
|
|---|
| 1031 | if( vec[i]->GetSide() == -3 )
|
|---|
| 1032 | {
|
|---|
| 1033 | vec[i]->Lorentz( *vec[i], pseudoParticle[6] );
|
|---|
| 1034 | pseudoParticle[5] = pseudoParticle[5] + (*vec[i]);
|
|---|
| 1035 | }
|
|---|
| 1036 | }
|
|---|
| 1037 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1038 | }
|
|---|
| 1039 | }
|
|---|
| 1040 | //
|
|---|
| 1041 | // Lorentz transformation in lab system
|
|---|
| 1042 | //
|
|---|
| 1043 | if( vecLen == 0 )return false; // all the secondaries have been eliminated
|
|---|
| 1044 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1045 |
|
|---|
| 1046 | currentParticle.Lorentz( currentParticle, pseudoParticle[1] );
|
|---|
| 1047 | targetParticle.Lorentz( targetParticle, pseudoParticle[1] );
|
|---|
| 1048 | for( i=0; i<vecLen; ++i ) vec[i]->Lorentz( *vec[i], pseudoParticle[1] );
|
|---|
| 1049 |
|
|---|
| 1050 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1051 | //
|
|---|
| 1052 | // leadFlag will be true
|
|---|
| 1053 | // iff original particle is at least as heavy as K+ and not a proton or
|
|---|
| 1054 | // neutron AND if incident particle is at least as heavy as K+ and it is
|
|---|
| 1055 | // not a proton or neutron leadFlag is set to the incident particle
|
|---|
| 1056 | // or
|
|---|
| 1057 | // target particle is at least as heavy as K+ and it is not a proton or
|
|---|
| 1058 | // neutron leadFlag is set to the target particle
|
|---|
| 1059 | //
|
|---|
| 1060 | G4bool leadingStrangeParticleHasChanged = true;
|
|---|
| 1061 | if( leadFlag )
|
|---|
| 1062 | {
|
|---|
| 1063 | if( currentParticle.GetDefinition() == leadingStrangeParticle.GetDefinition() )
|
|---|
| 1064 | leadingStrangeParticleHasChanged = false;
|
|---|
| 1065 | if( leadingStrangeParticleHasChanged &&
|
|---|
| 1066 | ( targetParticle.GetDefinition() == leadingStrangeParticle.GetDefinition() ) )
|
|---|
| 1067 | leadingStrangeParticleHasChanged = false;
|
|---|
| 1068 | if( leadingStrangeParticleHasChanged )
|
|---|
| 1069 | {
|
|---|
| 1070 | for( i=0; i<vecLen; i++ )
|
|---|
| 1071 | {
|
|---|
| 1072 | if( vec[i]->GetDefinition() == leadingStrangeParticle.GetDefinition() )
|
|---|
| 1073 | {
|
|---|
| 1074 | leadingStrangeParticleHasChanged = false;
|
|---|
| 1075 | break;
|
|---|
| 1076 | }
|
|---|
| 1077 | }
|
|---|
| 1078 | }
|
|---|
| 1079 | if( leadingStrangeParticleHasChanged )
|
|---|
| 1080 | {
|
|---|
| 1081 | G4bool leadTest =
|
|---|
| 1082 | (leadingStrangeParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 1083 | leadingStrangeParticle.GetDefinition()->GetParticleSubType() == "pi");
|
|---|
| 1084 | G4bool targetTest =
|
|---|
| 1085 | (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 1086 | targetParticle.GetDefinition()->GetParticleSubType() == "pi");
|
|---|
| 1087 |
|
|---|
| 1088 | // following modified by JLC 22-Oct-97
|
|---|
| 1089 |
|
|---|
| 1090 | if( (leadTest&&targetTest) || !(leadTest||targetTest) ) // both true or both false
|
|---|
| 1091 | {
|
|---|
| 1092 | targetParticle.SetDefinitionAndUpdateE( leadingStrangeParticle.GetDefinition() );
|
|---|
| 1093 | targetHasChanged = true;
|
|---|
| 1094 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1095 | }
|
|---|
| 1096 | else
|
|---|
| 1097 | {
|
|---|
| 1098 | currentParticle.SetDefinitionAndUpdateE( leadingStrangeParticle.GetDefinition() );
|
|---|
| 1099 | incidentHasChanged = false;
|
|---|
| 1100 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1101 | }
|
|---|
| 1102 | }
|
|---|
| 1103 | } // end of if( leadFlag )
|
|---|
| 1104 |
|
|---|
| 1105 | // Get number of final state nucleons and nucleons remaining in
|
|---|
| 1106 | // target nucleus
|
|---|
| 1107 |
|
|---|
| 1108 | std::pair<G4int, G4int> finalStateNucleons =
|
|---|
| 1109 | GetFinalStateNucleons(originalTarget, vec, vecLen);
|
|---|
| 1110 |
|
|---|
| 1111 | G4int protonsInFinalState = finalStateNucleons.first;
|
|---|
| 1112 | G4int neutronsInFinalState = finalStateNucleons.second;
|
|---|
| 1113 |
|
|---|
| 1114 | G4int numberofFinalStateNucleons =
|
|---|
| 1115 | protonsInFinalState + neutronsInFinalState;
|
|---|
| 1116 |
|
|---|
| 1117 | if (currentParticle.GetDefinition()->GetBaryonNumber() == 1 &&
|
|---|
| 1118 | targetParticle.GetDefinition()->GetBaryonNumber() == 1 &&
|
|---|
| 1119 | originalIncident->GetDefinition()->GetPDGMass() <
|
|---|
| 1120 | G4Lambda::Lambda()->GetPDGMass())
|
|---|
| 1121 | numberofFinalStateNucleons++;
|
|---|
| 1122 |
|
|---|
| 1123 | numberofFinalStateNucleons = std::max(1, numberofFinalStateNucleons);
|
|---|
| 1124 |
|
|---|
| 1125 | G4int PinNucleus = std::max(0,
|
|---|
| 1126 | targetNucleus.GetZ_asInt() - protonsInFinalState);
|
|---|
| 1127 | G4int NinNucleus = std::max(0,
|
|---|
| 1128 | targetNucleus.GetN_asInt() - neutronsInFinalState);
|
|---|
| 1129 |
|
|---|
| 1130 | pseudoParticle[3].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 1131 | pseudoParticle[3].SetMass( mOriginal*GeV );
|
|---|
| 1132 | pseudoParticle[3].SetTotalEnergy(
|
|---|
| 1133 | std::sqrt( pOriginal*pOriginal + mOriginal*mOriginal )*GeV );
|
|---|
| 1134 |
|
|---|
| 1135 | G4ParticleDefinition * aOrgDef = modifiedOriginal.GetDefinition();
|
|---|
| 1136 | G4int diff = 0;
|
|---|
| 1137 | if(aOrgDef == G4Proton::Proton() || aOrgDef == G4Neutron::Neutron() ) diff = 1;
|
|---|
| 1138 | if(numberofFinalStateNucleons == 1) diff = 0;
|
|---|
| 1139 | pseudoParticle[4].SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 1140 | pseudoParticle[4].SetMass( protonMass*(numberofFinalStateNucleons-diff)*MeV );
|
|---|
| 1141 | pseudoParticle[4].SetTotalEnergy( protonMass*(numberofFinalStateNucleons-diff)*MeV );
|
|---|
| 1142 |
|
|---|
| 1143 | G4double theoreticalKinetic =
|
|---|
| 1144 | pseudoParticle[3].GetTotalEnergy()/MeV +
|
|---|
| 1145 | pseudoParticle[4].GetTotalEnergy()/MeV -
|
|---|
| 1146 | currentParticle.GetMass()/MeV -
|
|---|
| 1147 | targetParticle.GetMass()/MeV;
|
|---|
| 1148 |
|
|---|
| 1149 | G4double simulatedKinetic =
|
|---|
| 1150 | currentParticle.GetKineticEnergy()/MeV + targetParticle.GetKineticEnergy()/MeV;
|
|---|
| 1151 |
|
|---|
| 1152 | pseudoParticle[5] = pseudoParticle[3] + pseudoParticle[4];
|
|---|
| 1153 | pseudoParticle[3].Lorentz( pseudoParticle[3], pseudoParticle[5] );
|
|---|
| 1154 | pseudoParticle[4].Lorentz( pseudoParticle[4], pseudoParticle[5] );
|
|---|
| 1155 |
|
|---|
| 1156 | pseudoParticle[7].SetZero();
|
|---|
| 1157 | pseudoParticle[7] = pseudoParticle[7] + currentParticle;
|
|---|
| 1158 | pseudoParticle[7] = pseudoParticle[7] + targetParticle;
|
|---|
| 1159 |
|
|---|
| 1160 | for( i=0; i<vecLen; ++i )
|
|---|
| 1161 | {
|
|---|
| 1162 | pseudoParticle[7] = pseudoParticle[7] + *vec[i];
|
|---|
| 1163 | simulatedKinetic += vec[i]->GetKineticEnergy()/MeV;
|
|---|
| 1164 | theoreticalKinetic -= vec[i]->GetMass()/MeV;
|
|---|
| 1165 | }
|
|---|
| 1166 |
|
|---|
| 1167 | if( vecLen <= 16 && vecLen > 0 )
|
|---|
| 1168 | {
|
|---|
| 1169 | // must create a new set of ReactionProducts here because GenerateNBody will
|
|---|
| 1170 | // modify the momenta for the particles, and we don't want to do this
|
|---|
| 1171 | //
|
|---|
| 1172 | G4ReactionProduct tempR[130];
|
|---|
| 1173 | tempR[0] = currentParticle;
|
|---|
| 1174 | tempR[1] = targetParticle;
|
|---|
| 1175 | for( i=0; i<vecLen; ++i )tempR[i+2] = *vec[i];
|
|---|
| 1176 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> tempV;
|
|---|
| 1177 | tempV.Initialize( vecLen+2 );
|
|---|
| 1178 | G4int tempLen = 0;
|
|---|
| 1179 | for( i=0; i<vecLen+2; ++i )tempV.SetElement( tempLen++, &tempR[i] );
|
|---|
| 1180 | constantCrossSection = true;
|
|---|
| 1181 |
|
|---|
| 1182 | wgt = GenerateNBodyEvent( pseudoParticle[3].GetTotalEnergy()/MeV+
|
|---|
| 1183 | pseudoParticle[4].GetTotalEnergy()/MeV,
|
|---|
| 1184 | constantCrossSection, tempV, tempLen );
|
|---|
| 1185 | if (wgt == -1) {
|
|---|
| 1186 | G4double Qvalue = 0;
|
|---|
| 1187 | for (i = 0; i < tempLen; i++) Qvalue += tempV[i]->GetMass();
|
|---|
| 1188 | wgt = GenerateNBodyEvent( Qvalue/MeV,
|
|---|
| 1189 | constantCrossSection, tempV, tempLen );
|
|---|
| 1190 | }
|
|---|
| 1191 | if(wgt>-.5)
|
|---|
| 1192 | {
|
|---|
| 1193 | theoreticalKinetic = 0.0;
|
|---|
| 1194 | for( i=0; i<tempLen; ++i )
|
|---|
| 1195 | {
|
|---|
| 1196 | pseudoParticle[6].Lorentz( *tempV[i], pseudoParticle[4] );
|
|---|
| 1197 | theoreticalKinetic += pseudoParticle[6].GetKineticEnergy()/MeV;
|
|---|
| 1198 | }
|
|---|
| 1199 | }
|
|---|
| 1200 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1201 | }
|
|---|
| 1202 | //
|
|---|
| 1203 | // Make sure, that the kinetic energies are correct
|
|---|
| 1204 | //
|
|---|
| 1205 | if( simulatedKinetic != 0.0 )
|
|---|
| 1206 | {
|
|---|
| 1207 | wgt = (theoreticalKinetic)/simulatedKinetic;
|
|---|
| 1208 | theoreticalKinetic = currentParticle.GetKineticEnergy()/MeV * wgt;
|
|---|
| 1209 | simulatedKinetic = theoreticalKinetic;
|
|---|
| 1210 | currentParticle.SetKineticEnergy( theoreticalKinetic*MeV );
|
|---|
| 1211 | pp = currentParticle.GetTotalMomentum()/MeV;
|
|---|
| 1212 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 1213 | if( pp1 < 1.0e-6*GeV )
|
|---|
| 1214 | {
|
|---|
| 1215 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 1216 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 1217 | G4double phi = twopi*G4UniformRand();
|
|---|
| 1218 | currentParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 1219 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 1220 | pp*costheta*MeV ) ;
|
|---|
| 1221 | }
|
|---|
| 1222 | else
|
|---|
| 1223 | {
|
|---|
| 1224 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 1225 | }
|
|---|
| 1226 | theoreticalKinetic = targetParticle.GetKineticEnergy()/MeV * wgt;
|
|---|
| 1227 | targetParticle.SetKineticEnergy( theoreticalKinetic*MeV );
|
|---|
| 1228 | simulatedKinetic += theoreticalKinetic;
|
|---|
| 1229 | pp = targetParticle.GetTotalMomentum()/MeV;
|
|---|
| 1230 | pp1 = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 1231 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1232 | if( pp1 < 1.0e-6*GeV )
|
|---|
| 1233 | {
|
|---|
| 1234 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 1235 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 1236 | G4double phi = twopi*G4UniformRand();
|
|---|
| 1237 | targetParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 1238 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 1239 | pp*costheta*MeV ) ;
|
|---|
| 1240 | } else {
|
|---|
| 1241 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 1242 | }
|
|---|
| 1243 | for( i=0; i<vecLen; ++i )
|
|---|
| 1244 | {
|
|---|
| 1245 | theoreticalKinetic = vec[i]->GetKineticEnergy()/MeV * wgt;
|
|---|
| 1246 | simulatedKinetic += theoreticalKinetic;
|
|---|
| 1247 | vec[i]->SetKineticEnergy( theoreticalKinetic*MeV );
|
|---|
| 1248 | pp = vec[i]->GetTotalMomentum()/MeV;
|
|---|
| 1249 | pp1 = vec[i]->GetMomentum().mag()/MeV;
|
|---|
| 1250 | if( pp1 < 1.0e-6*GeV )
|
|---|
| 1251 | {
|
|---|
| 1252 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 1253 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 1254 | G4double phi = twopi*G4UniformRand();
|
|---|
| 1255 | vec[i]->SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 1256 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 1257 | pp*costheta*MeV ) ;
|
|---|
| 1258 | }
|
|---|
| 1259 | else
|
|---|
| 1260 | vec[i]->SetMomentum( vec[i]->GetMomentum() * (pp/pp1) );
|
|---|
| 1261 | }
|
|---|
| 1262 | }
|
|---|
| 1263 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1264 |
|
|---|
| 1265 | Rotate( numberofFinalStateNucleons, pseudoParticle[3].GetMomentum(),
|
|---|
| 1266 | modifiedOriginal, originalIncident, targetNucleus,
|
|---|
| 1267 | currentParticle, targetParticle, vec, vecLen );
|
|---|
| 1268 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1269 | //
|
|---|
| 1270 | // add black track particles
|
|---|
| 1271 | // the total number of particles produced is restricted to 198
|
|---|
| 1272 | // this may have influence on very high energies
|
|---|
| 1273 | //
|
|---|
| 1274 | if( atomicWeight >= 1.5 )
|
|---|
| 1275 | {
|
|---|
| 1276 | // npnb is number of proton/neutron black track particles
|
|---|
| 1277 | // ndta is the number of deuterons, tritons, and alphas produced
|
|---|
| 1278 | // epnb is the kinetic energy available for proton/neutron black track particles
|
|---|
| 1279 | // edta is the kinetic energy available for deuteron/triton/alpha particles
|
|---|
| 1280 | //
|
|---|
| 1281 | G4int npnb = 0;
|
|---|
| 1282 | G4int ndta = 0;
|
|---|
| 1283 |
|
|---|
| 1284 | G4double epnb, edta;
|
|---|
| 1285 | if (veryForward) {
|
|---|
| 1286 | epnb = targetNucleus.GetAnnihilationPNBlackTrackEnergy();
|
|---|
| 1287 | edta = targetNucleus.GetAnnihilationDTABlackTrackEnergy();
|
|---|
| 1288 | } else {
|
|---|
| 1289 | epnb = targetNucleus.GetPNBlackTrackEnergy();
|
|---|
| 1290 | edta = targetNucleus.GetDTABlackTrackEnergy();
|
|---|
| 1291 | }
|
|---|
| 1292 |
|
|---|
| 1293 | const G4double pnCutOff = 0.001;
|
|---|
| 1294 | const G4double dtaCutOff = 0.001;
|
|---|
| 1295 | const G4double kineticMinimum = 1.e-6;
|
|---|
| 1296 | const G4double kineticFactor = -0.010;
|
|---|
| 1297 | G4double sprob = 0.0; // sprob = probability of self-absorption in heavy molecules
|
|---|
| 1298 | const G4double ekIncident = originalIncident->GetKineticEnergy()/GeV;
|
|---|
| 1299 | if( ekIncident >= 5.0 )sprob = std::min( 1.0, 0.6*std::log(ekIncident-4.0) );
|
|---|
| 1300 | if( epnb >= pnCutOff )
|
|---|
| 1301 | {
|
|---|
| 1302 | npnb = Poisson((1.5+1.25*numberofFinalStateNucleons)*epnb/(epnb+edta));
|
|---|
| 1303 | if( numberofFinalStateNucleons + npnb > atomicWeight )
|
|---|
| 1304 | npnb = G4int(atomicWeight+0.00001 - numberofFinalStateNucleons);
|
|---|
| 1305 | npnb = std::min( npnb, 127-vecLen );
|
|---|
| 1306 | }
|
|---|
| 1307 | if( edta >= dtaCutOff )
|
|---|
| 1308 | {
|
|---|
| 1309 | ndta = Poisson( (1.5+1.25*numberofFinalStateNucleons)*edta/(epnb+edta) );
|
|---|
| 1310 | ndta = std::min( ndta, 127-vecLen );
|
|---|
| 1311 | }
|
|---|
| 1312 | if (npnb == 0 && ndta == 0) npnb = 1;
|
|---|
| 1313 |
|
|---|
| 1314 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1315 |
|
|---|
| 1316 | AddBlackTrackParticles(epnb, npnb, edta, ndta, sprob, kineticMinimum,
|
|---|
| 1317 | kineticFactor, modifiedOriginal,
|
|---|
| 1318 | PinNucleus, NinNucleus, targetNucleus,
|
|---|
| 1319 | vec, vecLen);
|
|---|
| 1320 |
|
|---|
| 1321 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1322 | }
|
|---|
| 1323 | //if( centerofmassEnergy <= (4.0+G4UniformRand()) )
|
|---|
| 1324 | // MomentumCheck( modifiedOriginal, currentParticle, targetParticle, vec, vecLen );
|
|---|
| 1325 | //
|
|---|
| 1326 | // calculate time delay for nuclear reactions
|
|---|
| 1327 | //
|
|---|
| 1328 | if( (atomicWeight >= 1.5) && (atomicWeight <= 230.0) && (ekOriginal <= 0.2) )
|
|---|
| 1329 | currentParticle.SetTOF( 1.0-500.0*std::exp(-ekOriginal/0.04)*std::log(G4UniformRand()) );
|
|---|
| 1330 | else
|
|---|
| 1331 | currentParticle.SetTOF( 1.0 );
|
|---|
| 1332 | return true;
|
|---|
| 1333 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1334 | }
|
|---|
| 1335 |
|
|---|
| 1336 | void G4ReactionDynamics::SuppressChargedPions(
|
|---|
| 1337 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 1338 | G4int &vecLen,
|
|---|
| 1339 | const G4ReactionProduct &modifiedOriginal,
|
|---|
| 1340 | G4ReactionProduct ¤tParticle,
|
|---|
| 1341 | G4ReactionProduct &targetParticle,
|
|---|
| 1342 | const G4Nucleus &targetNucleus,
|
|---|
| 1343 | G4bool &incidentHasChanged,
|
|---|
| 1344 | G4bool &targetHasChanged )
|
|---|
| 1345 | {
|
|---|
| 1346 | // this code was originally in the fortran code TWOCLU
|
|---|
| 1347 | //
|
|---|
| 1348 | // suppress charged pions, for various reasons
|
|---|
| 1349 | //
|
|---|
| 1350 | G4double mOriginal = modifiedOriginal.GetMass()/GeV;
|
|---|
| 1351 | G4double etOriginal = modifiedOriginal.GetTotalEnergy()/GeV;
|
|---|
| 1352 | G4double targetMass = targetParticle.GetDefinition()->GetPDGMass()/GeV;
|
|---|
| 1353 | G4double cmEnergy = std::sqrt( mOriginal*mOriginal + targetMass*targetMass +
|
|---|
| 1354 | 2.0*targetMass*etOriginal );
|
|---|
| 1355 | G4double eAvailable = cmEnergy - mOriginal - targetMass;
|
|---|
| 1356 | for (G4int i = 0; i < vecLen; i++) eAvailable -= vec[i]->GetMass()/GeV;
|
|---|
| 1357 |
|
|---|
| 1358 | const G4double atomicWeight = G4double(targetNucleus.GetA_asInt());
|
|---|
| 1359 | const G4double atomicNumber = G4double(targetNucleus.GetZ_asInt());
|
|---|
| 1360 | const G4double pOriginal = modifiedOriginal.GetTotalMomentum()/GeV;
|
|---|
| 1361 |
|
|---|
| 1362 | G4ParticleDefinition *aPiMinus = G4PionMinus::PionMinus();
|
|---|
| 1363 | G4ParticleDefinition *aPiPlus = G4PionPlus::PionPlus();
|
|---|
| 1364 | G4ParticleDefinition* aPiZero = G4PionZero::PionZero();
|
|---|
| 1365 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 1366 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 1367 | G4double piMass = aPiPlus->GetPDGMass()/GeV;
|
|---|
| 1368 | G4double nucleonMass = aNeutron->GetPDGMass()/GeV;
|
|---|
| 1369 |
|
|---|
| 1370 | const G4bool antiTest =
|
|---|
| 1371 | modifiedOriginal.GetDefinition() != G4AntiProton::AntiProton() &&
|
|---|
| 1372 | modifiedOriginal.GetDefinition() != G4AntiNeutron::AntiNeutron() &&
|
|---|
| 1373 | modifiedOriginal.GetDefinition() != G4AntiLambda::AntiLambda() &&
|
|---|
| 1374 | modifiedOriginal.GetDefinition() != G4AntiSigmaPlus::AntiSigmaPlus() &&
|
|---|
| 1375 | modifiedOriginal.GetDefinition() != G4AntiSigmaMinus::AntiSigmaMinus() &&
|
|---|
| 1376 | modifiedOriginal.GetDefinition() != G4AntiXiZero::AntiXiZero() &&
|
|---|
| 1377 | modifiedOriginal.GetDefinition() != G4AntiXiMinus::AntiXiMinus() &&
|
|---|
| 1378 | modifiedOriginal.GetDefinition() != G4AntiOmegaMinus::AntiOmegaMinus();
|
|---|
| 1379 |
|
|---|
| 1380 | if( antiTest && (
|
|---|
| 1381 | currentParticle.GetDefinition() == aPiPlus ||
|
|---|
| 1382 | currentParticle.GetDefinition() == aPiZero ||
|
|---|
| 1383 | currentParticle.GetDefinition() == aPiMinus ) &&
|
|---|
| 1384 | ( G4UniformRand() <= (10.0-pOriginal)/6.0 ) &&
|
|---|
| 1385 | ( G4UniformRand() <= atomicWeight/300.0 ) )
|
|---|
| 1386 | {
|
|---|
| 1387 | if (eAvailable > nucleonMass - piMass) {
|
|---|
| 1388 | if( G4UniformRand() > atomicNumber/atomicWeight )
|
|---|
| 1389 | currentParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 1390 | else
|
|---|
| 1391 | currentParticle.SetDefinitionAndUpdateE( aProton );
|
|---|
| 1392 | incidentHasChanged = true;
|
|---|
| 1393 | }
|
|---|
| 1394 | }
|
|---|
| 1395 | if( antiTest && (
|
|---|
| 1396 | targetParticle.GetDefinition() == aPiPlus ||
|
|---|
| 1397 | targetParticle.GetDefinition() == aPiZero ||
|
|---|
| 1398 | targetParticle.GetDefinition() == aPiMinus ) &&
|
|---|
| 1399 | ( G4UniformRand() <= (10.0-pOriginal)/6.0 ) &&
|
|---|
| 1400 | ( G4UniformRand() <= atomicWeight/300.0 ) )
|
|---|
| 1401 | {
|
|---|
| 1402 | if (eAvailable > nucleonMass - piMass) {
|
|---|
| 1403 | if( G4UniformRand() > atomicNumber/atomicWeight )
|
|---|
| 1404 | targetParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 1405 | else
|
|---|
| 1406 | targetParticle.SetDefinitionAndUpdateE( aProton );
|
|---|
| 1407 | targetHasChanged = true;
|
|---|
| 1408 | }
|
|---|
| 1409 | }
|
|---|
| 1410 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1411 | for( G4int i=0; i<vecLen; ++i )
|
|---|
| 1412 | {
|
|---|
| 1413 | if( antiTest && (
|
|---|
| 1414 | vec[i]->GetDefinition() == aPiPlus ||
|
|---|
| 1415 | vec[i]->GetDefinition() == aPiZero ||
|
|---|
| 1416 | vec[i]->GetDefinition() == aPiMinus ) &&
|
|---|
| 1417 | ( G4UniformRand() <= (10.0-pOriginal)/6.0 ) &&
|
|---|
| 1418 | ( G4UniformRand() <= atomicWeight/300.0 ) )
|
|---|
| 1419 | {
|
|---|
| 1420 | if (eAvailable > nucleonMass - piMass) {
|
|---|
| 1421 | if( G4UniformRand() > atomicNumber/atomicWeight )
|
|---|
| 1422 | vec[i]->SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 1423 | else
|
|---|
| 1424 | vec[i]->SetDefinitionAndUpdateE( aProton );
|
|---|
| 1425 | }
|
|---|
| 1426 | }
|
|---|
| 1427 | }
|
|---|
| 1428 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1429 | }
|
|---|
| 1430 |
|
|---|
| 1431 | G4bool G4ReactionDynamics::TwoCluster(
|
|---|
| 1432 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 1433 | G4int &vecLen,
|
|---|
| 1434 | G4ReactionProduct &modifiedOriginal, // Fermi motion & evap. effects included
|
|---|
| 1435 | const G4HadProjectile *originalIncident, // the original incident particle
|
|---|
| 1436 | G4ReactionProduct ¤tParticle,
|
|---|
| 1437 | G4ReactionProduct &targetParticle,
|
|---|
| 1438 | const G4DynamicParticle* originalTarget,
|
|---|
| 1439 | const G4Nucleus &targetNucleus,
|
|---|
| 1440 | G4bool &incidentHasChanged,
|
|---|
| 1441 | G4bool &targetHasChanged,
|
|---|
| 1442 | G4bool leadFlag,
|
|---|
| 1443 | G4ReactionProduct &leadingStrangeParticle )
|
|---|
| 1444 | {
|
|---|
| 1445 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1446 | // derived from original FORTRAN code TWOCLU by H. Fesefeldt (11-Oct-1987)
|
|---|
| 1447 | //
|
|---|
| 1448 | // Generation of X- and PT- values for incident, target, and all secondary particles
|
|---|
| 1449 | //
|
|---|
| 1450 | // A simple two cluster model is used.
|
|---|
| 1451 | // This should be sufficient for low energy interactions.
|
|---|
| 1452 | //
|
|---|
| 1453 |
|
|---|
| 1454 | // + debugging
|
|---|
| 1455 | // raise(SIGSEGV);
|
|---|
| 1456 | // - debugging
|
|---|
| 1457 |
|
|---|
| 1458 | G4int i;
|
|---|
| 1459 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 1460 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 1461 | G4ParticleDefinition *aPiPlus = G4PionPlus::PionPlus();
|
|---|
| 1462 | G4ParticleDefinition *aPiMinus = G4PionMinus::PionMinus();
|
|---|
| 1463 | G4ParticleDefinition *aPiZero = G4PionZero::PionZero();
|
|---|
| 1464 | G4bool veryForward = false;
|
|---|
| 1465 |
|
|---|
| 1466 | const G4double protonMass = aProton->GetPDGMass()/MeV;
|
|---|
| 1467 | const G4double ekOriginal = modifiedOriginal.GetKineticEnergy()/GeV;
|
|---|
| 1468 | const G4double etOriginal = modifiedOriginal.GetTotalEnergy()/GeV;
|
|---|
| 1469 | const G4double mOriginal = modifiedOriginal.GetMass()/GeV;
|
|---|
| 1470 | const G4double pOriginal = modifiedOriginal.GetMomentum().mag()/GeV;
|
|---|
| 1471 | G4double targetMass = targetParticle.GetDefinition()->GetPDGMass()/GeV;
|
|---|
| 1472 | G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
|
|---|
| 1473 | targetMass*targetMass +
|
|---|
| 1474 | 2.0*targetMass*etOriginal ); // GeV
|
|---|
| 1475 | G4double currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 1476 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 1477 |
|
|---|
| 1478 | if( currentMass == 0.0 && targetMass == 0.0 )
|
|---|
| 1479 | {
|
|---|
| 1480 | G4double ek = currentParticle.GetKineticEnergy();
|
|---|
| 1481 | G4ThreeVector m = currentParticle.GetMomentum();
|
|---|
| 1482 | currentParticle = *vec[0];
|
|---|
| 1483 | targetParticle = *vec[1];
|
|---|
| 1484 | for( i=0; i<(vecLen-2); ++i )*vec[i] = *vec[i+2];
|
|---|
| 1485 | if(vecLen<2)
|
|---|
| 1486 | {
|
|---|
| 1487 | for(G4int i=0; i<vecLen; i++) delete vec[i];
|
|---|
| 1488 | vecLen = 0;
|
|---|
| 1489 | throw G4HadReentrentException(__FILE__, __LINE__,
|
|---|
| 1490 | "G4ReactionDynamics::TwoCluster: Negative number of particles");
|
|---|
| 1491 | }
|
|---|
| 1492 | delete vec[vecLen-1];
|
|---|
| 1493 | delete vec[vecLen-2];
|
|---|
| 1494 | vecLen -= 2;
|
|---|
| 1495 | currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 1496 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 1497 | incidentHasChanged = true;
|
|---|
| 1498 | targetHasChanged = true;
|
|---|
| 1499 | currentParticle.SetKineticEnergy( ek );
|
|---|
| 1500 | currentParticle.SetMomentum( m );
|
|---|
| 1501 | veryForward = true;
|
|---|
| 1502 | }
|
|---|
| 1503 |
|
|---|
| 1504 | const G4double atomicWeight = G4double(targetNucleus.GetA_asInt());
|
|---|
| 1505 | const G4double atomicNumber = G4double(targetNucleus.GetZ_asInt());
|
|---|
| 1506 | //
|
|---|
| 1507 | // particles have been distributed in forward and backward hemispheres
|
|---|
| 1508 | // in center of mass system of the hadron nucleon interaction
|
|---|
| 1509 | //
|
|---|
| 1510 | // incident is always in forward hemisphere
|
|---|
| 1511 | G4int forwardCount = 1; // number of particles in forward hemisphere
|
|---|
| 1512 | currentParticle.SetSide( 1 );
|
|---|
| 1513 | G4double forwardMass = currentParticle.GetMass()/GeV;
|
|---|
| 1514 | G4double cMass = forwardMass;
|
|---|
| 1515 |
|
|---|
| 1516 | // target is always in backward hemisphere
|
|---|
| 1517 | G4int backwardCount = 1; // number of particles in backward hemisphere
|
|---|
| 1518 | G4int backwardNucleonCount = 1; // number of nucleons in backward hemisphere
|
|---|
| 1519 | targetParticle.SetSide( -1 );
|
|---|
| 1520 | G4double backwardMass = targetParticle.GetMass()/GeV;
|
|---|
| 1521 | G4double bMass = backwardMass;
|
|---|
| 1522 |
|
|---|
| 1523 | for( i=0; i<vecLen; ++i )
|
|---|
| 1524 | {
|
|---|
| 1525 | if( vec[i]->GetSide() < 0 )vec[i]->SetSide( -1 ); // added by JLC, 2Jul97
|
|---|
| 1526 | // to take care of the case where vec has been preprocessed by GenerateXandPt
|
|---|
| 1527 | // and some of them have been set to -2 or -3
|
|---|
| 1528 | if( vec[i]->GetSide() == -1 )
|
|---|
| 1529 | {
|
|---|
| 1530 | ++backwardCount;
|
|---|
| 1531 | backwardMass += vec[i]->GetMass()/GeV;
|
|---|
| 1532 | }
|
|---|
| 1533 | else
|
|---|
| 1534 | {
|
|---|
| 1535 | ++forwardCount;
|
|---|
| 1536 | forwardMass += vec[i]->GetMass()/GeV;
|
|---|
| 1537 | }
|
|---|
| 1538 | }
|
|---|
| 1539 | //
|
|---|
| 1540 | // nucleons and some pions from intranuclear cascade
|
|---|
| 1541 | //
|
|---|
| 1542 | G4double term1 = std::log(centerofmassEnergy*centerofmassEnergy);
|
|---|
| 1543 | if(term1 < 0) term1 = 0.0001; // making sure xtarg<0;
|
|---|
| 1544 | const G4double afc = 0.312 + 0.2 * std::log(term1);
|
|---|
| 1545 | G4double xtarg;
|
|---|
| 1546 | if( centerofmassEnergy < 2.0+G4UniformRand() ) // added +2 below, JLC 4Jul97
|
|---|
| 1547 | xtarg = afc * (std::pow(atomicWeight,0.33)-1.0) * (2*backwardCount+vecLen+2)/2.0;
|
|---|
| 1548 | else
|
|---|
| 1549 | xtarg = afc * (std::pow(atomicWeight,0.33)-1.0) * (2*backwardCount);
|
|---|
| 1550 | if( xtarg <= 0.0 )xtarg = 0.01;
|
|---|
| 1551 | G4int nuclearExcitationCount = Poisson( xtarg );
|
|---|
| 1552 | if(atomicWeight<1.0001) nuclearExcitationCount = 0;
|
|---|
| 1553 | G4int extraNucleonCount = 0;
|
|---|
| 1554 | G4double extraMass = 0.0;
|
|---|
| 1555 | G4double extraNucleonMass = 0.0;
|
|---|
| 1556 | if( nuclearExcitationCount > 0 )
|
|---|
| 1557 | {
|
|---|
| 1558 | G4int momentumBin = std::min( 4, G4int(pOriginal/3.0) );
|
|---|
| 1559 | const G4double nucsup[] = { 1.0, 0.8, 0.6, 0.5, 0.4 };
|
|---|
| 1560 | //
|
|---|
| 1561 | // NOTE: in TWOCLU, these new particles were given negative codes
|
|---|
| 1562 | // here we use NewlyAdded = true instead
|
|---|
| 1563 | //
|
|---|
| 1564 | // G4ReactionProduct *pVec = new G4ReactionProduct [nuclearExcitationCount];
|
|---|
| 1565 | for( i=0; i<nuclearExcitationCount; ++i )
|
|---|
| 1566 | {
|
|---|
| 1567 | G4ReactionProduct* pVec = new G4ReactionProduct();
|
|---|
| 1568 | if( G4UniformRand() < nucsup[momentumBin] ) // add proton or neutron
|
|---|
| 1569 | {
|
|---|
| 1570 | if( G4UniformRand() > 1.0-atomicNumber/atomicWeight )
|
|---|
| 1571 | pVec->SetDefinition( aProton );
|
|---|
| 1572 | else
|
|---|
| 1573 | pVec->SetDefinition( aNeutron );
|
|---|
| 1574 | ++backwardNucleonCount;
|
|---|
| 1575 | ++extraNucleonCount;
|
|---|
| 1576 | extraNucleonMass += pVec->GetMass()/GeV;
|
|---|
| 1577 | }
|
|---|
| 1578 | else
|
|---|
| 1579 | { // add a pion
|
|---|
| 1580 | G4double ran = G4UniformRand();
|
|---|
| 1581 | if( ran < 0.3181 )
|
|---|
| 1582 | pVec->SetDefinition( aPiPlus );
|
|---|
| 1583 | else if( ran < 0.6819 )
|
|---|
| 1584 | pVec->SetDefinition( aPiZero );
|
|---|
| 1585 | else
|
|---|
| 1586 | pVec->SetDefinition( aPiMinus );
|
|---|
| 1587 | }
|
|---|
| 1588 | pVec->SetSide( -2 ); // backside particle
|
|---|
| 1589 | extraMass += pVec->GetMass()/GeV;
|
|---|
| 1590 | pVec->SetNewlyAdded( true );
|
|---|
| 1591 | vec.SetElement( vecLen++, pVec );
|
|---|
| 1592 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1593 | }
|
|---|
| 1594 | }
|
|---|
| 1595 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1596 | G4double forwardEnergy = (centerofmassEnergy-cMass-bMass)/2.0 +cMass - forwardMass;
|
|---|
| 1597 | G4double backwardEnergy = (centerofmassEnergy-cMass-bMass)/2.0 +bMass - backwardMass;
|
|---|
| 1598 | G4double eAvailable = centerofmassEnergy - (forwardMass+backwardMass);
|
|---|
| 1599 | G4bool secondaryDeleted;
|
|---|
| 1600 | G4double pMass;
|
|---|
| 1601 |
|
|---|
| 1602 | while( eAvailable <= 0.0 ) // must eliminate a particle
|
|---|
| 1603 | {
|
|---|
| 1604 | secondaryDeleted = false;
|
|---|
| 1605 | for( i=(vecLen-1); i>=0; --i )
|
|---|
| 1606 | {
|
|---|
| 1607 | if( vec[i]->GetSide() == 1 && vec[i]->GetMayBeKilled())
|
|---|
| 1608 | {
|
|---|
| 1609 | pMass = vec[i]->GetMass()/GeV;
|
|---|
| 1610 | for( G4int j=i; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 1611 | --forwardCount;
|
|---|
| 1612 | forwardEnergy += pMass;
|
|---|
| 1613 | forwardMass -= pMass;
|
|---|
| 1614 | secondaryDeleted = true;
|
|---|
| 1615 | break;
|
|---|
| 1616 | }
|
|---|
| 1617 | else if( vec[i]->GetSide() == -1 && vec[i]->GetMayBeKilled())
|
|---|
| 1618 | {
|
|---|
| 1619 | pMass = vec[i]->GetMass()/GeV;
|
|---|
| 1620 | for( G4int j=i; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 1621 | --backwardCount;
|
|---|
| 1622 | backwardEnergy += pMass;
|
|---|
| 1623 | backwardMass -= pMass;
|
|---|
| 1624 | secondaryDeleted = true;
|
|---|
| 1625 | break;
|
|---|
| 1626 | }
|
|---|
| 1627 | } // breaks go down to here
|
|---|
| 1628 | if( secondaryDeleted )
|
|---|
| 1629 | {
|
|---|
| 1630 | delete vec[vecLen-1];
|
|---|
| 1631 | --vecLen;
|
|---|
| 1632 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1633 | }
|
|---|
| 1634 | else
|
|---|
| 1635 | {
|
|---|
| 1636 | if( vecLen == 0 )
|
|---|
| 1637 | {
|
|---|
| 1638 | return false; // all secondaries have been eliminated
|
|---|
| 1639 | }
|
|---|
| 1640 | if( targetParticle.GetSide() == -1 )
|
|---|
| 1641 | {
|
|---|
| 1642 | pMass = targetParticle.GetMass()/GeV;
|
|---|
| 1643 | targetParticle = *vec[0];
|
|---|
| 1644 | for( G4int j=0; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 1645 | --backwardCount;
|
|---|
| 1646 | backwardEnergy += pMass;
|
|---|
| 1647 | backwardMass -= pMass;
|
|---|
| 1648 | secondaryDeleted = true;
|
|---|
| 1649 | }
|
|---|
| 1650 | else if( targetParticle.GetSide() == 1 )
|
|---|
| 1651 | {
|
|---|
| 1652 | pMass = targetParticle.GetMass()/GeV;
|
|---|
| 1653 | targetParticle = *vec[0];
|
|---|
| 1654 | for( G4int j=0; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 1655 | --forwardCount;
|
|---|
| 1656 | forwardEnergy += pMass;
|
|---|
| 1657 | forwardMass -= pMass;
|
|---|
| 1658 | secondaryDeleted = true;
|
|---|
| 1659 | }
|
|---|
| 1660 | if( secondaryDeleted )
|
|---|
| 1661 | {
|
|---|
| 1662 | delete vec[vecLen-1];
|
|---|
| 1663 | --vecLen;
|
|---|
| 1664 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1665 | }
|
|---|
| 1666 | else
|
|---|
| 1667 | {
|
|---|
| 1668 | if( currentParticle.GetSide() == -1 )
|
|---|
| 1669 | {
|
|---|
| 1670 | pMass = currentParticle.GetMass()/GeV;
|
|---|
| 1671 | currentParticle = *vec[0];
|
|---|
| 1672 | for( G4int j=0; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 1673 | --backwardCount;
|
|---|
| 1674 | backwardEnergy += pMass;
|
|---|
| 1675 | backwardMass -= pMass;
|
|---|
| 1676 | secondaryDeleted = true;
|
|---|
| 1677 | }
|
|---|
| 1678 | else if( currentParticle.GetSide() == 1 )
|
|---|
| 1679 | {
|
|---|
| 1680 | pMass = currentParticle.GetMass()/GeV;
|
|---|
| 1681 | currentParticle = *vec[0];
|
|---|
| 1682 | for( G4int j=0; j<(vecLen-1); ++j )*vec[j] = *vec[j+1]; // shift up
|
|---|
| 1683 | --forwardCount;
|
|---|
| 1684 | forwardEnergy += pMass;
|
|---|
| 1685 | forwardMass -= pMass;
|
|---|
| 1686 | secondaryDeleted = true;
|
|---|
| 1687 | }
|
|---|
| 1688 | if( secondaryDeleted )
|
|---|
| 1689 | {
|
|---|
| 1690 | delete vec[vecLen-1];
|
|---|
| 1691 | --vecLen;
|
|---|
| 1692 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1693 | }
|
|---|
| 1694 | else break;
|
|---|
| 1695 | }
|
|---|
| 1696 | }
|
|---|
| 1697 | eAvailable = centerofmassEnergy - (forwardMass+backwardMass);
|
|---|
| 1698 | }
|
|---|
| 1699 | //
|
|---|
| 1700 | // This is the start of the TwoCluster function
|
|---|
| 1701 | // Choose masses for the 3 clusters:
|
|---|
| 1702 | // forward cluster
|
|---|
| 1703 | // backward meson cluster
|
|---|
| 1704 | // backward nucleon cluster
|
|---|
| 1705 | //
|
|---|
| 1706 | G4double rmc = 0.0, rmd = 0.0;
|
|---|
| 1707 | const G4double cpar[] = { 0.6, 0.6, 0.35, 0.15, 0.10 };
|
|---|
| 1708 | const G4double gpar[] = { 2.6, 2.6, 1.8, 1.30, 1.20 };
|
|---|
| 1709 |
|
|---|
| 1710 | if (forwardCount <= 0 || backwardCount <= 0) return false; // array bounds protection
|
|---|
| 1711 |
|
|---|
| 1712 | if (forwardCount == 1) rmc = forwardMass;
|
|---|
| 1713 | else
|
|---|
| 1714 | {
|
|---|
| 1715 | G4int ntc = std::max(1, std::min(5,forwardCount))-1; // check if offset by 1 @@
|
|---|
| 1716 | rmc = forwardMass + std::pow(-std::log(1.0-G4UniformRand()),cpar[ntc-1])/gpar[ntc-1];
|
|---|
| 1717 | }
|
|---|
| 1718 |
|
|---|
| 1719 | if (backwardCount == 1) rmd = backwardMass;
|
|---|
| 1720 | else
|
|---|
| 1721 | {
|
|---|
| 1722 | G4int ntc = std::max(1, std::min(5,backwardCount)); // check, if offfset by 1 @@
|
|---|
| 1723 | rmd = backwardMass + std::pow(-std::log(1.0-G4UniformRand()),cpar[ntc-1])/gpar[ntc-1];
|
|---|
| 1724 | }
|
|---|
| 1725 |
|
|---|
| 1726 | while( rmc+rmd > centerofmassEnergy )
|
|---|
| 1727 | {
|
|---|
| 1728 | if( (rmc <= forwardMass) && (rmd <= backwardMass) )
|
|---|
| 1729 | {
|
|---|
| 1730 | G4double temp = 0.999*centerofmassEnergy/(rmc+rmd);
|
|---|
| 1731 | rmc *= temp;
|
|---|
| 1732 | rmd *= temp;
|
|---|
| 1733 | }
|
|---|
| 1734 | else
|
|---|
| 1735 | {
|
|---|
| 1736 | rmc = 0.1*forwardMass + 0.9*rmc;
|
|---|
| 1737 | rmd = 0.1*backwardMass + 0.9*rmd;
|
|---|
| 1738 | }
|
|---|
| 1739 | }
|
|---|
| 1740 |
|
|---|
| 1741 | G4ReactionProduct pseudoParticle[8];
|
|---|
| 1742 | for( i=0; i<8; ++i )pseudoParticle[i].SetZero();
|
|---|
| 1743 |
|
|---|
| 1744 | pseudoParticle[1].SetMass( mOriginal*GeV );
|
|---|
| 1745 | pseudoParticle[1].SetTotalEnergy( etOriginal*GeV );
|
|---|
| 1746 | pseudoParticle[1].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 1747 |
|
|---|
| 1748 | pseudoParticle[2].SetMass( protonMass*MeV );
|
|---|
| 1749 | pseudoParticle[2].SetTotalEnergy( protonMass*MeV );
|
|---|
| 1750 | pseudoParticle[2].SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 1751 | //
|
|---|
| 1752 | // transform into centre of mass system
|
|---|
| 1753 | //
|
|---|
| 1754 | pseudoParticle[0] = pseudoParticle[1] + pseudoParticle[2];
|
|---|
| 1755 | pseudoParticle[1].Lorentz( pseudoParticle[1], pseudoParticle[0] );
|
|---|
| 1756 | pseudoParticle[2].Lorentz( pseudoParticle[2], pseudoParticle[0] );
|
|---|
| 1757 |
|
|---|
| 1758 | const G4double pfMin = 0.0001;
|
|---|
| 1759 | G4double pf = (centerofmassEnergy*centerofmassEnergy+rmd*rmd-rmc*rmc);
|
|---|
| 1760 | pf *= pf;
|
|---|
| 1761 | pf -= 4*centerofmassEnergy*centerofmassEnergy*rmd*rmd;
|
|---|
| 1762 | pf = std::sqrt( std::max(pf,pfMin) )/(2.0*centerofmassEnergy);
|
|---|
| 1763 | //
|
|---|
| 1764 | // set final state masses and energies in centre of mass system
|
|---|
| 1765 | //
|
|---|
| 1766 | pseudoParticle[3].SetMass( rmc*GeV );
|
|---|
| 1767 | pseudoParticle[3].SetTotalEnergy( std::sqrt(pf*pf+rmc*rmc)*GeV );
|
|---|
| 1768 |
|
|---|
| 1769 | pseudoParticle[4].SetMass( rmd*GeV );
|
|---|
| 1770 | pseudoParticle[4].SetTotalEnergy( std::sqrt(pf*pf+rmd*rmd)*GeV );
|
|---|
| 1771 | //
|
|---|
| 1772 | // set |T| and |TMIN|
|
|---|
| 1773 | //
|
|---|
| 1774 | const G4double bMin = 0.01;
|
|---|
| 1775 | const G4double b1 = 4.0;
|
|---|
| 1776 | const G4double b2 = 1.6;
|
|---|
| 1777 |
|
|---|
| 1778 | G4double pin = pseudoParticle[1].GetMomentum().mag()/GeV;
|
|---|
| 1779 | G4double dtb = 4.0*pin*pf*std::max( bMin, b1+b2*std::log(pOriginal) );
|
|---|
| 1780 | G4double factor = 1.0 - std::exp(-dtb);
|
|---|
| 1781 | G4double costheta = 1.0 + 2.0*std::log(1.0 - G4UniformRand()*factor) / dtb;
|
|---|
| 1782 | costheta = std::max(-1.0, std::min(1.0, costheta));
|
|---|
| 1783 | G4double sintheta = std::sqrt(1.0-costheta*costheta);
|
|---|
| 1784 | G4double phi = G4UniformRand() * twopi;
|
|---|
| 1785 |
|
|---|
| 1786 | //
|
|---|
| 1787 | // calculate final state momenta in centre of mass system
|
|---|
| 1788 | //
|
|---|
| 1789 | pseudoParticle[3].SetMomentum( pf*sintheta*std::cos(phi)*GeV,
|
|---|
| 1790 | pf*sintheta*std::sin(phi)*GeV,
|
|---|
| 1791 | pf*costheta*GeV );
|
|---|
| 1792 |
|
|---|
| 1793 | pseudoParticle[4].SetMomentum( pseudoParticle[3].GetMomentum() * (-1.0) );
|
|---|
| 1794 | //
|
|---|
| 1795 | // simulate backward nucleon cluster in lab. system and transform in cms
|
|---|
| 1796 | //
|
|---|
| 1797 | G4double pp, pp1;
|
|---|
| 1798 | if( nuclearExcitationCount > 0 )
|
|---|
| 1799 | {
|
|---|
| 1800 | const G4double ga = 1.2;
|
|---|
| 1801 | G4double ekit1 = 0.04;
|
|---|
| 1802 | G4double ekit2 = 0.6;
|
|---|
| 1803 | if( ekOriginal <= 5.0 )
|
|---|
| 1804 | {
|
|---|
| 1805 | ekit1 *= ekOriginal*ekOriginal/25.0;
|
|---|
| 1806 | ekit2 *= ekOriginal*ekOriginal/25.0;
|
|---|
| 1807 | }
|
|---|
| 1808 | const G4double a = (1.0-ga)/(std::pow(ekit2,(1.0-ga)) - std::pow(ekit1,(1.0-ga)));
|
|---|
| 1809 | for( i=0; i<vecLen; ++i )
|
|---|
| 1810 | {
|
|---|
| 1811 | if( vec[i]->GetSide() == -2 )
|
|---|
| 1812 | {
|
|---|
| 1813 | G4double kineticE =
|
|---|
| 1814 | std::pow( (G4UniformRand()*(1.0-ga)/a+std::pow(ekit1,(1.0-ga))), (1.0/(1.0-ga)) );
|
|---|
| 1815 | vec[i]->SetKineticEnergy( kineticE*GeV );
|
|---|
| 1816 | G4double vMass = vec[i]->GetMass()/MeV;
|
|---|
| 1817 | G4double totalE = kineticE*GeV + vMass;
|
|---|
| 1818 | pp = std::sqrt( std::abs(totalE*totalE-vMass*vMass) );
|
|---|
| 1819 | G4double cost = std::min( 1.0, std::max( -1.0, std::log(2.23*G4UniformRand()+0.383)/0.96 ) );
|
|---|
| 1820 | G4double sint = std::sqrt( std::max( 0.0, (1.0-cost*cost) ) );
|
|---|
| 1821 | phi = twopi*G4UniformRand();
|
|---|
| 1822 | vec[i]->SetMomentum( pp*sint*std::sin(phi)*MeV,
|
|---|
| 1823 | pp*sint*std::cos(phi)*MeV,
|
|---|
| 1824 | pp*cost*MeV );
|
|---|
| 1825 | vec[i]->Lorentz( *vec[i], pseudoParticle[0] );
|
|---|
| 1826 | }
|
|---|
| 1827 | }
|
|---|
| 1828 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1829 | }
|
|---|
| 1830 | //
|
|---|
| 1831 | // fragmentation of forward cluster and backward meson cluster
|
|---|
| 1832 | //
|
|---|
| 1833 | currentParticle.SetMomentum( pseudoParticle[3].GetMomentum() );
|
|---|
| 1834 | currentParticle.SetTotalEnergy( pseudoParticle[3].GetTotalEnergy() );
|
|---|
| 1835 |
|
|---|
| 1836 | targetParticle.SetMomentum( pseudoParticle[4].GetMomentum() );
|
|---|
| 1837 | targetParticle.SetTotalEnergy( pseudoParticle[4].GetTotalEnergy() );
|
|---|
| 1838 |
|
|---|
| 1839 | pseudoParticle[5].SetMomentum( pseudoParticle[3].GetMomentum() * (-1.0) );
|
|---|
| 1840 | pseudoParticle[5].SetMass( pseudoParticle[3].GetMass() );
|
|---|
| 1841 | pseudoParticle[5].SetTotalEnergy( pseudoParticle[3].GetTotalEnergy() );
|
|---|
| 1842 |
|
|---|
| 1843 | pseudoParticle[6].SetMomentum( pseudoParticle[4].GetMomentum() * (-1.0) );
|
|---|
| 1844 | pseudoParticle[6].SetMass( pseudoParticle[4].GetMass() );
|
|---|
| 1845 | pseudoParticle[6].SetTotalEnergy( pseudoParticle[4].GetTotalEnergy() );
|
|---|
| 1846 |
|
|---|
| 1847 | G4double wgt;
|
|---|
| 1848 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1849 | if( forwardCount > 1 ) // tempV will contain the forward particles
|
|---|
| 1850 | {
|
|---|
| 1851 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> tempV;
|
|---|
| 1852 | tempV.Initialize( forwardCount );
|
|---|
| 1853 | G4bool constantCrossSection = true;
|
|---|
| 1854 | G4int tempLen = 0;
|
|---|
| 1855 | if( currentParticle.GetSide() == 1 )
|
|---|
| 1856 | tempV.SetElement( tempLen++, ¤tParticle );
|
|---|
| 1857 | if( targetParticle.GetSide() == 1 )
|
|---|
| 1858 | tempV.SetElement( tempLen++, &targetParticle );
|
|---|
| 1859 | for( i=0; i<vecLen; ++i )
|
|---|
| 1860 | {
|
|---|
| 1861 | if( vec[i]->GetSide() == 1 )
|
|---|
| 1862 | {
|
|---|
| 1863 | if( tempLen < 18 )
|
|---|
| 1864 | tempV.SetElement( tempLen++, vec[i] );
|
|---|
| 1865 | else
|
|---|
| 1866 | {
|
|---|
| 1867 | vec[i]->SetSide( -1 );
|
|---|
| 1868 | continue;
|
|---|
| 1869 | }
|
|---|
| 1870 | }
|
|---|
| 1871 | }
|
|---|
| 1872 | if( tempLen >= 2 )
|
|---|
| 1873 | {
|
|---|
| 1874 | wgt = GenerateNBodyEvent( pseudoParticle[3].GetMass()/MeV,
|
|---|
| 1875 | constantCrossSection, tempV, tempLen );
|
|---|
| 1876 | if( currentParticle.GetSide() == 1 )
|
|---|
| 1877 | currentParticle.Lorentz( currentParticle, pseudoParticle[5] );
|
|---|
| 1878 | if( targetParticle.GetSide() == 1 )
|
|---|
| 1879 | targetParticle.Lorentz( targetParticle, pseudoParticle[5] );
|
|---|
| 1880 | for( i=0; i<vecLen; ++i )
|
|---|
| 1881 | {
|
|---|
| 1882 | if( vec[i]->GetSide() == 1 )vec[i]->Lorentz( *vec[i], pseudoParticle[5] );
|
|---|
| 1883 | }
|
|---|
| 1884 | }
|
|---|
| 1885 | }
|
|---|
| 1886 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1887 | if( backwardCount > 1 ) // tempV will contain the backward particles,
|
|---|
| 1888 | { // but not those created from the intranuclear cascade
|
|---|
| 1889 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> tempV;
|
|---|
| 1890 | tempV.Initialize( backwardCount );
|
|---|
| 1891 | G4bool constantCrossSection = true;
|
|---|
| 1892 | G4int tempLen = 0;
|
|---|
| 1893 | if( currentParticle.GetSide() == -1 )
|
|---|
| 1894 | tempV.SetElement( tempLen++, ¤tParticle );
|
|---|
| 1895 | if( targetParticle.GetSide() == -1 )
|
|---|
| 1896 | tempV.SetElement( tempLen++, &targetParticle );
|
|---|
| 1897 | for( i=0; i<vecLen; ++i )
|
|---|
| 1898 | {
|
|---|
| 1899 | if( vec[i]->GetSide() == -1 )
|
|---|
| 1900 | {
|
|---|
| 1901 | if( tempLen < 18 )
|
|---|
| 1902 | tempV.SetElement( tempLen++, vec[i] );
|
|---|
| 1903 | else
|
|---|
| 1904 | {
|
|---|
| 1905 | vec[i]->SetSide( -2 );
|
|---|
| 1906 | vec[i]->SetKineticEnergy( 0.0 );
|
|---|
| 1907 | vec[i]->SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 1908 | continue;
|
|---|
| 1909 | }
|
|---|
| 1910 | }
|
|---|
| 1911 | }
|
|---|
| 1912 | if( tempLen >= 2 )
|
|---|
| 1913 | {
|
|---|
| 1914 | wgt = GenerateNBodyEvent( pseudoParticle[4].GetMass()/MeV,
|
|---|
| 1915 | constantCrossSection, tempV, tempLen );
|
|---|
| 1916 | if( currentParticle.GetSide() == -1 )
|
|---|
| 1917 | currentParticle.Lorentz( currentParticle, pseudoParticle[6] );
|
|---|
| 1918 | if( targetParticle.GetSide() == -1 )
|
|---|
| 1919 | targetParticle.Lorentz( targetParticle, pseudoParticle[6] );
|
|---|
| 1920 | for( i=0; i<vecLen; ++i )
|
|---|
| 1921 | {
|
|---|
| 1922 | if( vec[i]->GetSide() == -1 )vec[i]->Lorentz( *vec[i], pseudoParticle[6] );
|
|---|
| 1923 | }
|
|---|
| 1924 | }
|
|---|
| 1925 | }
|
|---|
| 1926 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1927 | //
|
|---|
| 1928 | // Lorentz transformation in lab system
|
|---|
| 1929 | //
|
|---|
| 1930 | currentParticle.Lorentz( currentParticle, pseudoParticle[2] );
|
|---|
| 1931 | targetParticle.Lorentz( targetParticle, pseudoParticle[2] );
|
|---|
| 1932 | for( i=0; i<vecLen; ++i ) vec[i]->Lorentz( *vec[i], pseudoParticle[2] );
|
|---|
| 1933 |
|
|---|
| 1934 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 1935 | //
|
|---|
| 1936 | // sometimes the leading strange particle is lost, set it back
|
|---|
| 1937 | //
|
|---|
| 1938 | G4bool dum = true;
|
|---|
| 1939 | if( leadFlag )
|
|---|
| 1940 | {
|
|---|
| 1941 | // leadFlag will be true
|
|---|
| 1942 | // iff original particle is at least as heavy as K+ and not a proton or
|
|---|
| 1943 | // neutron AND if incident particle is at least as heavy as K+ and it is
|
|---|
| 1944 | // not a proton or neutron leadFlag is set to the incident particle
|
|---|
| 1945 | // or
|
|---|
| 1946 | // target particle is at least as heavy as K+ and it is not a proton or
|
|---|
| 1947 | // neutron leadFlag is set to the target particle
|
|---|
| 1948 | //
|
|---|
| 1949 | if( currentParticle.GetDefinition() == leadingStrangeParticle.GetDefinition() )
|
|---|
| 1950 | dum = false;
|
|---|
| 1951 | else if( targetParticle.GetDefinition() == leadingStrangeParticle.GetDefinition() )
|
|---|
| 1952 | dum = false;
|
|---|
| 1953 | else
|
|---|
| 1954 | {
|
|---|
| 1955 | for( i=0; i<vecLen; ++i )
|
|---|
| 1956 | {
|
|---|
| 1957 | if( vec[i]->GetDefinition() == leadingStrangeParticle.GetDefinition() )
|
|---|
| 1958 | {
|
|---|
| 1959 | dum = false;
|
|---|
| 1960 | break;
|
|---|
| 1961 | }
|
|---|
| 1962 | }
|
|---|
| 1963 | }
|
|---|
| 1964 | if( dum )
|
|---|
| 1965 | {
|
|---|
| 1966 | G4double leadMass = leadingStrangeParticle.GetMass()/MeV;
|
|---|
| 1967 | G4double ekin;
|
|---|
| 1968 | if( ((leadMass < protonMass) && (targetParticle.GetMass()/MeV < protonMass)) ||
|
|---|
| 1969 | ((leadMass >= protonMass) && (targetParticle.GetMass()/MeV >= protonMass)) )
|
|---|
| 1970 | {
|
|---|
| 1971 | ekin = targetParticle.GetKineticEnergy()/GeV;
|
|---|
| 1972 | pp1 = targetParticle.GetMomentum().mag()/MeV; // old momentum
|
|---|
| 1973 | targetParticle.SetDefinition( leadingStrangeParticle.GetDefinition() );
|
|---|
| 1974 | targetParticle.SetKineticEnergy( ekin*GeV );
|
|---|
| 1975 | pp = targetParticle.GetTotalMomentum()/MeV; // new momentum
|
|---|
| 1976 | if( pp1 < 1.0e-3 )
|
|---|
| 1977 | {
|
|---|
| 1978 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 1979 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 1980 | G4double phi = twopi*G4UniformRand();
|
|---|
| 1981 | targetParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 1982 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 1983 | pp*costheta*MeV ) ;
|
|---|
| 1984 | }
|
|---|
| 1985 | else
|
|---|
| 1986 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 1987 |
|
|---|
| 1988 | targetHasChanged = true;
|
|---|
| 1989 | }
|
|---|
| 1990 | else
|
|---|
| 1991 | {
|
|---|
| 1992 | ekin = currentParticle.GetKineticEnergy()/GeV;
|
|---|
| 1993 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 1994 | currentParticle.SetDefinition( leadingStrangeParticle.GetDefinition() );
|
|---|
| 1995 | currentParticle.SetKineticEnergy( ekin*GeV );
|
|---|
| 1996 | pp = currentParticle.GetTotalMomentum()/MeV;
|
|---|
| 1997 | if( pp1 < 1.0e-3 )
|
|---|
| 1998 | {
|
|---|
| 1999 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 2000 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 2001 | G4double phi = twopi*G4UniformRand();
|
|---|
| 2002 | currentParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 2003 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 2004 | pp*costheta*MeV ) ;
|
|---|
| 2005 | }
|
|---|
| 2006 | else
|
|---|
| 2007 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 2008 |
|
|---|
| 2009 | incidentHasChanged = true;
|
|---|
| 2010 | }
|
|---|
| 2011 | }
|
|---|
| 2012 | } // end of if( leadFlag )
|
|---|
| 2013 |
|
|---|
| 2014 | // Get number of final state nucleons and nucleons remaining in
|
|---|
| 2015 | // target nucleus
|
|---|
| 2016 |
|
|---|
| 2017 | std::pair<G4int, G4int> finalStateNucleons =
|
|---|
| 2018 | GetFinalStateNucleons(originalTarget, vec, vecLen);
|
|---|
| 2019 |
|
|---|
| 2020 | G4int protonsInFinalState = finalStateNucleons.first;
|
|---|
| 2021 | G4int neutronsInFinalState = finalStateNucleons.second;
|
|---|
| 2022 |
|
|---|
| 2023 | G4int numberofFinalStateNucleons =
|
|---|
| 2024 | protonsInFinalState + neutronsInFinalState;
|
|---|
| 2025 |
|
|---|
| 2026 | if (currentParticle.GetDefinition()->GetBaryonNumber() == 1 &&
|
|---|
| 2027 | targetParticle.GetDefinition()->GetBaryonNumber() == 1 &&
|
|---|
| 2028 | originalIncident->GetDefinition()->GetPDGMass() <
|
|---|
| 2029 | G4Lambda::Lambda()->GetPDGMass())
|
|---|
| 2030 | numberofFinalStateNucleons++;
|
|---|
| 2031 |
|
|---|
| 2032 | numberofFinalStateNucleons = std::max(1, numberofFinalStateNucleons);
|
|---|
| 2033 |
|
|---|
| 2034 | G4int PinNucleus = std::max(0,
|
|---|
| 2035 | targetNucleus.GetZ_asInt() - protonsInFinalState);
|
|---|
| 2036 | G4int NinNucleus = std::max(0,
|
|---|
| 2037 | targetNucleus.GetN_asInt() - neutronsInFinalState);
|
|---|
| 2038 | //
|
|---|
| 2039 | // for various reasons, the energy balance is not sufficient,
|
|---|
| 2040 | // check that, energy balance, angle of final system, etc.
|
|---|
| 2041 | //
|
|---|
| 2042 | pseudoParticle[4].SetMass( mOriginal*GeV );
|
|---|
| 2043 | pseudoParticle[4].SetTotalEnergy( etOriginal*GeV );
|
|---|
| 2044 | pseudoParticle[4].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 2045 |
|
|---|
| 2046 | G4ParticleDefinition * aOrgDef = modifiedOriginal.GetDefinition();
|
|---|
| 2047 | G4int diff = 0;
|
|---|
| 2048 | if(aOrgDef == G4Proton::Proton() || aOrgDef == G4Neutron::Neutron() ) diff = 1;
|
|---|
| 2049 | if(numberofFinalStateNucleons == 1) diff = 0;
|
|---|
| 2050 | pseudoParticle[5].SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 2051 | pseudoParticle[5].SetMass( protonMass*(numberofFinalStateNucleons-diff)*MeV);
|
|---|
| 2052 | pseudoParticle[5].SetTotalEnergy( protonMass*(numberofFinalStateNucleons-diff)*MeV);
|
|---|
| 2053 |
|
|---|
| 2054 | G4double theoreticalKinetic =
|
|---|
| 2055 | pseudoParticle[4].GetTotalEnergy()/GeV + pseudoParticle[5].GetTotalEnergy()/GeV;
|
|---|
| 2056 |
|
|---|
| 2057 | pseudoParticle[6] = pseudoParticle[4] + pseudoParticle[5];
|
|---|
| 2058 | pseudoParticle[4].Lorentz( pseudoParticle[4], pseudoParticle[6] );
|
|---|
| 2059 | pseudoParticle[5].Lorentz( pseudoParticle[5], pseudoParticle[6] );
|
|---|
| 2060 |
|
|---|
| 2061 | if( vecLen < 16 )
|
|---|
| 2062 | {
|
|---|
| 2063 | G4ReactionProduct tempR[130];
|
|---|
| 2064 | tempR[0] = currentParticle;
|
|---|
| 2065 | tempR[1] = targetParticle;
|
|---|
| 2066 | for( i=0; i<vecLen; ++i )tempR[i+2] = *vec[i];
|
|---|
| 2067 |
|
|---|
| 2068 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> tempV;
|
|---|
| 2069 | tempV.Initialize( vecLen+2 );
|
|---|
| 2070 | G4bool constantCrossSection = true;
|
|---|
| 2071 | G4int tempLen = 0;
|
|---|
| 2072 | for( i=0; i<vecLen+2; ++i )tempV.SetElement( tempLen++, &tempR[i] );
|
|---|
| 2073 |
|
|---|
| 2074 | if( tempLen >= 2 )
|
|---|
| 2075 | {
|
|---|
| 2076 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2077 | wgt = GenerateNBodyEvent( pseudoParticle[4].GetTotalEnergy()/MeV +
|
|---|
| 2078 | pseudoParticle[5].GetTotalEnergy()/MeV,
|
|---|
| 2079 | constantCrossSection, tempV, tempLen );
|
|---|
| 2080 | if (wgt == -1) {
|
|---|
| 2081 | G4double Qvalue = 0;
|
|---|
| 2082 | for (i = 0; i < tempLen; i++) Qvalue += tempV[i]->GetMass();
|
|---|
| 2083 | wgt = GenerateNBodyEvent( Qvalue/MeV,
|
|---|
| 2084 | constantCrossSection, tempV, tempLen );
|
|---|
| 2085 | }
|
|---|
| 2086 | theoreticalKinetic = 0.0;
|
|---|
| 2087 | for( i=0; i<vecLen+2; ++i )
|
|---|
| 2088 | {
|
|---|
| 2089 | pseudoParticle[7].SetMomentum( tempV[i]->GetMomentum() );
|
|---|
| 2090 | pseudoParticle[7].SetMass( tempV[i]->GetMass() );
|
|---|
| 2091 | pseudoParticle[7].SetTotalEnergy( tempV[i]->GetTotalEnergy() );
|
|---|
| 2092 | pseudoParticle[7].Lorentz( pseudoParticle[7], pseudoParticle[5] );
|
|---|
| 2093 | theoreticalKinetic += pseudoParticle[7].GetKineticEnergy()/GeV;
|
|---|
| 2094 | }
|
|---|
| 2095 | }
|
|---|
| 2096 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2097 | }
|
|---|
| 2098 | else
|
|---|
| 2099 | {
|
|---|
| 2100 | theoreticalKinetic -=
|
|---|
| 2101 | ( currentParticle.GetMass()/GeV + targetParticle.GetMass()/GeV );
|
|---|
| 2102 | for( i=0; i<vecLen; ++i )theoreticalKinetic -= vec[i]->GetMass()/GeV;
|
|---|
| 2103 | }
|
|---|
| 2104 | G4double simulatedKinetic =
|
|---|
| 2105 | currentParticle.GetKineticEnergy()/GeV + targetParticle.GetKineticEnergy()/GeV;
|
|---|
| 2106 | for( i=0; i<vecLen; ++i )simulatedKinetic += vec[i]->GetKineticEnergy()/GeV;
|
|---|
| 2107 | //
|
|---|
| 2108 | // make sure that kinetic energies are correct
|
|---|
| 2109 | // the backward nucleon cluster is not produced within proper kinematics!!!
|
|---|
| 2110 | //
|
|---|
| 2111 |
|
|---|
| 2112 | if( simulatedKinetic != 0.0 )
|
|---|
| 2113 | {
|
|---|
| 2114 | wgt = (theoreticalKinetic)/simulatedKinetic;
|
|---|
| 2115 | currentParticle.SetKineticEnergy( wgt*currentParticle.GetKineticEnergy() );
|
|---|
| 2116 | pp = currentParticle.GetTotalMomentum()/MeV;
|
|---|
| 2117 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 2118 | if( pp1 < 0.001*MeV )
|
|---|
| 2119 | {
|
|---|
| 2120 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 2121 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 2122 | G4double phi = twopi*G4UniformRand();
|
|---|
| 2123 | currentParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 2124 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 2125 | pp*costheta*MeV ) ;
|
|---|
| 2126 | }
|
|---|
| 2127 | else
|
|---|
| 2128 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 2129 |
|
|---|
| 2130 | targetParticle.SetKineticEnergy( wgt*targetParticle.GetKineticEnergy() );
|
|---|
| 2131 | pp = targetParticle.GetTotalMomentum()/MeV;
|
|---|
| 2132 | pp1 = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 2133 | if( pp1 < 0.001*MeV )
|
|---|
| 2134 | {
|
|---|
| 2135 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 2136 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 2137 | G4double phi = twopi*G4UniformRand();
|
|---|
| 2138 | targetParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 2139 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 2140 | pp*costheta*MeV ) ;
|
|---|
| 2141 | }
|
|---|
| 2142 | else
|
|---|
| 2143 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 2144 |
|
|---|
| 2145 | for( i=0; i<vecLen; ++i )
|
|---|
| 2146 | {
|
|---|
| 2147 | vec[i]->SetKineticEnergy( wgt*vec[i]->GetKineticEnergy() );
|
|---|
| 2148 | pp = vec[i]->GetTotalMomentum()/MeV;
|
|---|
| 2149 | pp1 = vec[i]->GetMomentum().mag()/MeV;
|
|---|
| 2150 | if( pp1 < 0.001 )
|
|---|
| 2151 | {
|
|---|
| 2152 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 2153 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 2154 | G4double phi = twopi*G4UniformRand();
|
|---|
| 2155 | vec[i]->SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 2156 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 2157 | pp*costheta*MeV ) ;
|
|---|
| 2158 | }
|
|---|
| 2159 | else
|
|---|
| 2160 | vec[i]->SetMomentum( vec[i]->GetMomentum() * (pp/pp1) );
|
|---|
| 2161 | }
|
|---|
| 2162 | }
|
|---|
| 2163 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2164 |
|
|---|
| 2165 | Rotate( numberofFinalStateNucleons, pseudoParticle[4].GetMomentum(),
|
|---|
| 2166 | modifiedOriginal, originalIncident, targetNucleus,
|
|---|
| 2167 | currentParticle, targetParticle, vec, vecLen );
|
|---|
| 2168 | //
|
|---|
| 2169 | // add black track particles
|
|---|
| 2170 | // the total number of particles produced is restricted to 198
|
|---|
| 2171 | // this may have influence on very high energies
|
|---|
| 2172 | //
|
|---|
| 2173 | if( atomicWeight >= 1.5 )
|
|---|
| 2174 | {
|
|---|
| 2175 | // npnb is number of proton/neutron black track particles
|
|---|
| 2176 | // ndta is the number of deuterons, tritons, and alphas produced
|
|---|
| 2177 | // epnb is the kinetic energy available for proton/neutron black track
|
|---|
| 2178 | // particles
|
|---|
| 2179 | // edta is the kinetic energy available for deuteron/triton/alpha
|
|---|
| 2180 | // particles
|
|---|
| 2181 |
|
|---|
| 2182 | G4int npnb = 0;
|
|---|
| 2183 | G4int ndta = 0;
|
|---|
| 2184 |
|
|---|
| 2185 | G4double epnb, edta;
|
|---|
| 2186 | if (veryForward) {
|
|---|
| 2187 | epnb = targetNucleus.GetAnnihilationPNBlackTrackEnergy();
|
|---|
| 2188 | edta = targetNucleus.GetAnnihilationDTABlackTrackEnergy();
|
|---|
| 2189 | } else {
|
|---|
| 2190 | epnb = targetNucleus.GetPNBlackTrackEnergy();
|
|---|
| 2191 | edta = targetNucleus.GetDTABlackTrackEnergy();
|
|---|
| 2192 | }
|
|---|
| 2193 |
|
|---|
| 2194 | const G4double pnCutOff = 0.001; // GeV
|
|---|
| 2195 | const G4double dtaCutOff = 0.001; // GeV
|
|---|
| 2196 | const G4double kineticMinimum = 1.e-6;
|
|---|
| 2197 | const G4double kineticFactor = -0.005;
|
|---|
| 2198 |
|
|---|
| 2199 | G4double sprob = 0.0; // sprob = probability of self-absorption in
|
|---|
| 2200 | // heavy molecules
|
|---|
| 2201 | const G4double ekIncident = originalIncident->GetKineticEnergy()/GeV;
|
|---|
| 2202 | if( ekIncident >= 5.0 )sprob = std::min( 1.0, 0.6*std::log(ekIncident-4.0) );
|
|---|
| 2203 |
|
|---|
| 2204 | if( epnb >= pnCutOff )
|
|---|
| 2205 | {
|
|---|
| 2206 | npnb = Poisson((1.5+1.25*numberofFinalStateNucleons)*epnb/(epnb+edta));
|
|---|
| 2207 | if( numberofFinalStateNucleons + npnb > atomicWeight )
|
|---|
| 2208 | npnb = G4int(atomicWeight - numberofFinalStateNucleons);
|
|---|
| 2209 | npnb = std::min( npnb, 127-vecLen );
|
|---|
| 2210 | }
|
|---|
| 2211 | if( edta >= dtaCutOff )
|
|---|
| 2212 | {
|
|---|
| 2213 | ndta = Poisson( (1.5+1.25*numberofFinalStateNucleons)*edta/(epnb+edta) );
|
|---|
| 2214 | ndta = std::min( ndta, 127-vecLen );
|
|---|
| 2215 | }
|
|---|
| 2216 | if (npnb == 0 && ndta == 0) npnb = 1;
|
|---|
| 2217 |
|
|---|
| 2218 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2219 |
|
|---|
| 2220 | AddBlackTrackParticles(epnb, npnb, edta, ndta, sprob, kineticMinimum,
|
|---|
| 2221 | kineticFactor, modifiedOriginal,
|
|---|
| 2222 | PinNucleus, NinNucleus, targetNucleus,
|
|---|
| 2223 | vec, vecLen );
|
|---|
| 2224 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2225 | }
|
|---|
| 2226 | //if( centerofmassEnergy <= (4.0+G4UniformRand()) )
|
|---|
| 2227 | // MomentumCheck( modifiedOriginal, currentParticle, targetParticle, vec, vecLen );
|
|---|
| 2228 | //
|
|---|
| 2229 | // calculate time delay for nuclear reactions
|
|---|
| 2230 | //
|
|---|
| 2231 | if( (atomicWeight >= 1.5) && (atomicWeight <= 230.0) && (ekOriginal <= 0.2) )
|
|---|
| 2232 | currentParticle.SetTOF( 1.0-500.0*std::exp(-ekOriginal/0.04)*std::log(G4UniformRand()) );
|
|---|
| 2233 | else
|
|---|
| 2234 | currentParticle.SetTOF( 1.0 );
|
|---|
| 2235 |
|
|---|
| 2236 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2237 | return true;
|
|---|
| 2238 | }
|
|---|
| 2239 |
|
|---|
| 2240 | void G4ReactionDynamics::TwoBody(
|
|---|
| 2241 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 2242 | G4int &vecLen,
|
|---|
| 2243 | G4ReactionProduct &modifiedOriginal,
|
|---|
| 2244 | const G4DynamicParticle* originalTarget,
|
|---|
| 2245 | G4ReactionProduct ¤tParticle,
|
|---|
| 2246 | G4ReactionProduct &targetParticle,
|
|---|
| 2247 | const G4Nucleus &targetNucleus,
|
|---|
| 2248 | G4bool &/* targetHasChanged*/ )
|
|---|
| 2249 | {
|
|---|
| 2250 | //
|
|---|
| 2251 | // derived from original FORTRAN code TWOB by H. Fesefeldt (15-Sep-1987)
|
|---|
| 2252 | //
|
|---|
| 2253 | // Generation of momenta for elastic and quasi-elastic 2 body reactions
|
|---|
| 2254 | //
|
|---|
| 2255 | // The simple formula ds/d|t| = s0* std::exp(-b*|t|) is used.
|
|---|
| 2256 | // The b values are parametrizations from experimental data.
|
|---|
| 2257 | // Not available values are taken from those of similar reactions.
|
|---|
| 2258 | //
|
|---|
| 2259 |
|
|---|
| 2260 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2261 | static const G4double expxu = 82.; // upper bound for arg. of exp
|
|---|
| 2262 | static const G4double expxl = -expxu; // lower bound for arg. of exp
|
|---|
| 2263 |
|
|---|
| 2264 | const G4double ekOriginal = modifiedOriginal.GetKineticEnergy()/GeV;
|
|---|
| 2265 | const G4double etOriginal = modifiedOriginal.GetTotalEnergy()/GeV;
|
|---|
| 2266 | const G4double mOriginal = modifiedOriginal.GetMass()/GeV;
|
|---|
| 2267 | const G4double pOriginal = modifiedOriginal.GetMomentum().mag()/GeV;
|
|---|
| 2268 | G4double currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 2269 | G4double targetMass = targetParticle.GetDefinition()->GetPDGMass()/GeV;
|
|---|
| 2270 |
|
|---|
| 2271 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 2272 | const G4double atomicWeight = G4double(targetNucleus.GetA_asInt());
|
|---|
| 2273 |
|
|---|
| 2274 | G4double etCurrent = currentParticle.GetTotalEnergy()/GeV;
|
|---|
| 2275 | G4double pCurrent = currentParticle.GetTotalMomentum()/GeV;
|
|---|
| 2276 |
|
|---|
| 2277 | G4double cmEnergy = std::sqrt( currentMass*currentMass +
|
|---|
| 2278 | targetMass*targetMass +
|
|---|
| 2279 | 2.0*targetMass*etCurrent ); // in GeV
|
|---|
| 2280 |
|
|---|
| 2281 | //if( (pOriginal < 0.1) ||
|
|---|
| 2282 | // (centerofmassEnergy < 0.01) ) // 2-body scattering not possible
|
|---|
| 2283 | // Continue with original particle, but spend the nuclear evaporation energy
|
|---|
| 2284 | // targetParticle.SetMass( 0.0 ); // flag that the target doesn't exist
|
|---|
| 2285 | //else // Two-body scattering is possible
|
|---|
| 2286 |
|
|---|
| 2287 | if( (pCurrent < 0.1) || (cmEnergy < 0.01) ) // 2-body scattering not possible
|
|---|
| 2288 | {
|
|---|
| 2289 | targetParticle.SetMass( 0.0 ); // flag that the target particle doesn't exist
|
|---|
| 2290 | }
|
|---|
| 2291 | else
|
|---|
| 2292 | {
|
|---|
| 2293 | // moved this if-block to a later stage, i.e. to the assignment of the scattering angle
|
|---|
| 2294 | // @@@@@ double-check.
|
|---|
| 2295 | // if (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 2296 | // targetParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 2297 | // if( G4UniformRand() < 0.5 )
|
|---|
| 2298 | // targetParticle.SetDefinitionAndUpdateE( aNeutron );
|
|---|
| 2299 | // else
|
|---|
| 2300 | // targetParticle.SetDefinitionAndUpdateE( aProton );
|
|---|
| 2301 | // targetHasChanged = true;
|
|---|
| 2302 | // targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 2303 | // }
|
|---|
| 2304 | //
|
|---|
| 2305 | // Set masses and momenta for final state particles
|
|---|
| 2306 | //
|
|---|
| 2307 | G4double pf = cmEnergy*cmEnergy + targetMass*targetMass - currentMass*currentMass;
|
|---|
| 2308 | pf = pf*pf - 4*cmEnergy*cmEnergy*targetMass*targetMass;
|
|---|
| 2309 |
|
|---|
| 2310 | if( pf < 0.001 )
|
|---|
| 2311 | {
|
|---|
| 2312 | for(G4int i=0; i<vecLen; i++) delete vec[i];
|
|---|
| 2313 | vecLen = 0;
|
|---|
| 2314 | throw G4HadronicException(__FILE__, __LINE__, "G4ReactionDynamics::TwoBody: pf is too small ");
|
|---|
| 2315 | }
|
|---|
| 2316 |
|
|---|
| 2317 | pf = std::sqrt( pf ) / ( 2.0*cmEnergy );
|
|---|
| 2318 | //
|
|---|
| 2319 | // Set beam and target in centre of mass system
|
|---|
| 2320 | //
|
|---|
| 2321 | G4ReactionProduct pseudoParticle[3];
|
|---|
| 2322 |
|
|---|
| 2323 | if (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 2324 | targetParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 2325 | pseudoParticle[0].SetMass( targetMass*GeV );
|
|---|
| 2326 | pseudoParticle[0].SetTotalEnergy( etOriginal*GeV );
|
|---|
| 2327 | pseudoParticle[0].SetMomentum( 0.0, 0.0, pOriginal*GeV );
|
|---|
| 2328 |
|
|---|
| 2329 | pseudoParticle[1].SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 2330 | pseudoParticle[1].SetMass( mOriginal*GeV );
|
|---|
| 2331 | pseudoParticle[1].SetKineticEnergy( 0.0 );
|
|---|
| 2332 |
|
|---|
| 2333 | } else {
|
|---|
| 2334 | pseudoParticle[0].SetMass( currentMass*GeV );
|
|---|
| 2335 | pseudoParticle[0].SetTotalEnergy( etCurrent*GeV );
|
|---|
| 2336 | pseudoParticle[0].SetMomentum( 0.0, 0.0, pCurrent*GeV );
|
|---|
| 2337 |
|
|---|
| 2338 | pseudoParticle[1].SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 2339 | pseudoParticle[1].SetMass( targetMass*GeV );
|
|---|
| 2340 | pseudoParticle[1].SetKineticEnergy( 0.0 );
|
|---|
| 2341 | }
|
|---|
| 2342 | //
|
|---|
| 2343 | // Transform into centre of mass system
|
|---|
| 2344 | //
|
|---|
| 2345 | pseudoParticle[2] = pseudoParticle[0] + pseudoParticle[1];
|
|---|
| 2346 | pseudoParticle[0].Lorentz( pseudoParticle[0], pseudoParticle[2] );
|
|---|
| 2347 | pseudoParticle[1].Lorentz( pseudoParticle[1], pseudoParticle[2] );
|
|---|
| 2348 | //
|
|---|
| 2349 | // Set final state masses and energies in centre of mass system
|
|---|
| 2350 | //
|
|---|
| 2351 | currentParticle.SetTotalEnergy( std::sqrt(pf*pf+currentMass*currentMass)*GeV );
|
|---|
| 2352 | targetParticle.SetTotalEnergy( std::sqrt(pf*pf+targetMass*targetMass)*GeV );
|
|---|
| 2353 | //
|
|---|
| 2354 | // Set |t| and |tmin|
|
|---|
| 2355 | //
|
|---|
| 2356 | const G4double cb = 0.01;
|
|---|
| 2357 | const G4double b1 = 4.225;
|
|---|
| 2358 | const G4double b2 = 1.795;
|
|---|
| 2359 | //
|
|---|
| 2360 | // Calculate slope b for elastic scattering on proton/neutron
|
|---|
| 2361 | //
|
|---|
| 2362 | G4double b = std::max( cb, b1+b2*std::log(pOriginal) );
|
|---|
| 2363 | G4double btrang = b * 4.0 * pf * pseudoParticle[0].GetMomentum().mag()/GeV;
|
|---|
| 2364 |
|
|---|
| 2365 | G4double exindt = -1.0;
|
|---|
| 2366 | exindt += std::exp(std::max(-btrang,expxl));
|
|---|
| 2367 | //
|
|---|
| 2368 | // Calculate sqr(std::sin(teta/2.) and std::cos(teta), set azimuth angle phi
|
|---|
| 2369 | //
|
|---|
| 2370 | G4double ctet = 1.0 + 2*std::log( 1.0+G4UniformRand()*exindt ) / btrang;
|
|---|
| 2371 | if( std::fabs(ctet) > 1.0 )ctet > 0.0 ? ctet = 1.0 : ctet = -1.0;
|
|---|
| 2372 | G4double stet = std::sqrt( (1.0-ctet)*(1.0+ctet) );
|
|---|
| 2373 | G4double phi = twopi * G4UniformRand();
|
|---|
| 2374 | //
|
|---|
| 2375 | // Calculate final state momenta in centre of mass system
|
|---|
| 2376 | //
|
|---|
| 2377 | if (targetParticle.GetDefinition()->GetParticleSubType() == "kaon" ||
|
|---|
| 2378 | targetParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 2379 |
|
|---|
| 2380 | currentParticle.SetMomentum( -pf*stet*std::sin(phi)*GeV,
|
|---|
| 2381 | -pf*stet*std::cos(phi)*GeV,
|
|---|
| 2382 | -pf*ctet*GeV );
|
|---|
| 2383 | } else {
|
|---|
| 2384 |
|
|---|
| 2385 | currentParticle.SetMomentum( pf*stet*std::sin(phi)*GeV,
|
|---|
| 2386 | pf*stet*std::cos(phi)*GeV,
|
|---|
| 2387 | pf*ctet*GeV );
|
|---|
| 2388 | }
|
|---|
| 2389 | targetParticle.SetMomentum( currentParticle.GetMomentum() * (-1.0) );
|
|---|
| 2390 | //
|
|---|
| 2391 | // Transform into lab system
|
|---|
| 2392 | //
|
|---|
| 2393 | currentParticle.Lorentz( currentParticle, pseudoParticle[1] );
|
|---|
| 2394 | targetParticle.Lorentz( targetParticle, pseudoParticle[1] );
|
|---|
| 2395 |
|
|---|
| 2396 | Defs1( modifiedOriginal, currentParticle, targetParticle, vec, vecLen );
|
|---|
| 2397 |
|
|---|
| 2398 | G4double pp, pp1, ekin;
|
|---|
| 2399 | if( atomicWeight >= 1.5 )
|
|---|
| 2400 | {
|
|---|
| 2401 | const G4double cfa = 0.025*((atomicWeight-1.)/120.)*std::exp(-(atomicWeight-1.)/120.);
|
|---|
| 2402 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 2403 | if( pp1 >= 1.0 )
|
|---|
| 2404 | {
|
|---|
| 2405 | ekin = currentParticle.GetKineticEnergy()/MeV - cfa*(1.0+0.5*normal())*GeV;
|
|---|
| 2406 | ekin = std::max( 0.0001*GeV, ekin );
|
|---|
| 2407 | currentParticle.SetKineticEnergy( ekin*MeV );
|
|---|
| 2408 | pp = currentParticle.GetTotalMomentum()/MeV;
|
|---|
| 2409 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 2410 | }
|
|---|
| 2411 | pp1 = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 2412 | if( pp1 >= 1.0 )
|
|---|
| 2413 | {
|
|---|
| 2414 | ekin = targetParticle.GetKineticEnergy()/MeV - cfa*(1.0+normal()/2.)*GeV;
|
|---|
| 2415 | ekin = std::max( 0.0001*GeV, ekin );
|
|---|
| 2416 | targetParticle.SetKineticEnergy( ekin*MeV );
|
|---|
| 2417 | pp = targetParticle.GetTotalMomentum()/MeV;
|
|---|
| 2418 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 2419 | }
|
|---|
| 2420 | }
|
|---|
| 2421 | }
|
|---|
| 2422 |
|
|---|
| 2423 | // Get number of final state nucleons and nucleons remaining in
|
|---|
| 2424 | // target nucleus
|
|---|
| 2425 |
|
|---|
| 2426 | std::pair<G4int, G4int> finalStateNucleons =
|
|---|
| 2427 | GetFinalStateNucleons(originalTarget, vec, vecLen);
|
|---|
| 2428 | G4int protonsInFinalState = finalStateNucleons.first;
|
|---|
| 2429 | G4int neutronsInFinalState = finalStateNucleons.second;
|
|---|
| 2430 |
|
|---|
| 2431 | G4int PinNucleus = std::max(0,
|
|---|
| 2432 | targetNucleus.GetZ_asInt() - protonsInFinalState);
|
|---|
| 2433 | G4int NinNucleus = std::max(0,
|
|---|
| 2434 | targetNucleus.GetN_asInt() - neutronsInFinalState);
|
|---|
| 2435 |
|
|---|
| 2436 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2437 | if( atomicWeight >= 1.5 )
|
|---|
| 2438 | {
|
|---|
| 2439 | // Add black track particles
|
|---|
| 2440 | // npnb is number of proton/neutron black track particles
|
|---|
| 2441 | // ndta is the number of deuterons, tritons, and alphas produced
|
|---|
| 2442 | // epnb is the kinetic energy available for proton/neutron black track particles
|
|---|
| 2443 | // edta is the kinetic energy available for deuteron/triton/alpha particles
|
|---|
| 2444 | //
|
|---|
| 2445 | G4double epnb, edta;
|
|---|
| 2446 | G4int npnb=0, ndta=0;
|
|---|
| 2447 |
|
|---|
| 2448 | epnb = targetNucleus.GetPNBlackTrackEnergy(); // was enp1 in fortran code
|
|---|
| 2449 | edta = targetNucleus.GetDTABlackTrackEnergy(); // was enp3 in fortran code
|
|---|
| 2450 | const G4double pnCutOff = 0.0001; // GeV
|
|---|
| 2451 | const G4double dtaCutOff = 0.0001; // GeV
|
|---|
| 2452 | const G4double kineticMinimum = 0.0001;
|
|---|
| 2453 | const G4double kineticFactor = -0.010;
|
|---|
| 2454 | G4double sprob = 0.0; // sprob = probability of self-absorption in heavy molecules
|
|---|
| 2455 | if( epnb >= pnCutOff )
|
|---|
| 2456 | {
|
|---|
| 2457 | npnb = Poisson( epnb/0.02 );
|
|---|
| 2458 | if( npnb > atomicWeight )npnb = G4int(atomicWeight);
|
|---|
| 2459 | if( (epnb > pnCutOff) && (npnb <= 0) )npnb = 1;
|
|---|
| 2460 | npnb = std::min( npnb, 127-vecLen );
|
|---|
| 2461 | }
|
|---|
| 2462 | if( edta >= dtaCutOff )
|
|---|
| 2463 | {
|
|---|
| 2464 | ndta = G4int(2.0 * std::log(atomicWeight));
|
|---|
| 2465 | ndta = std::min( ndta, 127-vecLen );
|
|---|
| 2466 | }
|
|---|
| 2467 |
|
|---|
| 2468 | if (npnb == 0 && ndta == 0) npnb = 1;
|
|---|
| 2469 |
|
|---|
| 2470 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2471 |
|
|---|
| 2472 | AddBlackTrackParticles(epnb, npnb, edta, ndta, sprob, kineticMinimum,
|
|---|
| 2473 | kineticFactor, modifiedOriginal,
|
|---|
| 2474 | PinNucleus, NinNucleus, targetNucleus,
|
|---|
| 2475 | vec, vecLen);
|
|---|
| 2476 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2477 | }
|
|---|
| 2478 | //
|
|---|
| 2479 | // calculate time delay for nuclear reactions
|
|---|
| 2480 | //
|
|---|
| 2481 | if( (atomicWeight >= 1.5) && (atomicWeight <= 230.0) && (ekOriginal <= 0.2) )
|
|---|
| 2482 | currentParticle.SetTOF( 1.0-500.0*std::exp(-ekOriginal/0.04)*std::log(G4UniformRand()) );
|
|---|
| 2483 | else
|
|---|
| 2484 | currentParticle.SetTOF( 1.0 );
|
|---|
| 2485 | return;
|
|---|
| 2486 | }
|
|---|
| 2487 |
|
|---|
| 2488 | G4double G4ReactionDynamics::GenerateNBodyEvent(
|
|---|
| 2489 | const G4double totalEnergy, // MeV
|
|---|
| 2490 | const G4bool constantCrossSection,
|
|---|
| 2491 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 2492 | G4int &vecLen )
|
|---|
| 2493 | {
|
|---|
| 2494 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2495 | // derived from original FORTRAN code PHASP by H. Fesefeldt (02-Dec-1986)
|
|---|
| 2496 | // Returns the weight of the event
|
|---|
| 2497 | //
|
|---|
| 2498 | G4int i;
|
|---|
| 2499 | const G4double expxu = 82.; // upper bound for arg. of exp
|
|---|
| 2500 | const G4double expxl = -expxu; // lower bound for arg. of exp
|
|---|
| 2501 | if( vecLen < 2 )
|
|---|
| 2502 | {
|
|---|
| 2503 | G4cerr << "*** Error in G4ReactionDynamics::GenerateNBodyEvent" << G4endl;
|
|---|
| 2504 | G4cerr << " number of particles < 2" << G4endl;
|
|---|
| 2505 | G4cerr << "totalEnergy = " << totalEnergy << "MeV, vecLen = " << vecLen << G4endl;
|
|---|
| 2506 | return -1.0;
|
|---|
| 2507 | }
|
|---|
| 2508 | G4double mass[18]; // mass of each particle
|
|---|
| 2509 | G4double energy[18]; // total energy of each particle
|
|---|
| 2510 | G4double pcm[3][18]; // pcm is an array with 3 rows and vecLen columns
|
|---|
| 2511 |
|
|---|
| 2512 | G4double totalMass = 0.0;
|
|---|
| 2513 | G4double extraMass = 0;
|
|---|
| 2514 | G4double sm[18];
|
|---|
| 2515 |
|
|---|
| 2516 | for( i=0; i<vecLen; ++i )
|
|---|
| 2517 | {
|
|---|
| 2518 | mass[i] = vec[i]->GetMass()/GeV;
|
|---|
| 2519 | if(vec[i]->GetSide() == -2) extraMass+=vec[i]->GetMass()/GeV;
|
|---|
| 2520 | vec[i]->SetMomentum( 0.0, 0.0, 0.0 );
|
|---|
| 2521 | pcm[0][i] = 0.0; // x-momentum of i-th particle
|
|---|
| 2522 | pcm[1][i] = 0.0; // y-momentum of i-th particle
|
|---|
| 2523 | pcm[2][i] = 0.0; // z-momentum of i-th particle
|
|---|
| 2524 | energy[i] = mass[i]; // total energy of i-th particle
|
|---|
| 2525 | totalMass += mass[i];
|
|---|
| 2526 | sm[i] = totalMass;
|
|---|
| 2527 | }
|
|---|
| 2528 | G4double totalE = totalEnergy/GeV;
|
|---|
| 2529 | if( totalMass > totalE )
|
|---|
| 2530 | {
|
|---|
| 2531 | //G4cerr << "*** Error in G4ReactionDynamics::GenerateNBodyEvent" << G4endl;
|
|---|
| 2532 | //G4cerr << " total mass (" << totalMass*GeV << "MeV) > total energy ("
|
|---|
| 2533 | // << totalEnergy << "MeV)" << G4endl;
|
|---|
| 2534 | totalE = totalMass;
|
|---|
| 2535 | return -1.0;
|
|---|
| 2536 | }
|
|---|
| 2537 | G4double kineticEnergy = totalE - totalMass;
|
|---|
| 2538 | G4double emm[18];
|
|---|
| 2539 | //G4double *emm = new G4double [vecLen];
|
|---|
| 2540 | emm[0] = mass[0];
|
|---|
| 2541 | emm[vecLen-1] = totalE;
|
|---|
| 2542 | if( vecLen > 2 ) // the random numbers are sorted
|
|---|
| 2543 | {
|
|---|
| 2544 | G4double ran[18];
|
|---|
| 2545 | for( i=0; i<vecLen; ++i )ran[i] = G4UniformRand();
|
|---|
| 2546 | for( i=0; i<vecLen-2; ++i )
|
|---|
| 2547 | {
|
|---|
| 2548 | for( G4int j=vecLen-2; j>i; --j )
|
|---|
| 2549 | {
|
|---|
| 2550 | if( ran[i] > ran[j] )
|
|---|
| 2551 | {
|
|---|
| 2552 | G4double temp = ran[i];
|
|---|
| 2553 | ran[i] = ran[j];
|
|---|
| 2554 | ran[j] = temp;
|
|---|
| 2555 | }
|
|---|
| 2556 | }
|
|---|
| 2557 | }
|
|---|
| 2558 | for( i=1; i<vecLen-1; ++i )emm[i] = ran[i-1]*kineticEnergy + sm[i];
|
|---|
| 2559 | }
|
|---|
| 2560 | // Weight is the sum of logarithms of terms instead of the product of terms
|
|---|
| 2561 | G4bool lzero = true;
|
|---|
| 2562 | G4double wtmax = 0.0;
|
|---|
| 2563 | if( constantCrossSection ) // this is KGENEV=1 in PHASP
|
|---|
| 2564 | {
|
|---|
| 2565 | G4double emmax = kineticEnergy + mass[0];
|
|---|
| 2566 | G4double emmin = 0.0;
|
|---|
| 2567 | for( i=1; i<vecLen; ++i )
|
|---|
| 2568 | {
|
|---|
| 2569 | emmin += mass[i-1];
|
|---|
| 2570 | emmax += mass[i];
|
|---|
| 2571 | G4double wtfc = 0.0;
|
|---|
| 2572 | if( emmax*emmax > 0.0 )
|
|---|
| 2573 | {
|
|---|
| 2574 | G4double arg = emmax*emmax
|
|---|
| 2575 | + (emmin*emmin-mass[i]*mass[i])*(emmin*emmin-mass[i]*mass[i])/(emmax*emmax)
|
|---|
| 2576 | - 2.0*(emmin*emmin+mass[i]*mass[i]);
|
|---|
| 2577 | if( arg > 0.0 )wtfc = 0.5*std::sqrt( arg );
|
|---|
| 2578 | }
|
|---|
| 2579 | if( wtfc == 0.0 )
|
|---|
| 2580 | {
|
|---|
| 2581 | lzero = false;
|
|---|
| 2582 | break;
|
|---|
| 2583 | }
|
|---|
| 2584 | wtmax += std::log( wtfc );
|
|---|
| 2585 | }
|
|---|
| 2586 | if( lzero )
|
|---|
| 2587 | wtmax = -wtmax;
|
|---|
| 2588 | else
|
|---|
| 2589 | wtmax = expxu;
|
|---|
| 2590 | }
|
|---|
| 2591 | else
|
|---|
| 2592 | {
|
|---|
| 2593 | // ffq(n) = pi*(2*pi)^(n-2)/(n-2)!
|
|---|
| 2594 | const G4double ffq[18] = { 0., 3.141592, 19.73921, 62.01255, 129.8788, 204.0131,
|
|---|
| 2595 | 256.3704, 268.4705, 240.9780, 189.2637,
|
|---|
| 2596 | 132.1308, 83.0202, 47.4210, 24.8295,
|
|---|
| 2597 | 12.0006, 5.3858, 2.2560, 0.8859 };
|
|---|
| 2598 | wtmax = std::log( std::pow( kineticEnergy, vecLen-2 ) * ffq[vecLen-1] / totalE );
|
|---|
| 2599 | }
|
|---|
| 2600 | lzero = true;
|
|---|
| 2601 | G4double pd[50];
|
|---|
| 2602 | //G4double *pd = new G4double [vecLen-1];
|
|---|
| 2603 | for( i=0; i<vecLen-1; ++i )
|
|---|
| 2604 | {
|
|---|
| 2605 | pd[i] = 0.0;
|
|---|
| 2606 | if( emm[i+1]*emm[i+1] > 0.0 )
|
|---|
| 2607 | {
|
|---|
| 2608 | G4double arg = emm[i+1]*emm[i+1]
|
|---|
| 2609 | + (emm[i]*emm[i]-mass[i+1]*mass[i+1])*(emm[i]*emm[i]-mass[i+1]*mass[i+1])
|
|---|
| 2610 | /(emm[i+1]*emm[i+1])
|
|---|
| 2611 | - 2.0*(emm[i]*emm[i]+mass[i+1]*mass[i+1]);
|
|---|
| 2612 | if( arg > 0.0 )pd[i] = 0.5*std::sqrt( arg );
|
|---|
| 2613 | }
|
|---|
| 2614 | if( pd[i] <= 0.0 ) // changed from == on 02 April 98
|
|---|
| 2615 | lzero = false;
|
|---|
| 2616 | else
|
|---|
| 2617 | wtmax += std::log( pd[i] );
|
|---|
| 2618 | }
|
|---|
| 2619 | G4double weight = 0.0; // weight is returned by GenerateNBodyEvent
|
|---|
| 2620 | if( lzero )weight = std::exp( std::max(std::min(wtmax,expxu),expxl) );
|
|---|
| 2621 |
|
|---|
| 2622 | G4double bang, cb, sb, s0, s1, s2, c, s, esys, a, b, gama, beta;
|
|---|
| 2623 | pcm[0][0] = 0.0;
|
|---|
| 2624 | pcm[1][0] = pd[0];
|
|---|
| 2625 | pcm[2][0] = 0.0;
|
|---|
| 2626 | for( i=1; i<vecLen; ++i )
|
|---|
| 2627 | {
|
|---|
| 2628 | pcm[0][i] = 0.0;
|
|---|
| 2629 | pcm[1][i] = -pd[i-1];
|
|---|
| 2630 | pcm[2][i] = 0.0;
|
|---|
| 2631 | bang = twopi*G4UniformRand();
|
|---|
| 2632 | cb = std::cos(bang);
|
|---|
| 2633 | sb = std::sin(bang);
|
|---|
| 2634 | c = 2.0*G4UniformRand() - 1.0;
|
|---|
| 2635 | s = std::sqrt( std::fabs( 1.0-c*c ) );
|
|---|
| 2636 | if( i < vecLen-1 )
|
|---|
| 2637 | {
|
|---|
| 2638 | esys = std::sqrt(pd[i]*pd[i] + emm[i]*emm[i]);
|
|---|
| 2639 | beta = pd[i]/esys;
|
|---|
| 2640 | gama = esys/emm[i];
|
|---|
| 2641 | for( G4int j=0; j<=i; ++j )
|
|---|
| 2642 | {
|
|---|
| 2643 | s0 = pcm[0][j];
|
|---|
| 2644 | s1 = pcm[1][j];
|
|---|
| 2645 | s2 = pcm[2][j];
|
|---|
| 2646 | energy[j] = std::sqrt( s0*s0 + s1*s1 + s2*s2 + mass[j]*mass[j] );
|
|---|
| 2647 | a = s0*c - s1*s; // rotation
|
|---|
| 2648 | pcm[1][j] = s0*s + s1*c;
|
|---|
| 2649 | b = pcm[2][j];
|
|---|
| 2650 | pcm[0][j] = a*cb - b*sb;
|
|---|
| 2651 | pcm[2][j] = a*sb + b*cb;
|
|---|
| 2652 | pcm[1][j] = gama*(pcm[1][j] + beta*energy[j]);
|
|---|
| 2653 | }
|
|---|
| 2654 | }
|
|---|
| 2655 | else
|
|---|
| 2656 | {
|
|---|
| 2657 | for( G4int j=0; j<=i; ++j )
|
|---|
| 2658 | {
|
|---|
| 2659 | s0 = pcm[0][j];
|
|---|
| 2660 | s1 = pcm[1][j];
|
|---|
| 2661 | s2 = pcm[2][j];
|
|---|
| 2662 | energy[j] = std::sqrt( s0*s0 + s1*s1 + s2*s2 + mass[j]*mass[j] );
|
|---|
| 2663 | a = s0*c - s1*s; // rotation
|
|---|
| 2664 | pcm[1][j] = s0*s + s1*c;
|
|---|
| 2665 | b = pcm[2][j];
|
|---|
| 2666 | pcm[0][j] = a*cb - b*sb;
|
|---|
| 2667 | pcm[2][j] = a*sb + b*cb;
|
|---|
| 2668 | }
|
|---|
| 2669 | }
|
|---|
| 2670 | }
|
|---|
| 2671 | for( i=0; i<vecLen; ++i )
|
|---|
| 2672 | {
|
|---|
| 2673 | vec[i]->SetMomentum( pcm[0][i]*GeV, pcm[1][i]*GeV, pcm[2][i]*GeV );
|
|---|
| 2674 | vec[i]->SetTotalEnergy( energy[i]*GeV );
|
|---|
| 2675 | }
|
|---|
| 2676 |
|
|---|
| 2677 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 2678 | return weight;
|
|---|
| 2679 | }
|
|---|
| 2680 |
|
|---|
| 2681 | G4double
|
|---|
| 2682 | G4ReactionDynamics::normal()
|
|---|
| 2683 | {
|
|---|
| 2684 | G4double ran = -6.0;
|
|---|
| 2685 | for( G4int i=0; i<12; ++i )ran += G4UniformRand();
|
|---|
| 2686 | return ran;
|
|---|
| 2687 | }
|
|---|
| 2688 |
|
|---|
| 2689 | G4int
|
|---|
| 2690 | G4ReactionDynamics::Poisson( G4double x ) // generation of poisson distribution
|
|---|
| 2691 | {
|
|---|
| 2692 | G4int iran;
|
|---|
| 2693 | G4double ran;
|
|---|
| 2694 |
|
|---|
| 2695 | if( x > 9.9 ) // use normal distribution with sigma^2 = <x>
|
|---|
| 2696 | iran = static_cast<G4int>(std::max( 0.0, x+normal()*std::sqrt(x) ) );
|
|---|
| 2697 | else {
|
|---|
| 2698 | G4int mm = G4int(5.0*x);
|
|---|
| 2699 | if( mm <= 0 ) // for very small x try iran=1,2,3
|
|---|
| 2700 | {
|
|---|
| 2701 | G4double p1 = x*std::exp(-x);
|
|---|
| 2702 | G4double p2 = x*p1/2.0;
|
|---|
| 2703 | G4double p3 = x*p2/3.0;
|
|---|
| 2704 | ran = G4UniformRand();
|
|---|
| 2705 | if( ran < p3 )
|
|---|
| 2706 | iran = 3;
|
|---|
| 2707 | else if( ran < p2 ) // this is original Geisha, it should be ran < p2+p3
|
|---|
| 2708 | iran = 2;
|
|---|
| 2709 | else if( ran < p1 ) // should be ran < p1+p2+p3
|
|---|
| 2710 | iran = 1;
|
|---|
| 2711 | else
|
|---|
| 2712 | iran = 0;
|
|---|
| 2713 | }
|
|---|
| 2714 | else
|
|---|
| 2715 | {
|
|---|
| 2716 | iran = 0;
|
|---|
| 2717 | G4double r = std::exp(-x);
|
|---|
| 2718 | ran = G4UniformRand();
|
|---|
| 2719 | if( ran > r )
|
|---|
| 2720 | {
|
|---|
| 2721 | G4double rrr;
|
|---|
| 2722 | G4double rr = r;
|
|---|
| 2723 | for( G4int i=1; i<=mm; ++i )
|
|---|
| 2724 | {
|
|---|
| 2725 | iran++;
|
|---|
| 2726 | if( i > 5 ) // Stirling's formula for large numbers
|
|---|
| 2727 | rrr = std::exp(i*std::log(x)-(i+0.5)*std::log((G4double)i)+i-0.9189385);
|
|---|
| 2728 | else
|
|---|
| 2729 | rrr = std::pow(x,i)/Factorial(i);
|
|---|
| 2730 | rr += r*rrr;
|
|---|
| 2731 | if( ran <= rr )break;
|
|---|
| 2732 | }
|
|---|
| 2733 | }
|
|---|
| 2734 | }
|
|---|
| 2735 | }
|
|---|
| 2736 | return iran;
|
|---|
| 2737 | }
|
|---|
| 2738 |
|
|---|
| 2739 | G4int
|
|---|
| 2740 | G4ReactionDynamics::Factorial( G4int n )
|
|---|
| 2741 | { // calculates factorial( n ) = n*(n-1)*(n-2)*...*1
|
|---|
| 2742 | G4int m = std::min(n,10);
|
|---|
| 2743 | G4int result = 1;
|
|---|
| 2744 | if( m <= 1 )return result;
|
|---|
| 2745 | for( G4int i=2; i<=m; ++i )result *= i;
|
|---|
| 2746 | return result;
|
|---|
| 2747 | }
|
|---|
| 2748 |
|
|---|
| 2749 | void G4ReactionDynamics::Defs1(
|
|---|
| 2750 | const G4ReactionProduct &modifiedOriginal,
|
|---|
| 2751 | G4ReactionProduct ¤tParticle,
|
|---|
| 2752 | G4ReactionProduct &targetParticle,
|
|---|
| 2753 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 2754 | G4int &vecLen )
|
|---|
| 2755 | {
|
|---|
| 2756 | const G4double pjx = modifiedOriginal.GetMomentum().x()/MeV;
|
|---|
| 2757 | const G4double pjy = modifiedOriginal.GetMomentum().y()/MeV;
|
|---|
| 2758 | const G4double pjz = modifiedOriginal.GetMomentum().z()/MeV;
|
|---|
| 2759 | const G4double p = modifiedOriginal.GetMomentum().mag()/MeV;
|
|---|
| 2760 | if( pjx*pjx+pjy*pjy > 0.0 )
|
|---|
| 2761 | {
|
|---|
| 2762 | G4double cost, sint, ph, cosp, sinp, pix, piy, piz;
|
|---|
| 2763 | cost = pjz/p;
|
|---|
| 2764 | sint = 0.5 * ( std::sqrt(std::abs((1.0-cost)*(1.0+cost))) + std::sqrt(pjx*pjx+pjy*pjy)/p );
|
|---|
| 2765 | if( pjy < 0.0 )
|
|---|
| 2766 | ph = 3*halfpi;
|
|---|
| 2767 | else
|
|---|
| 2768 | ph = halfpi;
|
|---|
| 2769 | if( std::abs( pjx ) > 0.001*MeV )ph = std::atan2(pjy,pjx);
|
|---|
| 2770 | cosp = std::cos(ph);
|
|---|
| 2771 | sinp = std::sin(ph);
|
|---|
| 2772 | pix = currentParticle.GetMomentum().x()/MeV;
|
|---|
| 2773 | piy = currentParticle.GetMomentum().y()/MeV;
|
|---|
| 2774 | piz = currentParticle.GetMomentum().z()/MeV;
|
|---|
| 2775 | currentParticle.SetMomentum( cost*cosp*pix*MeV - sinp*piy+sint*cosp*piz*MeV,
|
|---|
| 2776 | cost*sinp*pix*MeV + cosp*piy+sint*sinp*piz*MeV,
|
|---|
| 2777 | -sint*pix*MeV + cost*piz*MeV );
|
|---|
| 2778 | pix = targetParticle.GetMomentum().x()/MeV;
|
|---|
| 2779 | piy = targetParticle.GetMomentum().y()/MeV;
|
|---|
| 2780 | piz = targetParticle.GetMomentum().z()/MeV;
|
|---|
| 2781 | targetParticle.SetMomentum( cost*cosp*pix*MeV - sinp*piy+sint*cosp*piz*MeV,
|
|---|
| 2782 | cost*sinp*pix*MeV + cosp*piy+sint*sinp*piz*MeV,
|
|---|
| 2783 | -sint*pix*MeV + cost*piz*MeV );
|
|---|
| 2784 | for( G4int i=0; i<vecLen; ++i )
|
|---|
| 2785 | {
|
|---|
| 2786 | pix = vec[i]->GetMomentum().x()/MeV;
|
|---|
| 2787 | piy = vec[i]->GetMomentum().y()/MeV;
|
|---|
| 2788 | piz = vec[i]->GetMomentum().z()/MeV;
|
|---|
| 2789 | vec[i]->SetMomentum( cost*cosp*pix*MeV - sinp*piy+sint*cosp*piz*MeV,
|
|---|
| 2790 | cost*sinp*pix*MeV + cosp*piy+sint*sinp*piz*MeV,
|
|---|
| 2791 | -sint*pix*MeV + cost*piz*MeV );
|
|---|
| 2792 | }
|
|---|
| 2793 | }
|
|---|
| 2794 | else
|
|---|
| 2795 | {
|
|---|
| 2796 | if( pjz < 0.0 )
|
|---|
| 2797 | {
|
|---|
| 2798 | currentParticle.SetMomentum( -currentParticle.GetMomentum().z() );
|
|---|
| 2799 | targetParticle.SetMomentum( -targetParticle.GetMomentum().z() );
|
|---|
| 2800 | for( G4int i=0; i<vecLen; ++i )
|
|---|
| 2801 | vec[i]->SetMomentum( -vec[i]->GetMomentum().z() );
|
|---|
| 2802 | }
|
|---|
| 2803 | }
|
|---|
| 2804 | }
|
|---|
| 2805 |
|
|---|
| 2806 | void G4ReactionDynamics::Rotate(
|
|---|
| 2807 | const G4double numberofFinalStateNucleons,
|
|---|
| 2808 | const G4ThreeVector &temp,
|
|---|
| 2809 | const G4ReactionProduct &modifiedOriginal, // Fermi motion & evap. effect included
|
|---|
| 2810 | const G4HadProjectile *originalIncident, // original incident particle
|
|---|
| 2811 | const G4Nucleus &targetNucleus,
|
|---|
| 2812 | G4ReactionProduct ¤tParticle,
|
|---|
| 2813 | G4ReactionProduct &targetParticle,
|
|---|
| 2814 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 2815 | G4int &vecLen )
|
|---|
| 2816 | {
|
|---|
| 2817 | // derived from original FORTRAN code in GENXPT and TWOCLU by H. Fesefeldt
|
|---|
| 2818 | //
|
|---|
| 2819 | // Rotate in direction of z-axis, this does disturb in some way our
|
|---|
| 2820 | // inclusive distributions, but it is necessary for momentum conservation
|
|---|
| 2821 | //
|
|---|
| 2822 | const G4double atomicWeight = G4double(targetNucleus.GetA_asInt());
|
|---|
| 2823 | const G4double logWeight = std::log(atomicWeight);
|
|---|
| 2824 |
|
|---|
| 2825 | G4ParticleDefinition *aPiMinus = G4PionMinus::PionMinus();
|
|---|
| 2826 | G4ParticleDefinition *aPiPlus = G4PionPlus::PionPlus();
|
|---|
| 2827 | G4ParticleDefinition *aPiZero = G4PionZero::PionZero();
|
|---|
| 2828 |
|
|---|
| 2829 | G4int i;
|
|---|
| 2830 | G4ThreeVector pseudoParticle[4];
|
|---|
| 2831 | for( i=0; i<4; ++i )pseudoParticle[i].set(0,0,0);
|
|---|
| 2832 | pseudoParticle[0] = currentParticle.GetMomentum()
|
|---|
| 2833 | + targetParticle.GetMomentum();
|
|---|
| 2834 | for( i=0; i<vecLen; ++i )
|
|---|
| 2835 | pseudoParticle[0] = pseudoParticle[0] + (vec[i]->GetMomentum());
|
|---|
| 2836 | //
|
|---|
| 2837 | // Some smearing in transverse direction from Fermi motion
|
|---|
| 2838 | //
|
|---|
| 2839 | G4float pp, pp1;
|
|---|
| 2840 | G4double alekw, p;
|
|---|
| 2841 | G4double r1, r2, a1, ran1, ran2, xxh, exh, pxTemp, pyTemp, pzTemp;
|
|---|
| 2842 |
|
|---|
| 2843 | r1 = twopi*G4UniformRand();
|
|---|
| 2844 | r2 = G4UniformRand();
|
|---|
| 2845 | a1 = std::sqrt(-2.0*std::log(r2));
|
|---|
| 2846 | ran1 = a1*std::sin(r1)*0.020*numberofFinalStateNucleons*GeV;
|
|---|
| 2847 | ran2 = a1*std::cos(r1)*0.020*numberofFinalStateNucleons*GeV;
|
|---|
| 2848 | G4ThreeVector fermi(ran1, ran2, 0);
|
|---|
| 2849 |
|
|---|
| 2850 | pseudoParticle[0] = pseudoParticle[0]+fermi; // all particles + fermi
|
|---|
| 2851 | pseudoParticle[2] = temp; // original in cms system
|
|---|
| 2852 | pseudoParticle[3] = pseudoParticle[0];
|
|---|
| 2853 |
|
|---|
| 2854 | pseudoParticle[1] = pseudoParticle[2].cross(pseudoParticle[3]);
|
|---|
| 2855 | G4double rotation = 2.*pi*G4UniformRand();
|
|---|
| 2856 | pseudoParticle[1] = pseudoParticle[1].rotate(rotation, pseudoParticle[3]);
|
|---|
| 2857 | pseudoParticle[2] = pseudoParticle[3].cross(pseudoParticle[1]);
|
|---|
| 2858 | for(G4int ii=1; ii<=3; ii++)
|
|---|
| 2859 | {
|
|---|
| 2860 | p = pseudoParticle[ii].mag();
|
|---|
| 2861 | if( p == 0.0 )
|
|---|
| 2862 | pseudoParticle[ii]= G4ThreeVector( 0.0, 0.0, 0.0 );
|
|---|
| 2863 | else
|
|---|
| 2864 | pseudoParticle[ii]= pseudoParticle[ii] * (1./p);
|
|---|
| 2865 | }
|
|---|
| 2866 |
|
|---|
| 2867 | pxTemp = pseudoParticle[1].dot(currentParticle.GetMomentum());
|
|---|
| 2868 | pyTemp = pseudoParticle[2].dot(currentParticle.GetMomentum());
|
|---|
| 2869 | pzTemp = pseudoParticle[3].dot(currentParticle.GetMomentum());
|
|---|
| 2870 | currentParticle.SetMomentum( pxTemp, pyTemp, pzTemp );
|
|---|
| 2871 |
|
|---|
| 2872 | pxTemp = pseudoParticle[1].dot(targetParticle.GetMomentum());
|
|---|
| 2873 | pyTemp = pseudoParticle[2].dot(targetParticle.GetMomentum());
|
|---|
| 2874 | pzTemp = pseudoParticle[3].dot(targetParticle.GetMomentum());
|
|---|
| 2875 | targetParticle.SetMomentum( pxTemp, pyTemp, pzTemp );
|
|---|
| 2876 |
|
|---|
| 2877 | for( i=0; i<vecLen; ++i )
|
|---|
| 2878 | {
|
|---|
| 2879 | pxTemp = pseudoParticle[1].dot(vec[i]->GetMomentum());
|
|---|
| 2880 | pyTemp = pseudoParticle[2].dot(vec[i]->GetMomentum());
|
|---|
| 2881 | pzTemp = pseudoParticle[3].dot(vec[i]->GetMomentum());
|
|---|
| 2882 | vec[i]->SetMomentum( pxTemp, pyTemp, pzTemp );
|
|---|
| 2883 | }
|
|---|
| 2884 | //
|
|---|
| 2885 | // Rotate in direction of primary particle, subtract binding energies
|
|---|
| 2886 | // and make some further corrections if required
|
|---|
| 2887 | //
|
|---|
| 2888 | Defs1( modifiedOriginal, currentParticle, targetParticle, vec, vecLen );
|
|---|
| 2889 | G4double ekin;
|
|---|
| 2890 | G4double dekin = 0.0;
|
|---|
| 2891 | G4double ek1 = 0.0;
|
|---|
| 2892 | G4int npions = 0;
|
|---|
| 2893 | if( atomicWeight >= 1.5 ) // self-absorption in heavy molecules
|
|---|
| 2894 | {
|
|---|
| 2895 | // corrections for single particle spectra (shower particles)
|
|---|
| 2896 | //
|
|---|
| 2897 | const G4double alem[] = { 1.40, 2.30, 2.70, 3.00, 3.40, 4.60, 7.00 };
|
|---|
| 2898 | const G4double val0[] = { 0.00, 0.40, 0.48, 0.51, 0.54, 0.60, 0.65 };
|
|---|
| 2899 | alekw = std::log( originalIncident->GetKineticEnergy()/GeV );
|
|---|
| 2900 | exh = 1.0;
|
|---|
| 2901 | if( alekw > alem[0] ) // get energy bin
|
|---|
| 2902 | {
|
|---|
| 2903 | exh = val0[6];
|
|---|
| 2904 | for( G4int j=1; j<7; ++j )
|
|---|
| 2905 | {
|
|---|
| 2906 | if( alekw < alem[j] ) // use linear interpolation/extrapolation
|
|---|
| 2907 | {
|
|---|
| 2908 | G4double rcnve = (val0[j] - val0[j-1]) / (alem[j] - alem[j-1]);
|
|---|
| 2909 | exh = rcnve * alekw + val0[j-1] - rcnve * alem[j-1];
|
|---|
| 2910 | break;
|
|---|
| 2911 | }
|
|---|
| 2912 | }
|
|---|
| 2913 | exh = 1.0 - exh;
|
|---|
| 2914 | }
|
|---|
| 2915 | const G4double cfa = 0.025*((atomicWeight-1.)/120.)*std::exp(-(atomicWeight-1.)/120.);
|
|---|
| 2916 | ekin = currentParticle.GetKineticEnergy()/GeV - cfa*(1+normal()/2.0);
|
|---|
| 2917 | ekin = std::max( 1.0e-6, ekin );
|
|---|
| 2918 | xxh = 1.0;
|
|---|
| 2919 | if( (modifiedOriginal.GetDefinition() == aPiPlus ||
|
|---|
| 2920 | modifiedOriginal.GetDefinition() == aPiMinus) &&
|
|---|
| 2921 | currentParticle.GetDefinition() == aPiZero &&
|
|---|
| 2922 | G4UniformRand() <= logWeight) xxh = exh;
|
|---|
| 2923 | dekin += ekin*(1.0-xxh);
|
|---|
| 2924 | ekin *= xxh;
|
|---|
| 2925 | if (currentParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 2926 | ++npions;
|
|---|
| 2927 | ek1 += ekin;
|
|---|
| 2928 | }
|
|---|
| 2929 | currentParticle.SetKineticEnergy( ekin*GeV );
|
|---|
| 2930 | pp = currentParticle.GetTotalMomentum()/MeV;
|
|---|
| 2931 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 2932 | if( pp1 < 0.001*MeV )
|
|---|
| 2933 | {
|
|---|
| 2934 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 2935 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 2936 | G4double phi = twopi*G4UniformRand();
|
|---|
| 2937 | currentParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 2938 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 2939 | pp*costheta*MeV ) ;
|
|---|
| 2940 | }
|
|---|
| 2941 | else
|
|---|
| 2942 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 2943 | ekin = targetParticle.GetKineticEnergy()/GeV - cfa*(1+normal()/2.0);
|
|---|
| 2944 | ekin = std::max( 1.0e-6, ekin );
|
|---|
| 2945 | xxh = 1.0;
|
|---|
| 2946 | if( (modifiedOriginal.GetDefinition() == aPiPlus ||
|
|---|
| 2947 | modifiedOriginal.GetDefinition() == aPiMinus) &&
|
|---|
| 2948 | targetParticle.GetDefinition() == aPiZero &&
|
|---|
| 2949 | G4UniformRand() < logWeight) xxh = exh;
|
|---|
| 2950 | dekin += ekin*(1.0-xxh);
|
|---|
| 2951 | ekin *= xxh;
|
|---|
| 2952 | if (targetParticle.GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 2953 | ++npions;
|
|---|
| 2954 | ek1 += ekin;
|
|---|
| 2955 | }
|
|---|
| 2956 | targetParticle.SetKineticEnergy( ekin*GeV );
|
|---|
| 2957 | pp = targetParticle.GetTotalMomentum()/MeV;
|
|---|
| 2958 | pp1 = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 2959 | if( pp1 < 0.001*MeV )
|
|---|
| 2960 | {
|
|---|
| 2961 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 2962 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 2963 | G4double phi = twopi*G4UniformRand();
|
|---|
| 2964 | targetParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 2965 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 2966 | pp*costheta*MeV ) ;
|
|---|
| 2967 | }
|
|---|
| 2968 | else
|
|---|
| 2969 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 2970 | for( i=0; i<vecLen; ++i )
|
|---|
| 2971 | {
|
|---|
| 2972 | ekin = vec[i]->GetKineticEnergy()/GeV - cfa*(1+normal()/2.0);
|
|---|
| 2973 | ekin = std::max( 1.0e-6, ekin );
|
|---|
| 2974 | xxh = 1.0;
|
|---|
| 2975 | if( (modifiedOriginal.GetDefinition() == aPiPlus ||
|
|---|
| 2976 | modifiedOriginal.GetDefinition() == aPiMinus) &&
|
|---|
| 2977 | vec[i]->GetDefinition() == aPiZero &&
|
|---|
| 2978 | G4UniformRand() < logWeight) xxh = exh;
|
|---|
| 2979 | dekin += ekin*(1.0-xxh);
|
|---|
| 2980 | ekin *= xxh;
|
|---|
| 2981 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi") {
|
|---|
| 2982 | ++npions;
|
|---|
| 2983 | ek1 += ekin;
|
|---|
| 2984 | }
|
|---|
| 2985 | vec[i]->SetKineticEnergy( ekin*GeV );
|
|---|
| 2986 | pp = vec[i]->GetTotalMomentum()/MeV;
|
|---|
| 2987 | pp1 = vec[i]->GetMomentum().mag()/MeV;
|
|---|
| 2988 | if( pp1 < 0.001*MeV )
|
|---|
| 2989 | {
|
|---|
| 2990 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 2991 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 2992 | G4double phi = twopi*G4UniformRand();
|
|---|
| 2993 | vec[i]->SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 2994 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 2995 | pp*costheta*MeV ) ;
|
|---|
| 2996 | }
|
|---|
| 2997 | else
|
|---|
| 2998 | vec[i]->SetMomentum( vec[i]->GetMomentum() * (pp/pp1) );
|
|---|
| 2999 | }
|
|---|
| 3000 | }
|
|---|
| 3001 | if( (ek1 != 0.0) && (npions > 0) )
|
|---|
| 3002 | {
|
|---|
| 3003 | dekin = 1.0 + dekin/ek1;
|
|---|
| 3004 | //
|
|---|
| 3005 | // first do the incident particle
|
|---|
| 3006 | //
|
|---|
| 3007 | if (currentParticle.GetDefinition()->GetParticleSubType() == "pi")
|
|---|
| 3008 | {
|
|---|
| 3009 | currentParticle.SetKineticEnergy(
|
|---|
| 3010 | std::max( 0.001*MeV, dekin*currentParticle.GetKineticEnergy() ) );
|
|---|
| 3011 | pp = currentParticle.GetTotalMomentum()/MeV;
|
|---|
| 3012 | pp1 = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 3013 | if( pp1 < 0.001 )
|
|---|
| 3014 | {
|
|---|
| 3015 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 3016 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 3017 | G4double phi = twopi*G4UniformRand();
|
|---|
| 3018 | currentParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 3019 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 3020 | pp*costheta*MeV ) ;
|
|---|
| 3021 | } else {
|
|---|
| 3022 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 3023 | }
|
|---|
| 3024 | }
|
|---|
| 3025 |
|
|---|
| 3026 | if (targetParticle.GetDefinition()->GetParticleSubType() == "pi")
|
|---|
| 3027 | {
|
|---|
| 3028 | targetParticle.SetKineticEnergy(
|
|---|
| 3029 | std::max( 0.001*MeV, dekin*targetParticle.GetKineticEnergy() ) );
|
|---|
| 3030 | pp = targetParticle.GetTotalMomentum()/MeV;
|
|---|
| 3031 | pp1 = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 3032 | if( pp1 < 0.001 )
|
|---|
| 3033 | {
|
|---|
| 3034 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 3035 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 3036 | G4double phi = twopi*G4UniformRand();
|
|---|
| 3037 | targetParticle.SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 3038 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 3039 | pp*costheta*MeV ) ;
|
|---|
| 3040 | } else {
|
|---|
| 3041 | targetParticle.SetMomentum( targetParticle.GetMomentum() * (pp/pp1) );
|
|---|
| 3042 | }
|
|---|
| 3043 | }
|
|---|
| 3044 |
|
|---|
| 3045 | for( i=0; i<vecLen; ++i )
|
|---|
| 3046 | {
|
|---|
| 3047 | if (vec[i]->GetDefinition()->GetParticleSubType() == "pi")
|
|---|
| 3048 | {
|
|---|
| 3049 | vec[i]->SetKineticEnergy( std::max( 0.001*MeV, dekin*vec[i]->GetKineticEnergy() ) );
|
|---|
| 3050 | pp = vec[i]->GetTotalMomentum()/MeV;
|
|---|
| 3051 | pp1 = vec[i]->GetMomentum().mag()/MeV;
|
|---|
| 3052 | if( pp1 < 0.001 )
|
|---|
| 3053 | {
|
|---|
| 3054 | G4double costheta = 2.*G4UniformRand() - 1.;
|
|---|
| 3055 | G4double sintheta = std::sqrt(1. - costheta*costheta);
|
|---|
| 3056 | G4double phi = twopi*G4UniformRand();
|
|---|
| 3057 | vec[i]->SetMomentum( pp*sintheta*std::cos(phi)*MeV,
|
|---|
| 3058 | pp*sintheta*std::sin(phi)*MeV,
|
|---|
| 3059 | pp*costheta*MeV ) ;
|
|---|
| 3060 | } else {
|
|---|
| 3061 | vec[i]->SetMomentum( vec[i]->GetMomentum() * (pp/pp1) );
|
|---|
| 3062 | }
|
|---|
| 3063 | }
|
|---|
| 3064 | } // for i
|
|---|
| 3065 | } // if (ek1 != 0)
|
|---|
| 3066 | }
|
|---|
| 3067 |
|
|---|
| 3068 | void G4ReactionDynamics::AddBlackTrackParticles(
|
|---|
| 3069 | const G4double epnb, // GeV
|
|---|
| 3070 | const G4int npnb,
|
|---|
| 3071 | const G4double edta, // GeV
|
|---|
| 3072 | const G4int ndta,
|
|---|
| 3073 | const G4double sprob,
|
|---|
| 3074 | const G4double kineticMinimum, // GeV
|
|---|
| 3075 | const G4double kineticFactor, // GeV
|
|---|
| 3076 | const G4ReactionProduct &modifiedOriginal,
|
|---|
| 3077 | G4int PinNucleus,
|
|---|
| 3078 | G4int NinNucleus,
|
|---|
| 3079 | const G4Nucleus &targetNucleus,
|
|---|
| 3080 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 3081 | G4int &vecLen )
|
|---|
| 3082 | {
|
|---|
| 3083 | // derived from original FORTRAN code in GENXPT and TWOCLU by H. Fesefeldt
|
|---|
| 3084 | //
|
|---|
| 3085 | // npnb is number of proton/neutron black track particles
|
|---|
| 3086 | // ndta is the number of deuterons, tritons, and alphas produced
|
|---|
| 3087 | // epnb is the kinetic energy available for proton/neutron black track particles
|
|---|
| 3088 | // edta is the kinetic energy available for deuteron/triton/alpha particles
|
|---|
| 3089 | //
|
|---|
| 3090 |
|
|---|
| 3091 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 3092 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 3093 | G4ParticleDefinition *aDeuteron = G4Deuteron::Deuteron();
|
|---|
| 3094 | G4ParticleDefinition *aTriton = G4Triton::Triton();
|
|---|
| 3095 | G4ParticleDefinition *anAlpha = G4Alpha::Alpha();
|
|---|
| 3096 |
|
|---|
| 3097 | const G4double ekOriginal = modifiedOriginal.GetKineticEnergy()/MeV;
|
|---|
| 3098 | const G4double atomicWeight = G4double(targetNucleus.GetA_asInt());
|
|---|
| 3099 | const G4double atomicNumber = G4double(targetNucleus.GetZ_asInt());
|
|---|
| 3100 |
|
|---|
| 3101 | const G4double ika1 = 3.6;
|
|---|
| 3102 | const G4double ika2 = 35.56;
|
|---|
| 3103 | const G4double ika3 = 6.45;
|
|---|
| 3104 |
|
|---|
| 3105 | G4int i;
|
|---|
| 3106 | G4double pp;
|
|---|
| 3107 | G4double kinCreated = 0;
|
|---|
| 3108 | G4double cfa = 0.025*((atomicWeight-1.0)/120.0) * std::exp(-(atomicWeight-1.0)/120.0);
|
|---|
| 3109 |
|
|---|
| 3110 | // First add protons and neutrons to final state
|
|---|
| 3111 |
|
|---|
| 3112 | if (npnb > 0)
|
|---|
| 3113 | {
|
|---|
| 3114 | G4double backwardKinetic = 0.0;
|
|---|
| 3115 | G4int local_npnb = npnb;
|
|---|
| 3116 | for( i=0; i<npnb; ++i ) if( G4UniformRand() < sprob ) local_npnb--;
|
|---|
| 3117 | G4double local_epnb = epnb;
|
|---|
| 3118 | if (ndta == 0) local_epnb += edta; // Retrieve unused kinetic energy
|
|---|
| 3119 | G4double ekin = local_epnb/std::max(1,local_npnb);
|
|---|
| 3120 |
|
|---|
| 3121 | for( i=0; i<local_npnb; ++i )
|
|---|
| 3122 | {
|
|---|
| 3123 | G4ReactionProduct * p1 = new G4ReactionProduct();
|
|---|
| 3124 | if( backwardKinetic > local_epnb )
|
|---|
| 3125 | {
|
|---|
| 3126 | delete p1;
|
|---|
| 3127 | break;
|
|---|
| 3128 | }
|
|---|
| 3129 | G4double ran = G4UniformRand();
|
|---|
| 3130 | G4double kinetic = -ekin*std::log(ran) - cfa*(1.0+0.5*normal());
|
|---|
| 3131 | if( kinetic < 0.0 )kinetic = -0.010*std::log(ran);
|
|---|
| 3132 | backwardKinetic += kinetic;
|
|---|
| 3133 | if( backwardKinetic > local_epnb )
|
|---|
| 3134 | kinetic = std::max( kineticMinimum, local_epnb-(backwardKinetic-kinetic) );
|
|---|
| 3135 |
|
|---|
| 3136 | if (G4UniformRand() > (1.0-atomicNumber/atomicWeight)) {
|
|---|
| 3137 |
|
|---|
| 3138 | // Boil off a proton if there are any left, otherwise a neutron
|
|---|
| 3139 |
|
|---|
| 3140 | if (PinNucleus > 0) {
|
|---|
| 3141 | p1->SetDefinition( aProton );
|
|---|
| 3142 | PinNucleus--;
|
|---|
| 3143 | } else if (NinNucleus > 0) {
|
|---|
| 3144 | p1->SetDefinition( aNeutron );
|
|---|
| 3145 | NinNucleus--;
|
|---|
| 3146 | } else {
|
|---|
| 3147 | delete p1;
|
|---|
| 3148 | break; // no nucleons left in nucleus
|
|---|
| 3149 | }
|
|---|
| 3150 | } else {
|
|---|
| 3151 |
|
|---|
| 3152 | // Boil off a neutron if there are any left, otherwise a proton
|
|---|
| 3153 |
|
|---|
| 3154 | if (NinNucleus > 0) {
|
|---|
| 3155 | p1->SetDefinition( aNeutron );
|
|---|
| 3156 | NinNucleus--;
|
|---|
| 3157 | } else if (PinNucleus > 0) {
|
|---|
| 3158 | p1->SetDefinition( aProton );
|
|---|
| 3159 | PinNucleus--;
|
|---|
| 3160 | } else {
|
|---|
| 3161 | delete p1;
|
|---|
| 3162 | break; // no nucleons left in nucleus
|
|---|
| 3163 | }
|
|---|
| 3164 | }
|
|---|
| 3165 |
|
|---|
| 3166 | vec.SetElement( vecLen, p1 );
|
|---|
| 3167 | G4double cost = G4UniformRand() * 2.0 - 1.0;
|
|---|
| 3168 | G4double sint = std::sqrt(std::fabs(1.0-cost*cost));
|
|---|
| 3169 | G4double phi = twopi * G4UniformRand();
|
|---|
| 3170 | vec[vecLen]->SetNewlyAdded( true );
|
|---|
| 3171 | vec[vecLen]->SetKineticEnergy( kinetic*GeV );
|
|---|
| 3172 | kinCreated+=kinetic;
|
|---|
| 3173 | pp = vec[vecLen]->GetTotalMomentum()/MeV;
|
|---|
| 3174 | vec[vecLen]->SetMomentum( pp*sint*std::sin(phi)*MeV,
|
|---|
| 3175 | pp*sint*std::cos(phi)*MeV,
|
|---|
| 3176 | pp*cost*MeV );
|
|---|
| 3177 | vecLen++;
|
|---|
| 3178 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 3179 | }
|
|---|
| 3180 |
|
|---|
| 3181 | if (NinNucleus > 0) {
|
|---|
| 3182 | if( (atomicWeight >= 10.0) && (ekOriginal <= 2.0*GeV) )
|
|---|
| 3183 | {
|
|---|
| 3184 | G4double ekw = ekOriginal/GeV;
|
|---|
| 3185 | G4int ika, kk = 0;
|
|---|
| 3186 | if( ekw > 1.0 )ekw *= ekw;
|
|---|
| 3187 | ekw = std::max( 0.1, ekw );
|
|---|
| 3188 | ika = G4int(ika1*std::exp((atomicNumber*atomicNumber/
|
|---|
| 3189 | atomicWeight-ika2)/ika3)/ekw);
|
|---|
| 3190 | if( ika > 0 )
|
|---|
| 3191 | {
|
|---|
| 3192 | for( i=(vecLen-1); i>=0; --i )
|
|---|
| 3193 | {
|
|---|
| 3194 | if( (vec[i]->GetDefinition() == aProton) && vec[i]->GetNewlyAdded() )
|
|---|
| 3195 | {
|
|---|
| 3196 | vec[i]->SetDefinitionAndUpdateE( aNeutron ); // modified 22-Oct-97
|
|---|
| 3197 | PinNucleus++;
|
|---|
| 3198 | NinNucleus--;
|
|---|
| 3199 | if( ++kk > ika )break;
|
|---|
| 3200 | }
|
|---|
| 3201 | }
|
|---|
| 3202 | }
|
|---|
| 3203 | }
|
|---|
| 3204 | } // if (NinNucleus >0)
|
|---|
| 3205 | } // if (npnb > 0)
|
|---|
| 3206 |
|
|---|
| 3207 | // Next try to add deuterons, tritons and alphas to final state
|
|---|
| 3208 |
|
|---|
| 3209 | if (ndta > 0)
|
|---|
| 3210 | {
|
|---|
| 3211 | G4double backwardKinetic = 0.0;
|
|---|
| 3212 | G4int local_ndta=ndta;
|
|---|
| 3213 | for( i=0; i<ndta; ++i )if( G4UniformRand() < sprob )local_ndta--;
|
|---|
| 3214 | G4double local_edta = edta;
|
|---|
| 3215 | if (npnb == 0) local_edta += epnb; // Retrieve unused kinetic energy
|
|---|
| 3216 | G4double ekin = local_edta/std::max(1,local_ndta);
|
|---|
| 3217 |
|
|---|
| 3218 | for( i=0; i<local_ndta; ++i )
|
|---|
| 3219 | {
|
|---|
| 3220 | G4ReactionProduct *p2 = new G4ReactionProduct();
|
|---|
| 3221 | if( backwardKinetic > local_edta )
|
|---|
| 3222 | {
|
|---|
| 3223 | delete p2;
|
|---|
| 3224 | break;
|
|---|
| 3225 | }
|
|---|
| 3226 | G4double ran = G4UniformRand();
|
|---|
| 3227 | G4double kinetic = -ekin*std::log(ran)-cfa*(1.+0.5*normal());
|
|---|
| 3228 | if( kinetic < 0.0 )kinetic = kineticFactor*std::log(ran);
|
|---|
| 3229 | backwardKinetic += kinetic;
|
|---|
| 3230 | if( backwardKinetic > local_edta )kinetic = local_edta-(backwardKinetic-kinetic);
|
|---|
| 3231 | if( kinetic < 0.0 )kinetic = kineticMinimum;
|
|---|
| 3232 | G4double cost = 2.0*G4UniformRand() - 1.0;
|
|---|
| 3233 | G4double sint = std::sqrt(std::max(0.0,(1.0-cost*cost)));
|
|---|
| 3234 | G4double phi = twopi*G4UniformRand();
|
|---|
| 3235 | ran = G4UniformRand();
|
|---|
| 3236 | if (ran < 0.60) {
|
|---|
| 3237 | if (PinNucleus > 0 && NinNucleus > 0) {
|
|---|
| 3238 | p2->SetDefinition( aDeuteron );
|
|---|
| 3239 | PinNucleus--;
|
|---|
| 3240 | NinNucleus--;
|
|---|
| 3241 | } else if (NinNucleus > 0) {
|
|---|
| 3242 | p2->SetDefinition( aNeutron );
|
|---|
| 3243 | NinNucleus--;
|
|---|
| 3244 | } else if (PinNucleus > 0) {
|
|---|
| 3245 | p2->SetDefinition( aProton );
|
|---|
| 3246 | PinNucleus--;
|
|---|
| 3247 | } else {
|
|---|
| 3248 | delete p2;
|
|---|
| 3249 | break;
|
|---|
| 3250 | }
|
|---|
| 3251 | } else if (ran < 0.90) {
|
|---|
| 3252 | if (PinNucleus > 0 && NinNucleus > 1) {
|
|---|
| 3253 | p2->SetDefinition( aTriton );
|
|---|
| 3254 | PinNucleus--;
|
|---|
| 3255 | NinNucleus -= 2;
|
|---|
| 3256 | } else if (PinNucleus > 0 && NinNucleus > 0) {
|
|---|
| 3257 | p2->SetDefinition( aDeuteron );
|
|---|
| 3258 | PinNucleus--;
|
|---|
| 3259 | NinNucleus--;
|
|---|
| 3260 | } else if (NinNucleus > 0) {
|
|---|
| 3261 | p2->SetDefinition( aNeutron );
|
|---|
| 3262 | NinNucleus--;
|
|---|
| 3263 | } else if (PinNucleus > 0) {
|
|---|
| 3264 | p2->SetDefinition( aProton );
|
|---|
| 3265 | PinNucleus--;
|
|---|
| 3266 | } else {
|
|---|
| 3267 | delete p2;
|
|---|
| 3268 | break;
|
|---|
| 3269 | }
|
|---|
| 3270 | } else {
|
|---|
| 3271 | if (PinNucleus > 1 && NinNucleus > 1) {
|
|---|
| 3272 | p2->SetDefinition( anAlpha );
|
|---|
| 3273 | PinNucleus -= 2;
|
|---|
| 3274 | NinNucleus -= 2;
|
|---|
| 3275 | } else if (PinNucleus > 0 && NinNucleus > 1) {
|
|---|
| 3276 | p2->SetDefinition( aTriton );
|
|---|
| 3277 | PinNucleus--;
|
|---|
| 3278 | NinNucleus -= 2;
|
|---|
| 3279 | } else if (PinNucleus > 0 && NinNucleus > 0) {
|
|---|
| 3280 | p2->SetDefinition( aDeuteron );
|
|---|
| 3281 | PinNucleus--;
|
|---|
| 3282 | NinNucleus--;
|
|---|
| 3283 | } else if (NinNucleus > 0) {
|
|---|
| 3284 | p2->SetDefinition( aNeutron );
|
|---|
| 3285 | NinNucleus--;
|
|---|
| 3286 | } else if (PinNucleus > 0) {
|
|---|
| 3287 | p2->SetDefinition( aProton );
|
|---|
| 3288 | PinNucleus--;
|
|---|
| 3289 | } else {
|
|---|
| 3290 | delete p2;
|
|---|
| 3291 | break;
|
|---|
| 3292 | }
|
|---|
| 3293 | }
|
|---|
| 3294 |
|
|---|
| 3295 | vec.SetElement( vecLen, p2 );
|
|---|
| 3296 | vec[vecLen]->SetNewlyAdded( true );
|
|---|
| 3297 | vec[vecLen]->SetKineticEnergy( kinetic*GeV );
|
|---|
| 3298 | kinCreated+=kinetic;
|
|---|
| 3299 | pp = vec[vecLen]->GetTotalMomentum()/MeV;
|
|---|
| 3300 | vec[vecLen++]->SetMomentum( pp*sint*std::sin(phi)*MeV,
|
|---|
| 3301 | pp*sint*std::cos(phi)*MeV,
|
|---|
| 3302 | pp*cost*MeV );
|
|---|
| 3303 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 3304 | }
|
|---|
| 3305 | } // if (ndta > 0)
|
|---|
| 3306 |
|
|---|
| 3307 | // G4double delta = epnb+edta - kinCreated;
|
|---|
| 3308 | }
|
|---|
| 3309 |
|
|---|
| 3310 |
|
|---|
| 3311 | std::pair<G4int, G4int> G4ReactionDynamics::GetFinalStateNucleons(
|
|---|
| 3312 | const G4DynamicParticle* originalTarget,
|
|---|
| 3313 | const G4FastVector<G4ReactionProduct,GHADLISTSIZE>& vec,
|
|---|
| 3314 | const G4int& vecLen)
|
|---|
| 3315 | {
|
|---|
| 3316 | // Get number of protons and neutrons removed from the target nucleus
|
|---|
| 3317 |
|
|---|
| 3318 | G4int protonsRemoved = 0;
|
|---|
| 3319 | G4int neutronsRemoved = 0;
|
|---|
| 3320 | if (originalTarget->GetDefinition()->GetParticleName() == "proton")
|
|---|
| 3321 | protonsRemoved++;
|
|---|
| 3322 | else
|
|---|
| 3323 | neutronsRemoved++;
|
|---|
| 3324 |
|
|---|
| 3325 | G4String secName;
|
|---|
| 3326 | for (G4int i = 0; i < vecLen; i++) {
|
|---|
| 3327 | secName = vec[i]->GetDefinition()->GetParticleName();
|
|---|
| 3328 | if (secName == "proton") {
|
|---|
| 3329 | protonsRemoved++;
|
|---|
| 3330 | } else if (secName == "neutron") {
|
|---|
| 3331 | neutronsRemoved++;
|
|---|
| 3332 | } else if (secName == "anti_proton") {
|
|---|
| 3333 | protonsRemoved--;
|
|---|
| 3334 | } else if (secName == "anti_neutron") {
|
|---|
| 3335 | neutronsRemoved--;
|
|---|
| 3336 | }
|
|---|
| 3337 | }
|
|---|
| 3338 |
|
|---|
| 3339 | return std::pair<G4int, G4int>(protonsRemoved, neutronsRemoved);
|
|---|
| 3340 | }
|
|---|
| 3341 |
|
|---|
| 3342 |
|
|---|
| 3343 | void G4ReactionDynamics::MomentumCheck(
|
|---|
| 3344 | const G4ReactionProduct &modifiedOriginal,
|
|---|
| 3345 | G4ReactionProduct ¤tParticle,
|
|---|
| 3346 | G4ReactionProduct &targetParticle,
|
|---|
| 3347 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 3348 | G4int &vecLen )
|
|---|
| 3349 | {
|
|---|
| 3350 | const G4double pOriginal = modifiedOriginal.GetTotalMomentum()/MeV;
|
|---|
| 3351 | G4double testMomentum = currentParticle.GetMomentum().mag()/MeV;
|
|---|
| 3352 | G4double pMass;
|
|---|
| 3353 | if( testMomentum >= pOriginal )
|
|---|
| 3354 | {
|
|---|
| 3355 | pMass = currentParticle.GetMass()/MeV;
|
|---|
| 3356 | currentParticle.SetTotalEnergy(
|
|---|
| 3357 | std::sqrt( pMass*pMass + pOriginal*pOriginal )*MeV );
|
|---|
| 3358 | currentParticle.SetMomentum(
|
|---|
| 3359 | currentParticle.GetMomentum() * (pOriginal/testMomentum) );
|
|---|
| 3360 | }
|
|---|
| 3361 | testMomentum = targetParticle.GetMomentum().mag()/MeV;
|
|---|
| 3362 | if( testMomentum >= pOriginal )
|
|---|
| 3363 | {
|
|---|
| 3364 | pMass = targetParticle.GetMass()/MeV;
|
|---|
| 3365 | targetParticle.SetTotalEnergy(
|
|---|
| 3366 | std::sqrt( pMass*pMass + pOriginal*pOriginal )*MeV );
|
|---|
| 3367 | targetParticle.SetMomentum(
|
|---|
| 3368 | targetParticle.GetMomentum() * (pOriginal/testMomentum) );
|
|---|
| 3369 | }
|
|---|
| 3370 | for( G4int i=0; i<vecLen; ++i )
|
|---|
| 3371 | {
|
|---|
| 3372 | testMomentum = vec[i]->GetMomentum().mag()/MeV;
|
|---|
| 3373 | if( testMomentum >= pOriginal )
|
|---|
| 3374 | {
|
|---|
| 3375 | pMass = vec[i]->GetMass()/MeV;
|
|---|
| 3376 | vec[i]->SetTotalEnergy(
|
|---|
| 3377 | std::sqrt( pMass*pMass + pOriginal*pOriginal )*MeV );
|
|---|
| 3378 | vec[i]->SetMomentum( vec[i]->GetMomentum() * (pOriginal/testMomentum) );
|
|---|
| 3379 | }
|
|---|
| 3380 | }
|
|---|
| 3381 | }
|
|---|
| 3382 |
|
|---|
| 3383 | void G4ReactionDynamics::ProduceStrangeParticlePairs(
|
|---|
| 3384 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
|
|---|
| 3385 | G4int &vecLen,
|
|---|
| 3386 | const G4ReactionProduct &modifiedOriginal,
|
|---|
| 3387 | const G4DynamicParticle *originalTarget,
|
|---|
| 3388 | G4ReactionProduct ¤tParticle,
|
|---|
| 3389 | G4ReactionProduct &targetParticle,
|
|---|
| 3390 | G4bool &incidentHasChanged,
|
|---|
| 3391 | G4bool &targetHasChanged )
|
|---|
| 3392 | {
|
|---|
| 3393 | // derived from original FORTRAN code STPAIR by H. Fesefeldt (16-Dec-1987)
|
|---|
| 3394 | //
|
|---|
| 3395 | // Choose charge combinations K+ K-, K+ K0B, K0 K0B, K0 K-,
|
|---|
| 3396 | // K+ Y0, K0 Y+, K0 Y-
|
|---|
| 3397 | // For antibaryon induced reactions half of the cross sections KB YB
|
|---|
| 3398 | // pairs are produced. Charge is not conserved, no experimental data available
|
|---|
| 3399 | // for exclusive reactions, therefore some average behaviour assumed.
|
|---|
| 3400 | // The ratio L/SIGMA is taken as 3:1 (from experimental low energy)
|
|---|
| 3401 | //
|
|---|
| 3402 | if( vecLen == 0 )return;
|
|---|
| 3403 | //
|
|---|
| 3404 | // the following protects against annihilation processes
|
|---|
| 3405 | //
|
|---|
| 3406 | if( currentParticle.GetMass() == 0.0 || targetParticle.GetMass() == 0.0 )return;
|
|---|
| 3407 |
|
|---|
| 3408 | const G4double etOriginal = modifiedOriginal.GetTotalEnergy()/GeV;
|
|---|
| 3409 | const G4double mOriginal = modifiedOriginal.GetDefinition()->GetPDGMass()/GeV;
|
|---|
| 3410 | G4double targetMass = originalTarget->GetDefinition()->GetPDGMass()/GeV;
|
|---|
| 3411 | G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
|
|---|
| 3412 | targetMass*targetMass +
|
|---|
| 3413 | 2.0*targetMass*etOriginal ); // GeV
|
|---|
| 3414 | G4double currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 3415 | G4double availableEnergy = centerofmassEnergy-(targetMass+currentMass);
|
|---|
| 3416 | if( availableEnergy <= 1.0 )return;
|
|---|
| 3417 |
|
|---|
| 3418 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 3419 | G4ParticleDefinition *anAntiProton = G4AntiProton::AntiProton();
|
|---|
| 3420 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 3421 | G4ParticleDefinition *anAntiNeutron = G4AntiNeutron::AntiNeutron();
|
|---|
| 3422 | G4ParticleDefinition *aSigmaMinus = G4SigmaMinus::SigmaMinus();
|
|---|
| 3423 | G4ParticleDefinition *aSigmaPlus = G4SigmaPlus::SigmaPlus();
|
|---|
| 3424 | G4ParticleDefinition *aSigmaZero = G4SigmaZero::SigmaZero();
|
|---|
| 3425 | G4ParticleDefinition *anAntiSigmaMinus = G4AntiSigmaMinus::AntiSigmaMinus();
|
|---|
| 3426 | G4ParticleDefinition *anAntiSigmaPlus = G4AntiSigmaPlus::AntiSigmaPlus();
|
|---|
| 3427 | G4ParticleDefinition *anAntiSigmaZero = G4AntiSigmaZero::AntiSigmaZero();
|
|---|
| 3428 | G4ParticleDefinition *aKaonMinus = G4KaonMinus::KaonMinus();
|
|---|
| 3429 | G4ParticleDefinition *aKaonPlus = G4KaonPlus::KaonPlus();
|
|---|
| 3430 | G4ParticleDefinition *aKaonZL = G4KaonZeroLong::KaonZeroLong();
|
|---|
| 3431 | G4ParticleDefinition *aKaonZS = G4KaonZeroShort::KaonZeroShort();
|
|---|
| 3432 | G4ParticleDefinition *aLambda = G4Lambda::Lambda();
|
|---|
| 3433 | G4ParticleDefinition *anAntiLambda = G4AntiLambda::AntiLambda();
|
|---|
| 3434 |
|
|---|
| 3435 | const G4double protonMass = aProton->GetPDGMass()/GeV;
|
|---|
| 3436 | const G4double sigmaMinusMass = aSigmaMinus->GetPDGMass()/GeV;
|
|---|
| 3437 | //
|
|---|
| 3438 | // determine the center of mass energy bin
|
|---|
| 3439 | //
|
|---|
| 3440 | const G4double avrs[] = {3.,4.,5.,6.,7.,8.,9.,10.,20.,30.,40.,50.};
|
|---|
| 3441 |
|
|---|
| 3442 | G4int ibin, i3, i4;
|
|---|
| 3443 | G4double avk, avy, avn, ran;
|
|---|
| 3444 | G4int i = 1;
|
|---|
| 3445 | while( (i<12) && (centerofmassEnergy>avrs[i]) )++i;
|
|---|
| 3446 | if( i == 12 )
|
|---|
| 3447 | ibin = 11;
|
|---|
| 3448 | else
|
|---|
| 3449 | ibin = i;
|
|---|
| 3450 | //
|
|---|
| 3451 | // the fortran code chooses a random replacement of produced kaons
|
|---|
| 3452 | // but does not take into account charge conservation
|
|---|
| 3453 | //
|
|---|
| 3454 | if( vecLen == 1 ) // we know that vecLen > 0
|
|---|
| 3455 | {
|
|---|
| 3456 | i3 = 0;
|
|---|
| 3457 | i4 = 1; // note that we will be adding a new secondary particle in this case only
|
|---|
| 3458 | }
|
|---|
| 3459 | else // otherwise 0 <= i3,i4 < vecLen
|
|---|
| 3460 | {
|
|---|
| 3461 | G4double ran = G4UniformRand();
|
|---|
| 3462 | while( ran == 1.0 )ran = G4UniformRand();
|
|---|
| 3463 | i4 = i3 = G4int( vecLen*ran );
|
|---|
| 3464 | while( i3 == i4 )
|
|---|
| 3465 | {
|
|---|
| 3466 | ran = G4UniformRand();
|
|---|
| 3467 | while( ran == 1.0 )ran = G4UniformRand();
|
|---|
| 3468 | i4 = G4int( vecLen*ran );
|
|---|
| 3469 | }
|
|---|
| 3470 | }
|
|---|
| 3471 | //
|
|---|
| 3472 | // use linear interpolation or extrapolation by y=centerofmassEnergy*x+b
|
|---|
| 3473 | //
|
|---|
| 3474 | const G4double avkkb[] = { 0.0015, 0.005, 0.012, 0.0285, 0.0525, 0.075,
|
|---|
| 3475 | 0.0975, 0.123, 0.28, 0.398, 0.495, 0.573 };
|
|---|
| 3476 | const G4double avky[] = { 0.005, 0.03, 0.064, 0.095, 0.115, 0.13,
|
|---|
| 3477 | 0.145, 0.155, 0.20, 0.205, 0.210, 0.212 };
|
|---|
| 3478 | const G4double avnnb[] = { 0.00001, 0.0001, 0.0006, 0.0025, 0.01, 0.02,
|
|---|
| 3479 | 0.04, 0.05, 0.12, 0.15, 0.18, 0.20 };
|
|---|
| 3480 |
|
|---|
| 3481 | avk = (std::log(avkkb[ibin])-std::log(avkkb[ibin-1]))*(centerofmassEnergy-avrs[ibin-1])
|
|---|
| 3482 | /(avrs[ibin]-avrs[ibin-1]) + std::log(avkkb[ibin-1]);
|
|---|
| 3483 | avk = std::exp(avk);
|
|---|
| 3484 |
|
|---|
| 3485 | avy = (std::log(avky[ibin])-std::log(avky[ibin-1]))*(centerofmassEnergy-avrs[ibin-1])
|
|---|
| 3486 | /(avrs[ibin]-avrs[ibin-1]) + std::log(avky[ibin-1]);
|
|---|
| 3487 | avy = std::exp(avy);
|
|---|
| 3488 |
|
|---|
| 3489 | avn = (std::log(avnnb[ibin])-std::log(avnnb[ibin-1]))*(centerofmassEnergy-avrs[ibin-1])
|
|---|
| 3490 | /(avrs[ibin]-avrs[ibin-1]) + std::log(avnnb[ibin-1]);
|
|---|
| 3491 | avn = std::exp(avn);
|
|---|
| 3492 |
|
|---|
| 3493 | if( avk+avy+avn <= 0.0 )return;
|
|---|
| 3494 |
|
|---|
| 3495 | if( currentMass < protonMass )avy /= 2.0;
|
|---|
| 3496 | if( targetMass < protonMass )avy = 0.0;
|
|---|
| 3497 | avy += avk+avn;
|
|---|
| 3498 | avk += avn;
|
|---|
| 3499 | ran = G4UniformRand();
|
|---|
| 3500 | if( ran < avn )
|
|---|
| 3501 | {
|
|---|
| 3502 | if( availableEnergy < 2.0 )return;
|
|---|
| 3503 | if( vecLen == 1 ) // add a new secondary
|
|---|
| 3504 | {
|
|---|
| 3505 | G4ReactionProduct *p1 = new G4ReactionProduct;
|
|---|
| 3506 | if( G4UniformRand() < 0.5 )
|
|---|
| 3507 | {
|
|---|
| 3508 | vec[0]->SetDefinition( aNeutron );
|
|---|
| 3509 | p1->SetDefinition( anAntiNeutron );
|
|---|
| 3510 | (G4UniformRand() < 0.5) ? p1->SetSide( -1 ) : p1->SetSide( 1 );
|
|---|
| 3511 | vec[0]->SetMayBeKilled(false);
|
|---|
| 3512 | p1->SetMayBeKilled(false);
|
|---|
| 3513 | }
|
|---|
| 3514 | else
|
|---|
| 3515 | {
|
|---|
| 3516 | vec[0]->SetDefinition( aProton );
|
|---|
| 3517 | p1->SetDefinition( anAntiProton );
|
|---|
| 3518 | (G4UniformRand() < 0.5) ? p1->SetSide( -1 ) : p1->SetSide( 1 );
|
|---|
| 3519 | vec[0]->SetMayBeKilled(false);
|
|---|
| 3520 | p1->SetMayBeKilled(false);
|
|---|
| 3521 | }
|
|---|
| 3522 | vec.SetElement( vecLen++, p1 );
|
|---|
| 3523 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 3524 | }
|
|---|
| 3525 | else
|
|---|
| 3526 | { // replace two secondaries
|
|---|
| 3527 | if( G4UniformRand() < 0.5 )
|
|---|
| 3528 | {
|
|---|
| 3529 | vec[i3]->SetDefinition( aNeutron );
|
|---|
| 3530 | vec[i4]->SetDefinition( anAntiNeutron );
|
|---|
| 3531 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3532 | vec[i4]->SetMayBeKilled(false);
|
|---|
| 3533 | }
|
|---|
| 3534 | else
|
|---|
| 3535 | {
|
|---|
| 3536 | vec[i3]->SetDefinition( aProton );
|
|---|
| 3537 | vec[i4]->SetDefinition( anAntiProton );
|
|---|
| 3538 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3539 | vec[i4]->SetMayBeKilled(false);
|
|---|
| 3540 | }
|
|---|
| 3541 | }
|
|---|
| 3542 | }
|
|---|
| 3543 | else if( ran < avk )
|
|---|
| 3544 | {
|
|---|
| 3545 | if( availableEnergy < 1.0 )return;
|
|---|
| 3546 |
|
|---|
| 3547 | const G4double kkb[] = { 0.2500, 0.3750, 0.5000, 0.5625, 0.6250,
|
|---|
| 3548 | 0.6875, 0.7500, 0.8750, 1.000 };
|
|---|
| 3549 | const G4int ipakkb1[] = { 10, 10, 10, 11, 11, 12, 12, 11, 12 };
|
|---|
| 3550 | const G4int ipakkb2[] = { 13, 11, 12, 11, 12, 11, 12, 13, 13 };
|
|---|
| 3551 | ran = G4UniformRand();
|
|---|
| 3552 | i = 0;
|
|---|
| 3553 | while( (i<9) && (ran>=kkb[i]) )++i;
|
|---|
| 3554 | if( i == 9 )return;
|
|---|
| 3555 | //
|
|---|
| 3556 | // ipakkb[] = { 10,13, 10,11, 10,12, 11,11, 11,12, 12,11, 12,12, 11,13, 12,13 };
|
|---|
| 3557 | // charge + - + 0 + 0 0 0 0 0 0 0 0 0 0 - 0 -
|
|---|
| 3558 | //
|
|---|
| 3559 | switch( ipakkb1[i] )
|
|---|
| 3560 | {
|
|---|
| 3561 | case 10:
|
|---|
| 3562 | vec[i3]->SetDefinition( aKaonPlus );
|
|---|
| 3563 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3564 | break;
|
|---|
| 3565 | case 11:
|
|---|
| 3566 | vec[i3]->SetDefinition( aKaonZS );
|
|---|
| 3567 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3568 | break;
|
|---|
| 3569 | case 12:
|
|---|
| 3570 | vec[i3]->SetDefinition( aKaonZL );
|
|---|
| 3571 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3572 | break;
|
|---|
| 3573 | }
|
|---|
| 3574 | if( vecLen == 1 ) // add a secondary
|
|---|
| 3575 | {
|
|---|
| 3576 | G4ReactionProduct *p1 = new G4ReactionProduct;
|
|---|
| 3577 | switch( ipakkb2[i] )
|
|---|
| 3578 | {
|
|---|
| 3579 | case 11:
|
|---|
| 3580 | p1->SetDefinition( aKaonZS );
|
|---|
| 3581 | p1->SetMayBeKilled(false);
|
|---|
| 3582 | break;
|
|---|
| 3583 | case 12:
|
|---|
| 3584 | p1->SetDefinition( aKaonZL );
|
|---|
| 3585 | p1->SetMayBeKilled(false);
|
|---|
| 3586 | break;
|
|---|
| 3587 | case 13:
|
|---|
| 3588 | p1->SetDefinition( aKaonMinus );
|
|---|
| 3589 | p1->SetMayBeKilled(false);
|
|---|
| 3590 | break;
|
|---|
| 3591 | }
|
|---|
| 3592 | (G4UniformRand() < 0.5) ? p1->SetSide( -1 ) : p1->SetSide( 1 );
|
|---|
| 3593 | vec.SetElement( vecLen++, p1 );
|
|---|
| 3594 | // DEBUGGING --> DumpFrames::DumpFrame(vec, vecLen);
|
|---|
| 3595 | }
|
|---|
| 3596 | else // replace
|
|---|
| 3597 | {
|
|---|
| 3598 | switch( ipakkb2[i] )
|
|---|
| 3599 | {
|
|---|
| 3600 | case 11:
|
|---|
| 3601 | vec[i4]->SetDefinition( aKaonZS );
|
|---|
| 3602 | vec[i4]->SetMayBeKilled(false);
|
|---|
| 3603 | break;
|
|---|
| 3604 | case 12:
|
|---|
| 3605 | vec[i4]->SetDefinition( aKaonZL );
|
|---|
| 3606 | vec[i4]->SetMayBeKilled(false);
|
|---|
| 3607 | break;
|
|---|
| 3608 | case 13:
|
|---|
| 3609 | vec[i4]->SetDefinition( aKaonMinus );
|
|---|
| 3610 | vec[i4]->SetMayBeKilled(false);
|
|---|
| 3611 | break;
|
|---|
| 3612 | }
|
|---|
| 3613 | }
|
|---|
| 3614 | }
|
|---|
| 3615 | else if( ran < avy )
|
|---|
| 3616 | {
|
|---|
| 3617 | if( availableEnergy < 1.6 )return;
|
|---|
| 3618 |
|
|---|
| 3619 | const G4double ky[] = { 0.200, 0.300, 0.400, 0.550, 0.625, 0.700,
|
|---|
| 3620 | 0.800, 0.850, 0.900, 0.950, 0.975, 1.000 };
|
|---|
| 3621 | const G4int ipaky1[] = { 18, 18, 18, 20, 20, 20, 21, 21, 21, 22, 22, 22 };
|
|---|
| 3622 | const G4int ipaky2[] = { 10, 11, 12, 10, 11, 12, 10, 11, 12, 10, 11, 12 };
|
|---|
| 3623 | const G4int ipakyb1[] = { 19, 19, 19, 23, 23, 23, 24, 24, 24, 25, 25, 25 };
|
|---|
| 3624 | const G4int ipakyb2[] = { 13, 12, 11, 13, 12, 11, 13, 12, 11, 13, 12, 11 };
|
|---|
| 3625 | ran = G4UniformRand();
|
|---|
| 3626 | i = 0;
|
|---|
| 3627 | while( (i<12) && (ran>ky[i]) )++i;
|
|---|
| 3628 | if( i == 12 )return;
|
|---|
| 3629 | if( (currentMass<protonMass) || (G4UniformRand()<0.5) )
|
|---|
| 3630 | {
|
|---|
| 3631 | // ipaky[] = { 18,10, 18,11, 18,12, 20,10, 20,11, 20,12,
|
|---|
| 3632 | // 0 + 0 0 0 0 + + + 0 + 0
|
|---|
| 3633 | //
|
|---|
| 3634 | // 21,10, 21,11, 21,12, 22,10, 22,11, 22,12 }
|
|---|
| 3635 | // 0 + 0 0 0 0 - + - 0 - 0
|
|---|
| 3636 | switch( ipaky1[i] )
|
|---|
| 3637 | {
|
|---|
| 3638 | case 18:
|
|---|
| 3639 | targetParticle.SetDefinition( aLambda );
|
|---|
| 3640 | break;
|
|---|
| 3641 | case 20:
|
|---|
| 3642 | targetParticle.SetDefinition( aSigmaPlus );
|
|---|
| 3643 | break;
|
|---|
| 3644 | case 21:
|
|---|
| 3645 | targetParticle.SetDefinition( aSigmaZero );
|
|---|
| 3646 | break;
|
|---|
| 3647 | case 22:
|
|---|
| 3648 | targetParticle.SetDefinition( aSigmaMinus );
|
|---|
| 3649 | break;
|
|---|
| 3650 | }
|
|---|
| 3651 | targetHasChanged = true;
|
|---|
| 3652 | switch( ipaky2[i] )
|
|---|
| 3653 | {
|
|---|
| 3654 | case 10:
|
|---|
| 3655 | vec[i3]->SetDefinition( aKaonPlus );
|
|---|
| 3656 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3657 | break;
|
|---|
| 3658 | case 11:
|
|---|
| 3659 | vec[i3]->SetDefinition( aKaonZS );
|
|---|
| 3660 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3661 | break;
|
|---|
| 3662 | case 12:
|
|---|
| 3663 | vec[i3]->SetDefinition( aKaonZL );
|
|---|
| 3664 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3665 | break;
|
|---|
| 3666 | }
|
|---|
| 3667 | }
|
|---|
| 3668 | else // (currentMass >= protonMass) && (G4UniformRand() >= 0.5)
|
|---|
| 3669 | {
|
|---|
| 3670 | // ipakyb[] = { 19,13, 19,12, 19,11, 23,13, 23,12, 23,11,
|
|---|
| 3671 | // 24,13, 24,12, 24,11, 25,13, 25,12, 25,11 };
|
|---|
| 3672 | if( (currentParticle.GetDefinition() == anAntiProton) ||
|
|---|
| 3673 | (currentParticle.GetDefinition() == anAntiNeutron) ||
|
|---|
| 3674 | (currentParticle.GetDefinition() == anAntiLambda) ||
|
|---|
| 3675 | (currentMass > sigmaMinusMass) )
|
|---|
| 3676 | {
|
|---|
| 3677 | switch( ipakyb1[i] )
|
|---|
| 3678 | {
|
|---|
| 3679 | case 19:
|
|---|
| 3680 | currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
|
|---|
| 3681 | break;
|
|---|
| 3682 | case 23:
|
|---|
| 3683 | currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
|
|---|
| 3684 | break;
|
|---|
| 3685 | case 24:
|
|---|
| 3686 | currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
|
|---|
| 3687 | break;
|
|---|
| 3688 | case 25:
|
|---|
| 3689 | currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
|
|---|
| 3690 | break;
|
|---|
| 3691 | }
|
|---|
| 3692 | incidentHasChanged = true;
|
|---|
| 3693 | switch( ipakyb2[i] )
|
|---|
| 3694 | {
|
|---|
| 3695 | case 11:
|
|---|
| 3696 | vec[i3]->SetDefinition( aKaonZS );
|
|---|
| 3697 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3698 | break;
|
|---|
| 3699 | case 12:
|
|---|
| 3700 | vec[i3]->SetDefinition( aKaonZL );
|
|---|
| 3701 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3702 | break;
|
|---|
| 3703 | case 13:
|
|---|
| 3704 | vec[i3]->SetDefinition( aKaonMinus );
|
|---|
| 3705 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3706 | break;
|
|---|
| 3707 | }
|
|---|
| 3708 | }
|
|---|
| 3709 | else
|
|---|
| 3710 | {
|
|---|
| 3711 | switch( ipaky1[i] )
|
|---|
| 3712 | {
|
|---|
| 3713 | case 18:
|
|---|
| 3714 | currentParticle.SetDefinitionAndUpdateE( aLambda );
|
|---|
| 3715 | break;
|
|---|
| 3716 | case 20:
|
|---|
| 3717 | currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
|
|---|
| 3718 | break;
|
|---|
| 3719 | case 21:
|
|---|
| 3720 | currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
|
|---|
| 3721 | break;
|
|---|
| 3722 | case 22:
|
|---|
| 3723 | currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
|
|---|
| 3724 | break;
|
|---|
| 3725 | }
|
|---|
| 3726 | incidentHasChanged = true;
|
|---|
| 3727 | switch( ipaky2[i] )
|
|---|
| 3728 | {
|
|---|
| 3729 | case 10:
|
|---|
| 3730 | vec[i3]->SetDefinition( aKaonPlus );
|
|---|
| 3731 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3732 | break;
|
|---|
| 3733 | case 11:
|
|---|
| 3734 | vec[i3]->SetDefinition( aKaonZS );
|
|---|
| 3735 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3736 | break;
|
|---|
| 3737 | case 12:
|
|---|
| 3738 | vec[i3]->SetDefinition( aKaonZL );
|
|---|
| 3739 | vec[i3]->SetMayBeKilled(false);
|
|---|
| 3740 | break;
|
|---|
| 3741 | }
|
|---|
| 3742 | }
|
|---|
| 3743 | }
|
|---|
| 3744 | }
|
|---|
| 3745 | else return;
|
|---|
| 3746 | //
|
|---|
| 3747 | // check the available energy
|
|---|
| 3748 | // if there is not enough energy for kkb/ky pair production
|
|---|
| 3749 | // then reduce the number of secondary particles
|
|---|
| 3750 | // NOTE:
|
|---|
| 3751 | // the number of secondaries may have been changed
|
|---|
| 3752 | // the incident and/or target particles may have changed
|
|---|
| 3753 | // charge conservation is ignored (as well as strangness conservation)
|
|---|
| 3754 | //
|
|---|
| 3755 | currentMass = currentParticle.GetMass()/GeV;
|
|---|
| 3756 | targetMass = targetParticle.GetMass()/GeV;
|
|---|
| 3757 |
|
|---|
| 3758 | G4double energyCheck = centerofmassEnergy-(currentMass+targetMass);
|
|---|
| 3759 | for( i=0; i<vecLen; ++i )
|
|---|
| 3760 | {
|
|---|
| 3761 | energyCheck -= vec[i]->GetMass()/GeV;
|
|---|
| 3762 | if( energyCheck < 0.0 ) // chop off the secondary List
|
|---|
| 3763 | {
|
|---|
| 3764 | vecLen = std::max( 0, --i ); // looks like a memory leak @@@@@@@@@@@@
|
|---|
| 3765 | G4int j;
|
|---|
| 3766 | for(j=i; j<vecLen; j++) delete vec[j];
|
|---|
| 3767 | break;
|
|---|
| 3768 | }
|
|---|
| 3769 | }
|
|---|
| 3770 | return;
|
|---|
| 3771 | }
|
|---|
| 3772 |
|
|---|
| 3773 | void
|
|---|
| 3774 | G4ReactionDynamics::NuclearReaction(
|
|---|
| 3775 | G4FastVector<G4ReactionProduct,4> &vec,
|
|---|
| 3776 | G4int &vecLen,
|
|---|
| 3777 | const G4HadProjectile *originalIncident,
|
|---|
| 3778 | const G4Nucleus &targetNucleus,
|
|---|
| 3779 | const G4double theAtomicMass,
|
|---|
| 3780 | const G4double *mass )
|
|---|
| 3781 | {
|
|---|
| 3782 | // derived from original FORTRAN code NUCREC by H. Fesefeldt (12-Feb-1987)
|
|---|
| 3783 | //
|
|---|
| 3784 | // Nuclear reaction kinematics at low energies
|
|---|
| 3785 | //
|
|---|
| 3786 | G4ParticleDefinition *aGamma = G4Gamma::Gamma();
|
|---|
| 3787 | G4ParticleDefinition *aProton = G4Proton::Proton();
|
|---|
| 3788 | G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
|
|---|
| 3789 | G4ParticleDefinition *aDeuteron = G4Deuteron::Deuteron();
|
|---|
| 3790 | G4ParticleDefinition *aTriton = G4Triton::Triton();
|
|---|
| 3791 | G4ParticleDefinition *anAlpha = G4Alpha::Alpha();
|
|---|
| 3792 |
|
|---|
| 3793 | const G4double aProtonMass = aProton->GetPDGMass()/MeV;
|
|---|
| 3794 | const G4double aNeutronMass = aNeutron->GetPDGMass()/MeV;
|
|---|
| 3795 | const G4double aDeuteronMass = aDeuteron->GetPDGMass()/MeV;
|
|---|
| 3796 | const G4double aTritonMass = aTriton->GetPDGMass()/MeV;
|
|---|
| 3797 | const G4double anAlphaMass = anAlpha->GetPDGMass()/MeV;
|
|---|
| 3798 |
|
|---|
| 3799 | G4ReactionProduct currentParticle;
|
|---|
| 3800 | currentParticle = *originalIncident;
|
|---|
| 3801 | //
|
|---|
| 3802 | // Set beam particle, take kinetic energy of current particle as the
|
|---|
| 3803 | // fundamental quantity. Due to the difficult kinematic, all masses have to
|
|---|
| 3804 | // be assigned the best measured values
|
|---|
| 3805 | //
|
|---|
| 3806 | G4double p = currentParticle.GetTotalMomentum();
|
|---|
| 3807 | G4double pp = currentParticle.GetMomentum().mag();
|
|---|
| 3808 | if( pp <= 0.001*MeV )
|
|---|
| 3809 | {
|
|---|
| 3810 | G4double phinve = twopi*G4UniformRand();
|
|---|
| 3811 | G4double rthnve = std::acos( std::max( -1.0, std::min( 1.0, -1.0 + 2.0*G4UniformRand() ) ) );
|
|---|
| 3812 | currentParticle.SetMomentum( p*std::sin(rthnve)*std::cos(phinve),
|
|---|
| 3813 | p*std::sin(rthnve)*std::sin(phinve),
|
|---|
| 3814 | p*std::cos(rthnve) );
|
|---|
| 3815 | }
|
|---|
| 3816 | else
|
|---|
| 3817 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (p/pp) );
|
|---|
| 3818 | //
|
|---|
| 3819 | // calculate Q-value of reactions
|
|---|
| 3820 | //
|
|---|
| 3821 | G4double currentKinetic = currentParticle.GetKineticEnergy()/MeV;
|
|---|
| 3822 | G4double currentMass = currentParticle.GetDefinition()->GetPDGMass()/MeV;
|
|---|
| 3823 | G4double qv = currentKinetic + theAtomicMass + currentMass;
|
|---|
| 3824 |
|
|---|
| 3825 | G4double qval[9];
|
|---|
| 3826 | qval[0] = qv - mass[0];
|
|---|
| 3827 | qval[1] = qv - mass[1] - aNeutronMass;
|
|---|
| 3828 | qval[2] = qv - mass[2] - aProtonMass;
|
|---|
| 3829 | qval[3] = qv - mass[3] - aDeuteronMass;
|
|---|
| 3830 | qval[4] = qv - mass[4] - aTritonMass;
|
|---|
| 3831 | qval[5] = qv - mass[5] - anAlphaMass;
|
|---|
| 3832 | qval[6] = qv - mass[6] - aNeutronMass - aNeutronMass;
|
|---|
| 3833 | qval[7] = qv - mass[7] - aNeutronMass - aProtonMass;
|
|---|
| 3834 | qval[8] = qv - mass[8] - aProtonMass - aProtonMass;
|
|---|
| 3835 |
|
|---|
| 3836 | if( currentParticle.GetDefinition() == aNeutron )
|
|---|
| 3837 | {
|
|---|
| 3838 | const G4double A = G4double(targetNucleus.GetA_asInt()); // atomic weight
|
|---|
| 3839 | if( G4UniformRand() > ((A-1.0)/230.0)*((A-1.0)/230.0) )
|
|---|
| 3840 | qval[0] = 0.0;
|
|---|
| 3841 | if( G4UniformRand() >= currentKinetic/7.9254*A )
|
|---|
| 3842 | qval[2] = qval[3] = qval[4] = qval[5] = qval[8] = 0.0;
|
|---|
| 3843 | }
|
|---|
| 3844 | else
|
|---|
| 3845 | qval[0] = 0.0;
|
|---|
| 3846 |
|
|---|
| 3847 | G4int i;
|
|---|
| 3848 | qv = 0.0;
|
|---|
| 3849 | for( i=0; i<9; ++i )
|
|---|
| 3850 | {
|
|---|
| 3851 | if( mass[i] < 500.0*MeV )qval[i] = 0.0;
|
|---|
| 3852 | if( qval[i] < 0.0 )qval[i] = 0.0;
|
|---|
| 3853 | qv += qval[i];
|
|---|
| 3854 | }
|
|---|
| 3855 | G4double qv1 = 0.0;
|
|---|
| 3856 | G4double ran = G4UniformRand();
|
|---|
| 3857 | G4int index;
|
|---|
| 3858 | for( index=0; index<9; ++index )
|
|---|
| 3859 | {
|
|---|
| 3860 | if( qval[index] > 0.0 )
|
|---|
| 3861 | {
|
|---|
| 3862 | qv1 += qval[index]/qv;
|
|---|
| 3863 | if( ran <= qv1 )break;
|
|---|
| 3864 | }
|
|---|
| 3865 | }
|
|---|
| 3866 | if( index == 9 ) // loop continued to the end
|
|---|
| 3867 | {
|
|---|
| 3868 | throw G4HadronicException(__FILE__, __LINE__,
|
|---|
| 3869 | "G4ReactionDynamics::NuclearReaction: inelastic reaction kinematically not possible");
|
|---|
| 3870 | }
|
|---|
| 3871 | G4double ke = currentParticle.GetKineticEnergy()/GeV;
|
|---|
| 3872 | G4int nt = 2;
|
|---|
| 3873 | if( (index>=6) || (G4UniformRand()<std::min(0.5,ke*10.0)) )nt = 3;
|
|---|
| 3874 |
|
|---|
| 3875 | G4ReactionProduct **v = new G4ReactionProduct * [3];
|
|---|
| 3876 | v[0] = new G4ReactionProduct;
|
|---|
| 3877 | v[1] = new G4ReactionProduct;
|
|---|
| 3878 | v[2] = new G4ReactionProduct;
|
|---|
| 3879 |
|
|---|
| 3880 | v[0]->SetMass( mass[index]*MeV );
|
|---|
| 3881 | switch( index )
|
|---|
| 3882 | {
|
|---|
| 3883 | case 0:
|
|---|
| 3884 | v[1]->SetDefinition( aGamma );
|
|---|
| 3885 | v[2]->SetDefinition( aGamma );
|
|---|
| 3886 | break;
|
|---|
| 3887 | case 1:
|
|---|
| 3888 | v[1]->SetDefinition( aNeutron );
|
|---|
| 3889 | v[2]->SetDefinition( aGamma );
|
|---|
| 3890 | break;
|
|---|
| 3891 | case 2:
|
|---|
| 3892 | v[1]->SetDefinition( aProton );
|
|---|
| 3893 | v[2]->SetDefinition( aGamma );
|
|---|
| 3894 | break;
|
|---|
| 3895 | case 3:
|
|---|
| 3896 | v[1]->SetDefinition( aDeuteron );
|
|---|
| 3897 | v[2]->SetDefinition( aGamma );
|
|---|
| 3898 | break;
|
|---|
| 3899 | case 4:
|
|---|
| 3900 | v[1]->SetDefinition( aTriton );
|
|---|
| 3901 | v[2]->SetDefinition( aGamma );
|
|---|
| 3902 | break;
|
|---|
| 3903 | case 5:
|
|---|
| 3904 | v[1]->SetDefinition( anAlpha );
|
|---|
| 3905 | v[2]->SetDefinition( aGamma );
|
|---|
| 3906 | break;
|
|---|
| 3907 | case 6:
|
|---|
| 3908 | v[1]->SetDefinition( aNeutron );
|
|---|
| 3909 | v[2]->SetDefinition( aNeutron );
|
|---|
| 3910 | break;
|
|---|
| 3911 | case 7:
|
|---|
| 3912 | v[1]->SetDefinition( aNeutron );
|
|---|
| 3913 | v[2]->SetDefinition( aProton );
|
|---|
| 3914 | break;
|
|---|
| 3915 | case 8:
|
|---|
| 3916 | v[1]->SetDefinition( aProton );
|
|---|
| 3917 | v[2]->SetDefinition( aProton );
|
|---|
| 3918 | break;
|
|---|
| 3919 | }
|
|---|
| 3920 | //
|
|---|
| 3921 | // calculate centre of mass energy
|
|---|
| 3922 | //
|
|---|
| 3923 | G4ReactionProduct pseudo1;
|
|---|
| 3924 | pseudo1.SetMass( theAtomicMass*MeV );
|
|---|
| 3925 | pseudo1.SetTotalEnergy( theAtomicMass*MeV );
|
|---|
| 3926 | G4ReactionProduct pseudo2 = currentParticle + pseudo1;
|
|---|
| 3927 | pseudo2.SetMomentum( pseudo2.GetMomentum() * (-1.0) );
|
|---|
| 3928 | //
|
|---|
| 3929 | // use phase space routine in centre of mass system
|
|---|
| 3930 | //
|
|---|
| 3931 | G4FastVector<G4ReactionProduct,GHADLISTSIZE> tempV;
|
|---|
| 3932 | tempV.Initialize( nt );
|
|---|
| 3933 | G4int tempLen = 0;
|
|---|
| 3934 | tempV.SetElement( tempLen++, v[0] );
|
|---|
| 3935 | tempV.SetElement( tempLen++, v[1] );
|
|---|
| 3936 | if( nt == 3 )tempV.SetElement( tempLen++, v[2] );
|
|---|
| 3937 | G4bool constantCrossSection = true;
|
|---|
| 3938 | GenerateNBodyEvent( pseudo2.GetMass()/MeV, constantCrossSection, tempV, tempLen );
|
|---|
| 3939 | v[0]->Lorentz( *v[0], pseudo2 );
|
|---|
| 3940 | v[1]->Lorentz( *v[1], pseudo2 );
|
|---|
| 3941 | if( nt == 3 )v[2]->Lorentz( *v[2], pseudo2 );
|
|---|
| 3942 |
|
|---|
| 3943 | G4bool particleIsDefined = false;
|
|---|
| 3944 | if( v[0]->GetMass()/MeV - aProtonMass < 0.1 )
|
|---|
| 3945 | {
|
|---|
| 3946 | v[0]->SetDefinition( aProton );
|
|---|
| 3947 | particleIsDefined = true;
|
|---|
| 3948 | }
|
|---|
| 3949 | else if( v[0]->GetMass()/MeV - aNeutronMass < 0.1 )
|
|---|
| 3950 | {
|
|---|
| 3951 | v[0]->SetDefinition( aNeutron );
|
|---|
| 3952 | particleIsDefined = true;
|
|---|
| 3953 | }
|
|---|
| 3954 | else if( v[0]->GetMass()/MeV - aDeuteronMass < 0.1 )
|
|---|
| 3955 | {
|
|---|
| 3956 | v[0]->SetDefinition( aDeuteron );
|
|---|
| 3957 | particleIsDefined = true;
|
|---|
| 3958 | }
|
|---|
| 3959 | else if( v[0]->GetMass()/MeV - aTritonMass < 0.1 )
|
|---|
| 3960 | {
|
|---|
| 3961 | v[0]->SetDefinition( aTriton );
|
|---|
| 3962 | particleIsDefined = true;
|
|---|
| 3963 | }
|
|---|
| 3964 | else if( v[0]->GetMass()/MeV - anAlphaMass < 0.1 )
|
|---|
| 3965 | {
|
|---|
| 3966 | v[0]->SetDefinition( anAlpha );
|
|---|
| 3967 | particleIsDefined = true;
|
|---|
| 3968 | }
|
|---|
| 3969 | currentParticle.SetKineticEnergy(
|
|---|
| 3970 | std::max( 0.001, currentParticle.GetKineticEnergy()/MeV ) );
|
|---|
| 3971 | p = currentParticle.GetTotalMomentum();
|
|---|
| 3972 | pp = currentParticle.GetMomentum().mag();
|
|---|
| 3973 | if( pp <= 0.001*MeV )
|
|---|
| 3974 | {
|
|---|
| 3975 | G4double phinve = twopi*G4UniformRand();
|
|---|
| 3976 | G4double rthnve = std::acos( std::max( -1.0, std::min( 1.0, -1.0 + 2.0*G4UniformRand() ) ) );
|
|---|
| 3977 | currentParticle.SetMomentum( p*std::sin(rthnve)*std::cos(phinve),
|
|---|
| 3978 | p*std::sin(rthnve)*std::sin(phinve),
|
|---|
| 3979 | p*std::cos(rthnve) );
|
|---|
| 3980 | }
|
|---|
| 3981 | else
|
|---|
| 3982 | currentParticle.SetMomentum( currentParticle.GetMomentum() * (p/pp) );
|
|---|
| 3983 |
|
|---|
| 3984 | if( particleIsDefined )
|
|---|
| 3985 | {
|
|---|
| 3986 | v[0]->SetKineticEnergy(
|
|---|
| 3987 | std::max( 0.001, 0.5*G4UniformRand()*v[0]->GetKineticEnergy()/MeV ) );
|
|---|
| 3988 | p = v[0]->GetTotalMomentum();
|
|---|
| 3989 | pp = v[0]->GetMomentum().mag();
|
|---|
| 3990 | if( pp <= 0.001*MeV )
|
|---|
| 3991 | {
|
|---|
| 3992 | G4double phinve = twopi*G4UniformRand();
|
|---|
| 3993 | G4double rthnve = std::acos( std::max(-1.0,std::min(1.0,-1.0+2.0*G4UniformRand())) );
|
|---|
| 3994 | v[0]->SetMomentum( p*std::sin(rthnve)*std::cos(phinve),
|
|---|
| 3995 | p*std::sin(rthnve)*std::sin(phinve),
|
|---|
| 3996 | p*std::cos(rthnve) );
|
|---|
| 3997 | }
|
|---|
| 3998 | else
|
|---|
| 3999 | v[0]->SetMomentum( v[0]->GetMomentum() * (p/pp) );
|
|---|
| 4000 | }
|
|---|
| 4001 | if( (v[1]->GetDefinition() == aDeuteron) ||
|
|---|
| 4002 | (v[1]->GetDefinition() == aTriton) ||
|
|---|
| 4003 | (v[1]->GetDefinition() == anAlpha) )
|
|---|
| 4004 | v[1]->SetKineticEnergy(
|
|---|
| 4005 | std::max( 0.001, 0.5*G4UniformRand()*v[1]->GetKineticEnergy()/MeV ) );
|
|---|
| 4006 | else
|
|---|
| 4007 | v[1]->SetKineticEnergy( std::max( 0.001, v[1]->GetKineticEnergy()/MeV ) );
|
|---|
| 4008 |
|
|---|
| 4009 | p = v[1]->GetTotalMomentum();
|
|---|
| 4010 | pp = v[1]->GetMomentum().mag();
|
|---|
| 4011 | if( pp <= 0.001*MeV )
|
|---|
| 4012 | {
|
|---|
| 4013 | G4double phinve = twopi*G4UniformRand();
|
|---|
| 4014 | G4double rthnve = std::acos( std::max(-1.0,std::min(1.0,-1.0+2.0*G4UniformRand())) );
|
|---|
| 4015 | v[1]->SetMomentum( p*std::sin(rthnve)*std::cos(phinve),
|
|---|
| 4016 | p*std::sin(rthnve)*std::sin(phinve),
|
|---|
| 4017 | p*std::cos(rthnve) );
|
|---|
| 4018 | }
|
|---|
| 4019 | else
|
|---|
| 4020 | v[1]->SetMomentum( v[1]->GetMomentum() * (p/pp) );
|
|---|
| 4021 |
|
|---|
| 4022 | if( nt == 3 )
|
|---|
| 4023 | {
|
|---|
| 4024 | if( (v[2]->GetDefinition() == aDeuteron) ||
|
|---|
| 4025 | (v[2]->GetDefinition() == aTriton) ||
|
|---|
| 4026 | (v[2]->GetDefinition() == anAlpha) )
|
|---|
| 4027 | v[2]->SetKineticEnergy(
|
|---|
| 4028 | std::max( 0.001, 0.5*G4UniformRand()*v[2]->GetKineticEnergy()/MeV ) );
|
|---|
| 4029 | else
|
|---|
| 4030 | v[2]->SetKineticEnergy( std::max( 0.001, v[2]->GetKineticEnergy()/MeV ) );
|
|---|
| 4031 |
|
|---|
| 4032 | p = v[2]->GetTotalMomentum();
|
|---|
| 4033 | pp = v[2]->GetMomentum().mag();
|
|---|
| 4034 | if( pp <= 0.001*MeV )
|
|---|
| 4035 | {
|
|---|
| 4036 | G4double phinve = twopi*G4UniformRand();
|
|---|
| 4037 | G4double rthnve = std::acos( std::max(-1.0,std::min(1.0,-1.0+2.0*G4UniformRand())) );
|
|---|
| 4038 | v[2]->SetMomentum( p*std::sin(rthnve)*std::cos(phinve),
|
|---|
| 4039 | p*std::sin(rthnve)*std::sin(phinve),
|
|---|
| 4040 | p*std::cos(rthnve) );
|
|---|
| 4041 | }
|
|---|
| 4042 | else
|
|---|
| 4043 | v[2]->SetMomentum( v[2]->GetMomentum() * (p/pp) );
|
|---|
| 4044 | }
|
|---|
| 4045 | G4int del;
|
|---|
| 4046 | for(del=0; del<vecLen; del++) delete vec[del];
|
|---|
| 4047 | vecLen = 0;
|
|---|
| 4048 | if( particleIsDefined )
|
|---|
| 4049 | {
|
|---|
| 4050 | vec.SetElement( vecLen++, v[0] );
|
|---|
| 4051 | }
|
|---|
| 4052 | else
|
|---|
| 4053 | {
|
|---|
| 4054 | delete v[0];
|
|---|
| 4055 | }
|
|---|
| 4056 | vec.SetElement( vecLen++, v[1] );
|
|---|
| 4057 | if( nt == 3 )
|
|---|
| 4058 | {
|
|---|
| 4059 | vec.SetElement( vecLen++, v[2] );
|
|---|
| 4060 | }
|
|---|
| 4061 | else
|
|---|
| 4062 | {
|
|---|
| 4063 | delete v[2];
|
|---|
| 4064 | }
|
|---|
| 4065 | delete [] v;
|
|---|
| 4066 | return;
|
|---|
| 4067 | }
|
|---|
| 4068 |
|
|---|
| 4069 | /* end of file */
|
|---|
| 4070 |
|
|---|