source: trunk/source/processes/optical/include/G4OpBoundaryProcess.hh@ 880

Last change on this file since 880 was 819, checked in by garnier, 17 years ago

import all except CVS

File size: 12.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4OpBoundaryProcess.hh,v 1.16 2007/10/15 21:16:24 gum Exp $
28// GEANT4 tag $Name: $
29//
30//
31////////////////////////////////////////////////////////////////////////
32// Optical Photon Boundary Process Class Definition
33////////////////////////////////////////////////////////////////////////
34//
35// File: G4OpBoundaryProcess.hh
36// Description: Discrete Process -- reflection/refraction at
37// optical interfaces
38// Version: 1.1
39// Created: 1997-06-18
40// Modified: 2005-07-28 add G4ProcessType to constructor
41// 1999-10-29 add method and class descriptors
42// 1999-10-10 - Fill NewMomentum/NewPolarization in
43// DoAbsorption. These members need to be
44// filled since DoIt calls
45// aParticleChange.SetMomentumChange etc.
46// upon return (thanks to: Clark McGrew)
47// 2006-11-04 - add capability of calculating the reflectivity
48// off a metal surface by way of a complex index
49// of refraction - Thanks to Sehwook Lee and John
50// Hauptman (Dept. of Physics - Iowa State Univ.)
51//
52// Author: Peter Gumplinger
53// adopted from work by Werner Keil - April 2/96
54// mail: gum@triumf.ca
55//
56// CVS version tag:
57////////////////////////////////////////////////////////////////////////
58
59#ifndef G4OpBoundaryProcess_h
60#define G4OpBoundaryProcess_h 1
61
62/////////////
63// Includes
64/////////////
65
66#include "globals.hh"
67#include "templates.hh"
68#include "geomdefs.hh"
69#include "Randomize.hh"
70#include "G4Step.hh"
71#include "G4VDiscreteProcess.hh"
72#include "G4DynamicParticle.hh"
73#include "G4Material.hh"
74#include "G4LogicalBorderSurface.hh"
75#include "G4LogicalSkinSurface.hh"
76#include "G4OpticalSurface.hh"
77#include "G4OpticalPhoton.hh"
78#include "G4TransportationManager.hh"
79
80// Class Description:
81// Discrete Process -- reflection/refraction at optical interfaces.
82// Class inherits publicly from G4VDiscreteProcess.
83// Class Description - End:
84
85/////////////////////
86// Class Definition
87/////////////////////
88
89enum G4OpBoundaryProcessStatus { Undefined,
90 FresnelRefraction, FresnelReflection,
91 TotalInternalReflection,
92 LambertianReflection, LobeReflection,
93 SpikeReflection, BackScattering,
94 Absorption, Detection, NotAtBoundary,
95 SameMaterial, StepTooSmall, NoRINDEX };
96
97class G4OpBoundaryProcess : public G4VDiscreteProcess
98{
99
100private:
101
102 //////////////
103 // Operators
104 //////////////
105
106 // G4OpBoundaryProcess& operator=(const G4OpBoundaryProcess &right);
107
108 // G4OpBoundaryProcess(const G4OpBoundaryProcess &right);
109
110public: // Without description
111
112 ////////////////////////////////
113 // Constructors and Destructor
114 ////////////////////////////////
115
116 G4OpBoundaryProcess(const G4String& processName = "OpBoundary",
117 G4ProcessType type = fOptical);
118
119 ~G4OpBoundaryProcess();
120
121 ////////////
122 // Methods
123 ////////////
124
125public: // With description
126
127 G4bool IsApplicable(const G4ParticleDefinition& aParticleType);
128 // Returns true -> 'is applicable' only for an optical photon.
129
130 G4double GetMeanFreePath(const G4Track& ,
131 G4double ,
132 G4ForceCondition* condition);
133 // Returns infinity; i. e. the process does not limit the step,
134 // but sets the 'Forced' condition for the DoIt to be invoked at
135 // every step. However, only at a boundary will any action be
136 // taken.
137
138 G4VParticleChange* PostStepDoIt(const G4Track& aTrack,
139 const G4Step& aStep);
140 // This is the method implementing boundary processes.
141
142 G4OpticalSurfaceModel GetModel() const;
143 // Returns the optical surface mode.
144
145 G4OpBoundaryProcessStatus GetStatus() const;
146 // Returns the current status.
147
148 G4double GetIncidentAngle();
149 // Returns the incident angle of optical photon
150
151 G4double GetReflectivity(G4double E1_perp,
152 G4double E1_parl,
153 G4double incidentangle,
154 G4double RealRindex,
155 G4double ImaginaryRindex);
156 // Returns the Reflectivity on a metalic surface
157
158 void SetModel(G4OpticalSurfaceModel model);
159 // Set the optical surface model to be followed
160 // (glisur || unified).
161
162private:
163
164 void G4Swap(G4double* a, G4double* b) const;
165
166 void G4Swap(G4Material* a, G4Material* b) const;
167
168 void G4VectorSwap(G4ThreeVector* vec1, G4ThreeVector* vec2) const;
169
170 G4bool G4BooleanRand(const G4double prob) const;
171
172 G4ThreeVector G4IsotropicRand() const;
173
174 G4ThreeVector G4LambertianRand(const G4ThreeVector& normal);
175
176 G4ThreeVector G4PlaneVectorRand(const G4ThreeVector& normal) const;
177
178 G4ThreeVector GetFacetNormal(const G4ThreeVector& Momentum,
179 const G4ThreeVector& Normal) const;
180
181 void DielectricMetal();
182 void DielectricDielectric();
183
184 void ChooseReflection();
185 void DoAbsorption();
186 void DoReflection();
187
188private:
189
190 G4double thePhotonMomentum;
191
192 G4ThreeVector OldMomentum;
193 G4ThreeVector OldPolarization;
194
195 G4ThreeVector NewMomentum;
196 G4ThreeVector NewPolarization;
197
198 G4ThreeVector theGlobalNormal;
199 G4ThreeVector theFacetNormal;
200
201 G4Material* Material1;
202 G4Material* Material2;
203
204 G4OpticalSurface* OpticalSurface;
205
206 G4double Rindex1;
207 G4double Rindex2;
208
209 G4double cost1, cost2, sint1, sint2;
210
211 G4OpBoundaryProcessStatus theStatus;
212
213 G4OpticalSurfaceModel theModel;
214
215 G4OpticalSurfaceFinish theFinish;
216
217 G4double theReflectivity;
218 G4double theEfficiency;
219 G4double prob_sl, prob_ss, prob_bs;
220
221 G4int iTE, iTM;
222
223 G4double kCarTolerance;
224};
225
226////////////////////
227// Inline methods
228////////////////////
229
230inline
231void G4OpBoundaryProcess::G4Swap(G4double* a, G4double* b) const
232{
233 // swaps the contents of the objects pointed
234 // to by 'a' and 'b'!
235
236 G4double temp;
237
238 temp = *a;
239 *a = *b;
240 *b = temp;
241}
242
243inline
244void G4OpBoundaryProcess::G4Swap(G4Material* a, G4Material* b) const
245{
246 // ONLY swaps the pointers; i.e. what used to be pointed
247 // to by 'a' is now pointed to by 'b' and vice versa!
248
249 G4Material* temp = a;
250
251 a = b;
252 b = temp;
253}
254
255inline
256void G4OpBoundaryProcess::G4VectorSwap(G4ThreeVector* vec1,
257 G4ThreeVector* vec2) const
258{
259 // swaps the contents of the objects pointed
260 // to by 'vec1' and 'vec2'!
261
262 G4ThreeVector temp;
263
264 temp = *vec1;
265 *vec1 = *vec2;
266 *vec2 = temp;
267}
268
269inline
270G4bool G4OpBoundaryProcess::G4BooleanRand(const G4double prob) const
271{
272 /* Returns a random boolean variable with the specified probability */
273
274 return (G4UniformRand() < prob);
275}
276
277inline
278G4ThreeVector G4OpBoundaryProcess::G4IsotropicRand() const
279{
280 /* Returns a random isotropic unit vector. */
281
282 G4ThreeVector vect;
283 G4double len2;
284
285 do {
286
287 vect.setX(G4UniformRand() - 0.5);
288 vect.setY(G4UniformRand() - 0.5);
289 vect.setZ(G4UniformRand() - 0.5);
290
291 len2 = vect.mag2();
292
293 } while (len2 < 0.01 || len2 > 0.25);
294
295 return vect.unit();
296}
297
298inline
299G4ThreeVector G4OpBoundaryProcess::
300 G4LambertianRand(const G4ThreeVector& normal)
301{
302 /* Returns a random lambertian unit vector. */
303
304 G4ThreeVector vect;
305 G4double ndotv;
306
307 do {
308 vect = G4IsotropicRand();
309
310 ndotv = normal * vect;
311
312 if (ndotv < 0.0) {
313 vect = -vect;
314 ndotv = -ndotv;
315 }
316
317 } while (!G4BooleanRand(ndotv));
318 return vect;
319}
320
321inline
322G4ThreeVector G4OpBoundaryProcess::
323 G4PlaneVectorRand(const G4ThreeVector& normal) const
324
325 /* This function chooses a random vector within a plane given
326 by the unit normal */
327{
328 G4ThreeVector vec1 = normal.orthogonal();
329
330 G4ThreeVector vec2 = vec1.cross(normal);
331
332 G4double phi = twopi*G4UniformRand();
333 G4double cosphi = std::cos(phi);
334 G4double sinphi = std::sin(phi);
335
336 return cosphi * vec1 + sinphi * vec2;
337}
338
339inline
340G4bool G4OpBoundaryProcess::IsApplicable(const G4ParticleDefinition&
341 aParticleType)
342{
343 return ( &aParticleType == G4OpticalPhoton::OpticalPhoton() );
344}
345
346inline
347G4OpticalSurfaceModel G4OpBoundaryProcess::GetModel() const
348{
349 return theModel;
350}
351
352inline
353G4OpBoundaryProcessStatus G4OpBoundaryProcess::GetStatus() const
354{
355 return theStatus;
356}
357
358inline
359void G4OpBoundaryProcess::SetModel(G4OpticalSurfaceModel model)
360{
361 theModel = model;
362}
363
364inline
365void G4OpBoundaryProcess::ChooseReflection()
366{
367 G4double rand = G4UniformRand();
368 if ( rand >= 0.0 && rand < prob_ss ) {
369 theStatus = SpikeReflection;
370 theFacetNormal = theGlobalNormal;
371 }
372 else if ( rand >= prob_ss &&
373 rand <= prob_ss+prob_sl) {
374 theStatus = LobeReflection;
375 }
376 else if ( rand > prob_ss+prob_sl &&
377 rand < prob_ss+prob_sl+prob_bs ) {
378 theStatus = BackScattering;
379 }
380 else {
381 theStatus = LambertianReflection;
382 }
383}
384
385inline
386void G4OpBoundaryProcess::DoAbsorption()
387{
388 theStatus = Absorption;
389
390 if ( G4BooleanRand(theEfficiency) ) {
391
392 // EnergyDeposited =/= 0 means: photon has been detected
393 theStatus = Detection;
394 aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum);
395 }
396 else {
397 aParticleChange.ProposeLocalEnergyDeposit(0.0);
398 }
399
400 NewMomentum = OldMomentum;
401 NewPolarization = OldPolarization;
402
403// aParticleChange.ProposeEnergy(0.0);
404 aParticleChange.ProposeTrackStatus(fStopAndKill);
405}
406
407inline
408void G4OpBoundaryProcess::DoReflection()
409{
410 if ( theStatus == LambertianReflection ) {
411
412 NewMomentum = G4LambertianRand(theGlobalNormal);
413 theFacetNormal = (NewMomentum - OldMomentum).unit();
414
415 }
416 else if ( theFinish == ground ) {
417
418 theStatus = LobeReflection;
419 theFacetNormal = GetFacetNormal(OldMomentum,theGlobalNormal);
420 G4double PdotN = OldMomentum * theFacetNormal;
421 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
422
423 }
424 else {
425
426 theStatus = SpikeReflection;
427 theFacetNormal = theGlobalNormal;
428 G4double PdotN = OldMomentum * theFacetNormal;
429 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
430
431 }
432 G4double EdotN = OldPolarization * theFacetNormal;
433 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;
434}
435
436#endif /* G4OpBoundaryProcess_h */
Note: See TracBrowser for help on using the repository browser.