| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 27 | // Optical Photon Boundary Process Class Implementation
|
|---|
| 28 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 29 | //
|
|---|
| 30 | // File: G4OpBoundaryProcess.cc
|
|---|
| 31 | // Description: Discrete Process -- reflection/refraction at
|
|---|
| 32 | // optical interfaces
|
|---|
| 33 | // Version: 1.1
|
|---|
| 34 | // Created: 1997-06-18
|
|---|
| 35 | // Modified: 1998-05-25 - Correct parallel component of polarization
|
|---|
| 36 | // (thanks to: Stefano Magni + Giovanni Pieri)
|
|---|
| 37 | // 1998-05-28 - NULL Rindex pointer before reuse
|
|---|
| 38 | // (thanks to: Stefano Magni)
|
|---|
| 39 | // 1998-06-11 - delete *sint1 in oblique reflection
|
|---|
| 40 | // (thanks to: Giovanni Pieri)
|
|---|
| 41 | // 1998-06-19 - move from GetLocalExitNormal() to the new
|
|---|
| 42 | // method: GetLocalExitNormal(&valid) to get
|
|---|
| 43 | // the surface normal in all cases
|
|---|
| 44 | // 1998-11-07 - NULL OpticalSurface pointer before use
|
|---|
| 45 | // comparison not sharp for: std::abs(cost1) < 1.0
|
|---|
| 46 | // remove sin1, sin2 in lines 556,567
|
|---|
| 47 | // (thanks to Stefano Magni)
|
|---|
| 48 | // 1999-10-10 - Accommodate changes done in DoAbsorption by
|
|---|
| 49 | // changing logic in DielectricMetal
|
|---|
| 50 | // 2001-10-18 - avoid Linux (gcc-2.95.2) warning about variables
|
|---|
| 51 | // might be used uninitialized in this function
|
|---|
| 52 | // moved E2_perp, E2_parl and E2_total out of 'if'
|
|---|
| 53 | // 2003-11-27 - Modified line 168-9 to reflect changes made to
|
|---|
| 54 | // G4OpticalSurface class ( by Fan Lei)
|
|---|
| 55 | // 2004-02-02 - Set theStatus = Undefined at start of DoIt
|
|---|
| 56 | // 2005-07-28 - add G4ProcessType to constructor
|
|---|
| 57 | // 2006-11-04 - add capability of calculating the reflectivity
|
|---|
| 58 | // off a metal surface by way of a complex index
|
|---|
| 59 | // of refraction - Thanks to Sehwook Lee and John
|
|---|
| 60 | // Hauptman (Dept. of Physics - Iowa State Univ.)
|
|---|
| 61 | // 2009-11-10 - add capability of simulating surface reflections
|
|---|
| 62 | // with Look-Up-Tables (LUT) containing measured
|
|---|
| 63 | // optical reflectance for a variety of surface
|
|---|
| 64 | // treatments - Thanks to Martin Janecek and
|
|---|
| 65 | // William Moses (Lawrence Berkeley National Lab.)
|
|---|
| 66 | //
|
|---|
| 67 | // Author: Peter Gumplinger
|
|---|
| 68 | // adopted from work by Werner Keil - April 2/96
|
|---|
| 69 | // mail: gum@triumf.ca
|
|---|
| 70 | //
|
|---|
| 71 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 72 |
|
|---|
| 73 | #include "G4ios.hh"
|
|---|
| 74 | #include "G4OpProcessSubType.hh"
|
|---|
| 75 |
|
|---|
| 76 | #include "G4OpBoundaryProcess.hh"
|
|---|
| 77 | #include "G4GeometryTolerance.hh"
|
|---|
| 78 |
|
|---|
| 79 | /////////////////////////
|
|---|
| 80 | // Class Implementation
|
|---|
| 81 | /////////////////////////
|
|---|
| 82 |
|
|---|
| 83 | //////////////
|
|---|
| 84 | // Operators
|
|---|
| 85 | //////////////
|
|---|
| 86 |
|
|---|
| 87 | // G4OpBoundaryProcess::operator=(const G4OpBoundaryProcess &right)
|
|---|
| 88 | // {
|
|---|
| 89 | // }
|
|---|
| 90 |
|
|---|
| 91 | /////////////////
|
|---|
| 92 | // Constructors
|
|---|
| 93 | /////////////////
|
|---|
| 94 |
|
|---|
| 95 | G4OpBoundaryProcess::G4OpBoundaryProcess(const G4String& processName,
|
|---|
| 96 | G4ProcessType type)
|
|---|
| 97 | : G4VDiscreteProcess(processName, type)
|
|---|
| 98 | {
|
|---|
| 99 | if ( verboseLevel > 0) {
|
|---|
| 100 | G4cout << GetProcessName() << " is created " << G4endl;
|
|---|
| 101 | }
|
|---|
| 102 |
|
|---|
| 103 | SetProcessSubType(fOpBoundary);
|
|---|
| 104 |
|
|---|
| 105 | theStatus = Undefined;
|
|---|
| 106 | theModel = glisur;
|
|---|
| 107 | theFinish = polished;
|
|---|
| 108 | theReflectivity = 1.;
|
|---|
| 109 | theEfficiency = 0.;
|
|---|
| 110 |
|
|---|
| 111 | prob_sl = 0.;
|
|---|
| 112 | prob_ss = 0.;
|
|---|
| 113 | prob_bs = 0.;
|
|---|
| 114 |
|
|---|
| 115 | kCarTolerance = G4GeometryTolerance::GetInstance()
|
|---|
| 116 | ->GetSurfaceTolerance();
|
|---|
| 117 |
|
|---|
| 118 | }
|
|---|
| 119 |
|
|---|
| 120 | // G4OpBoundaryProcess::G4OpBoundaryProcess(const G4OpBoundaryProcess &right)
|
|---|
| 121 | // {
|
|---|
| 122 | // }
|
|---|
| 123 |
|
|---|
| 124 | ////////////////
|
|---|
| 125 | // Destructors
|
|---|
| 126 | ////////////////
|
|---|
| 127 |
|
|---|
| 128 | G4OpBoundaryProcess::~G4OpBoundaryProcess(){}
|
|---|
| 129 |
|
|---|
| 130 | ////////////
|
|---|
| 131 | // Methods
|
|---|
| 132 | ////////////
|
|---|
| 133 |
|
|---|
| 134 | // PostStepDoIt
|
|---|
| 135 | // ------------
|
|---|
| 136 | //
|
|---|
| 137 | G4VParticleChange*
|
|---|
| 138 | G4OpBoundaryProcess::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
|
|---|
| 139 | {
|
|---|
| 140 | theStatus = Undefined;
|
|---|
| 141 |
|
|---|
| 142 | aParticleChange.Initialize(aTrack);
|
|---|
| 143 |
|
|---|
| 144 | G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint();
|
|---|
| 145 | G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
|
|---|
| 146 |
|
|---|
| 147 | if ( verboseLevel > 0 ) {
|
|---|
| 148 | G4cout << " Photon at Boundary! " << G4endl;
|
|---|
| 149 | G4VPhysicalVolume* thePrePV = pPreStepPoint->GetPhysicalVolume();
|
|---|
| 150 | G4VPhysicalVolume* thePostPV = pPostStepPoint->GetPhysicalVolume();
|
|---|
| 151 | if (thePrePV) G4cout << " thePrePV: " << thePrePV->GetName() << G4endl;
|
|---|
| 152 | if (thePostPV) G4cout << " thePostPV: " << thePostPV->GetName() << G4endl;
|
|---|
| 153 | }
|
|---|
| 154 |
|
|---|
| 155 | if (pPostStepPoint->GetStepStatus() != fGeomBoundary){
|
|---|
| 156 | theStatus = NotAtBoundary;
|
|---|
| 157 | if ( verboseLevel > 0) BoundaryProcessVerbose();
|
|---|
| 158 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 159 | }
|
|---|
| 160 | if (aTrack.GetStepLength()<=kCarTolerance/2){
|
|---|
| 161 | theStatus = StepTooSmall;
|
|---|
| 162 | if ( verboseLevel > 0) BoundaryProcessVerbose();
|
|---|
| 163 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 164 | }
|
|---|
| 165 |
|
|---|
| 166 | Material1 = pPreStepPoint -> GetMaterial();
|
|---|
| 167 | Material2 = pPostStepPoint -> GetMaterial();
|
|---|
| 168 |
|
|---|
| 169 | const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
|
|---|
| 170 |
|
|---|
| 171 | thePhotonMomentum = aParticle->GetTotalMomentum();
|
|---|
| 172 | OldMomentum = aParticle->GetMomentumDirection();
|
|---|
| 173 | OldPolarization = aParticle->GetPolarization();
|
|---|
| 174 |
|
|---|
| 175 | if ( verboseLevel > 0 ) {
|
|---|
| 176 | G4cout << " Old Momentum Direction: " << OldMomentum << G4endl;
|
|---|
| 177 | G4cout << " Old Polarization: " << OldPolarization << G4endl;
|
|---|
| 178 | }
|
|---|
| 179 |
|
|---|
| 180 | G4ThreeVector theGlobalPoint = pPostStepPoint->GetPosition();
|
|---|
| 181 |
|
|---|
| 182 | G4Navigator* theNavigator =
|
|---|
| 183 | G4TransportationManager::GetTransportationManager()->
|
|---|
| 184 | GetNavigatorForTracking();
|
|---|
| 185 |
|
|---|
| 186 | G4ThreeVector theLocalPoint = theNavigator->
|
|---|
| 187 | GetGlobalToLocalTransform().
|
|---|
| 188 | TransformPoint(theGlobalPoint);
|
|---|
| 189 |
|
|---|
| 190 | G4ThreeVector theLocalNormal; // Normal points back into volume
|
|---|
| 191 |
|
|---|
| 192 | G4bool valid;
|
|---|
| 193 | theLocalNormal = theNavigator->GetLocalExitNormal(&valid);
|
|---|
| 194 |
|
|---|
| 195 | if (valid) {
|
|---|
| 196 | theLocalNormal = -theLocalNormal;
|
|---|
| 197 | }
|
|---|
| 198 | else {
|
|---|
| 199 | G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): "
|
|---|
| 200 | << " The Navigator reports that it returned an invalid normal"
|
|---|
| 201 | << G4endl;
|
|---|
| 202 | G4Exception("G4OpBoundaryProcess::PostStepDoIt",
|
|---|
| 203 | "Invalid Surface Normal",
|
|---|
| 204 | EventMustBeAborted,
|
|---|
| 205 | "Geometry must return valid surface normal");
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 | theGlobalNormal = theNavigator->GetLocalToGlobalTransform().
|
|---|
| 209 | TransformAxis(theLocalNormal);
|
|---|
| 210 |
|
|---|
| 211 | if (OldMomentum * theGlobalNormal > 0.0) {
|
|---|
| 212 | #ifdef G4DEBUG_OPTICAL
|
|---|
| 213 | G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): "
|
|---|
| 214 | << " theGlobalNormal points the wrong direction "
|
|---|
| 215 | << G4endl;
|
|---|
| 216 | #endif
|
|---|
| 217 | theGlobalNormal = -theGlobalNormal;
|
|---|
| 218 | }
|
|---|
| 219 |
|
|---|
| 220 | G4MaterialPropertiesTable* aMaterialPropertiesTable;
|
|---|
| 221 | G4MaterialPropertyVector* Rindex;
|
|---|
| 222 |
|
|---|
| 223 | aMaterialPropertiesTable = Material1->GetMaterialPropertiesTable();
|
|---|
| 224 | if (aMaterialPropertiesTable) {
|
|---|
| 225 | Rindex = aMaterialPropertiesTable->GetProperty("RINDEX");
|
|---|
| 226 | }
|
|---|
| 227 | else {
|
|---|
| 228 | theStatus = NoRINDEX;
|
|---|
| 229 | if ( verboseLevel > 0) BoundaryProcessVerbose();
|
|---|
| 230 | aParticleChange.ProposeTrackStatus(fStopAndKill);
|
|---|
| 231 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 232 | }
|
|---|
| 233 |
|
|---|
| 234 | if (Rindex) {
|
|---|
| 235 | Rindex1 = Rindex->GetProperty(thePhotonMomentum);
|
|---|
| 236 | }
|
|---|
| 237 | else {
|
|---|
| 238 | theStatus = NoRINDEX;
|
|---|
| 239 | if ( verboseLevel > 0) BoundaryProcessVerbose();
|
|---|
| 240 | aParticleChange.ProposeTrackStatus(fStopAndKill);
|
|---|
| 241 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 242 | }
|
|---|
| 243 |
|
|---|
| 244 | theReflectivity = 1.;
|
|---|
| 245 | theEfficiency = 0.;
|
|---|
| 246 |
|
|---|
| 247 | theModel = glisur;
|
|---|
| 248 | theFinish = polished;
|
|---|
| 249 |
|
|---|
| 250 | G4SurfaceType type = dielectric_dielectric;
|
|---|
| 251 |
|
|---|
| 252 | Rindex = NULL;
|
|---|
| 253 | OpticalSurface = NULL;
|
|---|
| 254 |
|
|---|
| 255 | G4LogicalSurface* Surface = NULL;
|
|---|
| 256 |
|
|---|
| 257 | Surface = G4LogicalBorderSurface::GetSurface
|
|---|
| 258 | (pPreStepPoint ->GetPhysicalVolume(),
|
|---|
| 259 | pPostStepPoint->GetPhysicalVolume());
|
|---|
| 260 |
|
|---|
| 261 | if (Surface == NULL){
|
|---|
| 262 | G4bool enteredDaughter=(pPostStepPoint->GetPhysicalVolume()
|
|---|
| 263 | ->GetMotherLogical() ==
|
|---|
| 264 | pPreStepPoint->GetPhysicalVolume()
|
|---|
| 265 | ->GetLogicalVolume());
|
|---|
| 266 | if(enteredDaughter){
|
|---|
| 267 | Surface = G4LogicalSkinSurface::GetSurface
|
|---|
| 268 | (pPostStepPoint->GetPhysicalVolume()->
|
|---|
| 269 | GetLogicalVolume());
|
|---|
| 270 | if(Surface == NULL)
|
|---|
| 271 | Surface = G4LogicalSkinSurface::GetSurface
|
|---|
| 272 | (pPreStepPoint->GetPhysicalVolume()->
|
|---|
| 273 | GetLogicalVolume());
|
|---|
| 274 | }
|
|---|
| 275 | else {
|
|---|
| 276 | Surface = G4LogicalSkinSurface::GetSurface
|
|---|
| 277 | (pPreStepPoint->GetPhysicalVolume()->
|
|---|
| 278 | GetLogicalVolume());
|
|---|
| 279 | if(Surface == NULL)
|
|---|
| 280 | Surface = G4LogicalSkinSurface::GetSurface
|
|---|
| 281 | (pPostStepPoint->GetPhysicalVolume()->
|
|---|
| 282 | GetLogicalVolume());
|
|---|
| 283 | }
|
|---|
| 284 | }
|
|---|
| 285 |
|
|---|
| 286 | if (Surface) OpticalSurface =
|
|---|
| 287 | dynamic_cast <G4OpticalSurface*> (Surface->GetSurfaceProperty());
|
|---|
| 288 |
|
|---|
| 289 | if (OpticalSurface) {
|
|---|
| 290 |
|
|---|
| 291 | type = OpticalSurface->GetType();
|
|---|
| 292 | theModel = OpticalSurface->GetModel();
|
|---|
| 293 | theFinish = OpticalSurface->GetFinish();
|
|---|
| 294 |
|
|---|
| 295 | aMaterialPropertiesTable = OpticalSurface->
|
|---|
| 296 | GetMaterialPropertiesTable();
|
|---|
| 297 |
|
|---|
| 298 | if (aMaterialPropertiesTable) {
|
|---|
| 299 |
|
|---|
| 300 | if (theFinish == polishedbackpainted ||
|
|---|
| 301 | theFinish == groundbackpainted ) {
|
|---|
| 302 | Rindex = aMaterialPropertiesTable->GetProperty("RINDEX");
|
|---|
| 303 | if (Rindex) {
|
|---|
| 304 | Rindex2 = Rindex->GetProperty(thePhotonMomentum);
|
|---|
| 305 | }
|
|---|
| 306 | else {
|
|---|
| 307 | theStatus = NoRINDEX;
|
|---|
| 308 | if ( verboseLevel > 0) BoundaryProcessVerbose();
|
|---|
| 309 | aParticleChange.ProposeTrackStatus(fStopAndKill);
|
|---|
| 310 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 311 | }
|
|---|
| 312 | }
|
|---|
| 313 |
|
|---|
| 314 | PropertyPointer =
|
|---|
| 315 | aMaterialPropertiesTable->GetProperty("REFLECTIVITY");
|
|---|
| 316 | PropertyPointer1 =
|
|---|
| 317 | aMaterialPropertiesTable->GetProperty("REALRINDEX");
|
|---|
| 318 | PropertyPointer2 =
|
|---|
| 319 | aMaterialPropertiesTable->GetProperty("IMAGINARYRINDEX");
|
|---|
| 320 |
|
|---|
| 321 | iTE = 1;
|
|---|
| 322 | iTM = 1;
|
|---|
| 323 |
|
|---|
| 324 | if (PropertyPointer) {
|
|---|
| 325 |
|
|---|
| 326 | theReflectivity =
|
|---|
| 327 | PropertyPointer->GetProperty(thePhotonMomentum);
|
|---|
| 328 |
|
|---|
| 329 | } else if (PropertyPointer1 && PropertyPointer2) {
|
|---|
| 330 |
|
|---|
| 331 | CalculateReflectivity();
|
|---|
| 332 |
|
|---|
| 333 | }
|
|---|
| 334 |
|
|---|
| 335 | PropertyPointer =
|
|---|
| 336 | aMaterialPropertiesTable->GetProperty("EFFICIENCY");
|
|---|
| 337 | if (PropertyPointer) {
|
|---|
| 338 | theEfficiency =
|
|---|
| 339 | PropertyPointer->GetProperty(thePhotonMomentum);
|
|---|
| 340 | }
|
|---|
| 341 |
|
|---|
| 342 | if ( theModel == unified ) {
|
|---|
| 343 | PropertyPointer =
|
|---|
| 344 | aMaterialPropertiesTable->GetProperty("SPECULARLOBECONSTANT");
|
|---|
| 345 | if (PropertyPointer) {
|
|---|
| 346 | prob_sl =
|
|---|
| 347 | PropertyPointer->GetProperty(thePhotonMomentum);
|
|---|
| 348 | } else {
|
|---|
| 349 | prob_sl = 0.0;
|
|---|
| 350 | }
|
|---|
| 351 |
|
|---|
| 352 | PropertyPointer =
|
|---|
| 353 | aMaterialPropertiesTable->GetProperty("SPECULARSPIKECONSTANT");
|
|---|
| 354 | if (PropertyPointer) {
|
|---|
| 355 | prob_ss =
|
|---|
| 356 | PropertyPointer->GetProperty(thePhotonMomentum);
|
|---|
| 357 | } else {
|
|---|
| 358 | prob_ss = 0.0;
|
|---|
| 359 | }
|
|---|
| 360 |
|
|---|
| 361 | PropertyPointer =
|
|---|
| 362 | aMaterialPropertiesTable->GetProperty("BACKSCATTERCONSTANT");
|
|---|
| 363 | if (PropertyPointer) {
|
|---|
| 364 | prob_bs =
|
|---|
| 365 | PropertyPointer->GetProperty(thePhotonMomentum);
|
|---|
| 366 | } else {
|
|---|
| 367 | prob_bs = 0.0;
|
|---|
| 368 | }
|
|---|
| 369 | }
|
|---|
| 370 | }
|
|---|
| 371 | else if (theFinish == polishedbackpainted ||
|
|---|
| 372 | theFinish == groundbackpainted ) {
|
|---|
| 373 | aParticleChange.ProposeTrackStatus(fStopAndKill);
|
|---|
| 374 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 375 | }
|
|---|
| 376 | }
|
|---|
| 377 |
|
|---|
| 378 | if (type == dielectric_dielectric ) {
|
|---|
| 379 | if (theFinish == polished || theFinish == ground ) {
|
|---|
| 380 |
|
|---|
| 381 | if (Material1 == Material2){
|
|---|
| 382 | theStatus = SameMaterial;
|
|---|
| 383 | if ( verboseLevel > 0) BoundaryProcessVerbose();
|
|---|
| 384 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 385 | }
|
|---|
| 386 | aMaterialPropertiesTable =
|
|---|
| 387 | Material2->GetMaterialPropertiesTable();
|
|---|
| 388 | if (aMaterialPropertiesTable)
|
|---|
| 389 | Rindex = aMaterialPropertiesTable->GetProperty("RINDEX");
|
|---|
| 390 | if (Rindex) {
|
|---|
| 391 | Rindex2 = Rindex->GetProperty(thePhotonMomentum);
|
|---|
| 392 | }
|
|---|
| 393 | else {
|
|---|
| 394 | theStatus = NoRINDEX;
|
|---|
| 395 | if ( verboseLevel > 0) BoundaryProcessVerbose();
|
|---|
| 396 | aParticleChange.ProposeTrackStatus(fStopAndKill);
|
|---|
| 397 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 398 | }
|
|---|
| 399 | }
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 | if (type == dielectric_metal) {
|
|---|
| 403 |
|
|---|
| 404 | DielectricMetal();
|
|---|
| 405 |
|
|---|
| 406 | // Uncomment the following lines if you wish to have
|
|---|
| 407 | // Transmission instead of Absorption
|
|---|
| 408 | // if (theStatus == Absorption) {
|
|---|
| 409 | // return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 410 | // }
|
|---|
| 411 |
|
|---|
| 412 | }
|
|---|
| 413 | else if (type == dielectric_LUT) {
|
|---|
| 414 |
|
|---|
| 415 | DielectricLUT();
|
|---|
| 416 |
|
|---|
| 417 | }
|
|---|
| 418 | else if (type == dielectric_dielectric) {
|
|---|
| 419 |
|
|---|
| 420 | if ( theFinish == polishedfrontpainted ||
|
|---|
| 421 | theFinish == groundfrontpainted ) {
|
|---|
| 422 | if( !G4BooleanRand(theReflectivity) ) {
|
|---|
| 423 | DoAbsorption();
|
|---|
| 424 | }
|
|---|
| 425 | else {
|
|---|
| 426 | if ( theFinish == groundfrontpainted )
|
|---|
| 427 | theStatus = LambertianReflection;
|
|---|
| 428 | DoReflection();
|
|---|
| 429 | }
|
|---|
| 430 | }
|
|---|
| 431 | else {
|
|---|
| 432 | if( !G4BooleanRand(theReflectivity) ) {
|
|---|
| 433 | DoAbsorption();
|
|---|
| 434 | }
|
|---|
| 435 | else {
|
|---|
| 436 | DielectricDielectric();
|
|---|
| 437 | }
|
|---|
| 438 | }
|
|---|
| 439 | }
|
|---|
| 440 | else {
|
|---|
| 441 |
|
|---|
| 442 | G4cerr << " Error: G4BoundaryProcess: illegal boundary type " << G4endl;
|
|---|
| 443 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 444 |
|
|---|
| 445 | }
|
|---|
| 446 |
|
|---|
| 447 | NewMomentum = NewMomentum.unit();
|
|---|
| 448 | NewPolarization = NewPolarization.unit();
|
|---|
| 449 |
|
|---|
| 450 | if ( verboseLevel > 0) {
|
|---|
| 451 | G4cout << " New Momentum Direction: " << NewMomentum << G4endl;
|
|---|
| 452 | G4cout << " New Polarization: " << NewPolarization << G4endl;
|
|---|
| 453 | BoundaryProcessVerbose();
|
|---|
| 454 | }
|
|---|
| 455 |
|
|---|
| 456 | aParticleChange.ProposeMomentumDirection(NewMomentum);
|
|---|
| 457 | aParticleChange.ProposePolarization(NewPolarization);
|
|---|
| 458 |
|
|---|
| 459 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 460 | }
|
|---|
| 461 |
|
|---|
| 462 | void G4OpBoundaryProcess::BoundaryProcessVerbose() const
|
|---|
| 463 | {
|
|---|
| 464 | if ( theStatus == Undefined )
|
|---|
| 465 | G4cout << " *** Undefined *** " << G4endl;
|
|---|
| 466 | if ( theStatus == FresnelRefraction )
|
|---|
| 467 | G4cout << " *** FresnelRefraction *** " << G4endl;
|
|---|
| 468 | if ( theStatus == FresnelReflection )
|
|---|
| 469 | G4cout << " *** FresnelReflection *** " << G4endl;
|
|---|
| 470 | if ( theStatus == TotalInternalReflection )
|
|---|
| 471 | G4cout << " *** TotalInternalReflection *** " << G4endl;
|
|---|
| 472 | if ( theStatus == LambertianReflection )
|
|---|
| 473 | G4cout << " *** LambertianReflection *** " << G4endl;
|
|---|
| 474 | if ( theStatus == LobeReflection )
|
|---|
| 475 | G4cout << " *** LobeReflection *** " << G4endl;
|
|---|
| 476 | if ( theStatus == SpikeReflection )
|
|---|
| 477 | G4cout << " *** SpikeReflection *** " << G4endl;
|
|---|
| 478 | if ( theStatus == BackScattering )
|
|---|
| 479 | G4cout << " *** BackScattering *** " << G4endl;
|
|---|
| 480 | if ( theStatus == PolishedLumirrorAirReflection )
|
|---|
| 481 | G4cout << " *** PolishedLumirrorAirReflection *** " << G4endl;
|
|---|
| 482 | if ( theStatus == PolishedLumirrorGlueReflection )
|
|---|
| 483 | G4cout << " *** PolishedLumirrorGlueReflection *** " << G4endl;
|
|---|
| 484 | if ( theStatus == PolishedAirReflection )
|
|---|
| 485 | G4cout << " *** PolishedAirReflection *** " << G4endl;
|
|---|
| 486 | if ( theStatus == PolishedTeflonAirReflection )
|
|---|
| 487 | G4cout << " *** PolishedTeflonAirReflection *** " << G4endl;
|
|---|
| 488 | if ( theStatus == PolishedTiOAirReflection )
|
|---|
| 489 | G4cout << " *** PolishedTiOAirReflection *** " << G4endl;
|
|---|
| 490 | if ( theStatus == PolishedTyvekAirReflection )
|
|---|
| 491 | G4cout << " *** PolishedTyvekAirReflection *** " << G4endl;
|
|---|
| 492 | if ( theStatus == PolishedVM2000AirReflection )
|
|---|
| 493 | G4cout << " *** PolishedVM2000AirReflection *** " << G4endl;
|
|---|
| 494 | if ( theStatus == PolishedVM2000GlueReflection )
|
|---|
| 495 | G4cout << " *** PolishedVM2000GlueReflection *** " << G4endl;
|
|---|
| 496 | if ( theStatus == EtchedLumirrorAirReflection )
|
|---|
| 497 | G4cout << " *** EtchedLumirrorAirReflection *** " << G4endl;
|
|---|
| 498 | if ( theStatus == EtchedLumirrorGlueReflection )
|
|---|
| 499 | G4cout << " *** EtchedLumirrorGlueReflection *** " << G4endl;
|
|---|
| 500 | if ( theStatus == EtchedAirReflection )
|
|---|
| 501 | G4cout << " *** EtchedAirReflection *** " << G4endl;
|
|---|
| 502 | if ( theStatus == EtchedTeflonAirReflection )
|
|---|
| 503 | G4cout << " *** EtchedTeflonAirReflection *** " << G4endl;
|
|---|
| 504 | if ( theStatus == EtchedTiOAirReflection )
|
|---|
| 505 | G4cout << " *** EtchedTiOAirReflection *** " << G4endl;
|
|---|
| 506 | if ( theStatus == EtchedTyvekAirReflection )
|
|---|
| 507 | G4cout << " *** EtchedTyvekAirReflection *** " << G4endl;
|
|---|
| 508 | if ( theStatus == EtchedVM2000AirReflection )
|
|---|
| 509 | G4cout << " *** EtchedVM2000AirReflection *** " << G4endl;
|
|---|
| 510 | if ( theStatus == EtchedVM2000GlueReflection )
|
|---|
| 511 | G4cout << " *** EtchedVM2000GlueReflection *** " << G4endl;
|
|---|
| 512 | if ( theStatus == GroundLumirrorAirReflection )
|
|---|
| 513 | G4cout << " *** GroundLumirrorAirReflection *** " << G4endl;
|
|---|
| 514 | if ( theStatus == GroundLumirrorGlueReflection )
|
|---|
| 515 | G4cout << " *** GroundLumirrorGlueReflection *** " << G4endl;
|
|---|
| 516 | if ( theStatus == GroundAirReflection )
|
|---|
| 517 | G4cout << " *** GroundAirReflection *** " << G4endl;
|
|---|
| 518 | if ( theStatus == GroundTeflonAirReflection )
|
|---|
| 519 | G4cout << " *** GroundTeflonAirReflection *** " << G4endl;
|
|---|
| 520 | if ( theStatus == GroundTiOAirReflection )
|
|---|
| 521 | G4cout << " *** GroundTiOAirReflection *** " << G4endl;
|
|---|
| 522 | if ( theStatus == GroundTyvekAirReflection )
|
|---|
| 523 | G4cout << " *** GroundTyvekAirReflection *** " << G4endl;
|
|---|
| 524 | if ( theStatus == GroundVM2000AirReflection )
|
|---|
| 525 | G4cout << " *** GroundVM2000AirReflection *** " << G4endl;
|
|---|
| 526 | if ( theStatus == GroundVM2000GlueReflection )
|
|---|
| 527 | G4cout << " *** GroundVM2000GlueReflection *** " << G4endl;
|
|---|
| 528 | if ( theStatus == Absorption )
|
|---|
| 529 | G4cout << " *** Absorption *** " << G4endl;
|
|---|
| 530 | if ( theStatus == Detection )
|
|---|
| 531 | G4cout << " *** Detection *** " << G4endl;
|
|---|
| 532 | if ( theStatus == NotAtBoundary )
|
|---|
| 533 | G4cout << " *** NotAtBoundary *** " << G4endl;
|
|---|
| 534 | if ( theStatus == SameMaterial )
|
|---|
| 535 | G4cout << " *** SameMaterial *** " << G4endl;
|
|---|
| 536 | if ( theStatus == StepTooSmall )
|
|---|
| 537 | G4cout << " *** StepTooSmall *** " << G4endl;
|
|---|
| 538 | if ( theStatus == NoRINDEX )
|
|---|
| 539 | G4cout << " *** NoRINDEX *** " << G4endl;
|
|---|
| 540 | }
|
|---|
| 541 |
|
|---|
| 542 | G4ThreeVector
|
|---|
| 543 | G4OpBoundaryProcess::GetFacetNormal(const G4ThreeVector& Momentum,
|
|---|
| 544 | const G4ThreeVector& Normal ) const
|
|---|
| 545 | {
|
|---|
| 546 | G4ThreeVector FacetNormal;
|
|---|
| 547 |
|
|---|
| 548 | if (theModel == unified || theModel == LUT) {
|
|---|
| 549 |
|
|---|
| 550 | /* This function code alpha to a random value taken from the
|
|---|
| 551 | distribution p(alpha) = g(alpha; 0, sigma_alpha)*std::sin(alpha),
|
|---|
| 552 | for alpha > 0 and alpha < 90, where g(alpha; 0, sigma_alpha)
|
|---|
| 553 | is a gaussian distribution with mean 0 and standard deviation
|
|---|
| 554 | sigma_alpha. */
|
|---|
| 555 |
|
|---|
| 556 | G4double alpha;
|
|---|
| 557 |
|
|---|
| 558 | G4double sigma_alpha = 0.0;
|
|---|
| 559 | if (OpticalSurface) sigma_alpha = OpticalSurface->GetSigmaAlpha();
|
|---|
| 560 |
|
|---|
| 561 | G4double f_max = std::min(1.0,4.*sigma_alpha);
|
|---|
| 562 |
|
|---|
| 563 | do {
|
|---|
| 564 | do {
|
|---|
| 565 | alpha = G4RandGauss::shoot(0.0,sigma_alpha);
|
|---|
| 566 | } while (G4UniformRand()*f_max > std::sin(alpha) || alpha >= halfpi );
|
|---|
| 567 |
|
|---|
| 568 | G4double phi = G4UniformRand()*twopi;
|
|---|
| 569 |
|
|---|
| 570 | G4double SinAlpha = std::sin(alpha);
|
|---|
| 571 | G4double CosAlpha = std::cos(alpha);
|
|---|
| 572 | G4double SinPhi = std::sin(phi);
|
|---|
| 573 | G4double CosPhi = std::cos(phi);
|
|---|
| 574 |
|
|---|
| 575 | G4double unit_x = SinAlpha * CosPhi;
|
|---|
| 576 | G4double unit_y = SinAlpha * SinPhi;
|
|---|
| 577 | G4double unit_z = CosAlpha;
|
|---|
| 578 |
|
|---|
| 579 | FacetNormal.setX(unit_x);
|
|---|
| 580 | FacetNormal.setY(unit_y);
|
|---|
| 581 | FacetNormal.setZ(unit_z);
|
|---|
| 582 |
|
|---|
| 583 | G4ThreeVector tmpNormal = Normal;
|
|---|
| 584 |
|
|---|
| 585 | FacetNormal.rotateUz(tmpNormal);
|
|---|
| 586 | } while (Momentum * FacetNormal >= 0.0);
|
|---|
| 587 | }
|
|---|
| 588 | else {
|
|---|
| 589 |
|
|---|
| 590 | G4double polish = 1.0;
|
|---|
| 591 | if (OpticalSurface) polish = OpticalSurface->GetPolish();
|
|---|
| 592 |
|
|---|
| 593 | if (polish < 1.0) {
|
|---|
| 594 | do {
|
|---|
| 595 | G4ThreeVector smear;
|
|---|
| 596 | do {
|
|---|
| 597 | smear.setX(2.*G4UniformRand()-1.0);
|
|---|
| 598 | smear.setY(2.*G4UniformRand()-1.0);
|
|---|
| 599 | smear.setZ(2.*G4UniformRand()-1.0);
|
|---|
| 600 | } while (smear.mag()>1.0);
|
|---|
| 601 | smear = (1.-polish) * smear;
|
|---|
| 602 | FacetNormal = Normal + smear;
|
|---|
| 603 | } while (Momentum * FacetNormal >= 0.0);
|
|---|
| 604 | FacetNormal = FacetNormal.unit();
|
|---|
| 605 | }
|
|---|
| 606 | else {
|
|---|
| 607 | FacetNormal = Normal;
|
|---|
| 608 | }
|
|---|
| 609 | }
|
|---|
| 610 | return FacetNormal;
|
|---|
| 611 | }
|
|---|
| 612 |
|
|---|
| 613 | void G4OpBoundaryProcess::DielectricMetal()
|
|---|
| 614 | {
|
|---|
| 615 | G4int n = 0;
|
|---|
| 616 |
|
|---|
| 617 | do {
|
|---|
| 618 |
|
|---|
| 619 | n++;
|
|---|
| 620 |
|
|---|
| 621 | if( !G4BooleanRand(theReflectivity) && n == 1 ) {
|
|---|
| 622 |
|
|---|
| 623 | // Comment out DoAbsorption and uncomment theStatus = Absorption;
|
|---|
| 624 | // if you wish to have Transmission instead of Absorption
|
|---|
| 625 |
|
|---|
| 626 | DoAbsorption();
|
|---|
| 627 | // theStatus = Absorption;
|
|---|
| 628 | break;
|
|---|
| 629 |
|
|---|
| 630 | }
|
|---|
| 631 | else {
|
|---|
| 632 |
|
|---|
| 633 | if (PropertyPointer1 && PropertyPointer2) {
|
|---|
| 634 | if ( n > 1 ) {
|
|---|
| 635 | CalculateReflectivity();
|
|---|
| 636 | if ( !G4BooleanRand(theReflectivity) ) {
|
|---|
| 637 | DoAbsorption();
|
|---|
| 638 | break;
|
|---|
| 639 | }
|
|---|
| 640 | }
|
|---|
| 641 | }
|
|---|
| 642 |
|
|---|
| 643 | if ( theModel == glisur || theFinish == polished ) {
|
|---|
| 644 |
|
|---|
| 645 | DoReflection();
|
|---|
| 646 |
|
|---|
| 647 | } else {
|
|---|
| 648 |
|
|---|
| 649 | if ( n == 1 ) ChooseReflection();
|
|---|
| 650 |
|
|---|
| 651 | if ( theStatus == LambertianReflection ) {
|
|---|
| 652 | DoReflection();
|
|---|
| 653 | }
|
|---|
| 654 | else if ( theStatus == BackScattering ) {
|
|---|
| 655 | NewMomentum = -OldMomentum;
|
|---|
| 656 | NewPolarization = -OldPolarization;
|
|---|
| 657 | }
|
|---|
| 658 | else {
|
|---|
| 659 |
|
|---|
| 660 | if(theStatus==LobeReflection){
|
|---|
| 661 | if ( PropertyPointer1 && PropertyPointer2 ){
|
|---|
| 662 | } else {
|
|---|
| 663 | theFacetNormal =
|
|---|
| 664 | GetFacetNormal(OldMomentum,theGlobalNormal);
|
|---|
| 665 | }
|
|---|
| 666 | }
|
|---|
| 667 |
|
|---|
| 668 | G4double PdotN = OldMomentum * theFacetNormal;
|
|---|
| 669 | NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
|
|---|
| 670 | G4double EdotN = OldPolarization * theFacetNormal;
|
|---|
| 671 |
|
|---|
| 672 | G4ThreeVector A_trans, A_paral;
|
|---|
| 673 |
|
|---|
| 674 | if (sint1 > 0.0 ) {
|
|---|
| 675 | A_trans = OldMomentum.cross(theFacetNormal);
|
|---|
| 676 | A_trans = A_trans.unit();
|
|---|
| 677 | } else {
|
|---|
| 678 | A_trans = OldPolarization;
|
|---|
| 679 | }
|
|---|
| 680 | A_paral = NewMomentum.cross(A_trans);
|
|---|
| 681 | A_paral = A_paral.unit();
|
|---|
| 682 |
|
|---|
| 683 | if(iTE>0&&iTM>0) {
|
|---|
| 684 | NewPolarization =
|
|---|
| 685 | -OldPolarization + (2.*EdotN)*theFacetNormal;
|
|---|
| 686 | } else if (iTE>0) {
|
|---|
| 687 | NewPolarization = -A_trans;
|
|---|
| 688 | } else if (iTM>0) {
|
|---|
| 689 | NewPolarization = -A_paral;
|
|---|
| 690 | }
|
|---|
| 691 |
|
|---|
| 692 | }
|
|---|
| 693 |
|
|---|
| 694 | }
|
|---|
| 695 |
|
|---|
| 696 | OldMomentum = NewMomentum;
|
|---|
| 697 | OldPolarization = NewPolarization;
|
|---|
| 698 |
|
|---|
| 699 | }
|
|---|
| 700 |
|
|---|
| 701 | } while (NewMomentum * theGlobalNormal < 0.0);
|
|---|
| 702 | }
|
|---|
| 703 |
|
|---|
| 704 | void G4OpBoundaryProcess::DielectricLUT()
|
|---|
| 705 | {
|
|---|
| 706 | G4int thetaIndex, phiIndex;
|
|---|
| 707 | G4double AngularDistributionValue, thetaRad, phiRad, EdotN;
|
|---|
| 708 | G4ThreeVector PerpendicularVectorTheta, PerpendicularVectorPhi;
|
|---|
| 709 |
|
|---|
| 710 | theStatus = G4OpBoundaryProcessStatus(G4int(theFinish) +
|
|---|
| 711 | (G4int(NoRINDEX)-G4int(groundbackpainted)));
|
|---|
| 712 |
|
|---|
| 713 | G4int thetaIndexMax = OpticalSurface->GetThetaIndexMax();
|
|---|
| 714 | G4int phiIndexMax = OpticalSurface->GetPhiIndexMax();
|
|---|
| 715 |
|
|---|
| 716 | do {
|
|---|
| 717 | if ( !G4BooleanRand(theReflectivity) ) // Not reflected, so Absorbed
|
|---|
| 718 | DoAbsorption();
|
|---|
| 719 | else {
|
|---|
| 720 | // Calculate Angle between Normal and Photon Momentum
|
|---|
| 721 | G4double anglePhotonToNormal =
|
|---|
| 722 | OldMomentum.angle(-theGlobalNormal);
|
|---|
| 723 | // Round it to closest integer
|
|---|
| 724 | G4int angleIncident = G4int(floor(180/pi*anglePhotonToNormal+0.5));
|
|---|
| 725 |
|
|---|
| 726 | // Take random angles THETA and PHI,
|
|---|
| 727 | // and see if below Probability - if not - Redo
|
|---|
| 728 | do {
|
|---|
| 729 | thetaIndex = CLHEP::RandFlat::shootInt(thetaIndexMax-1);
|
|---|
| 730 | phiIndex = CLHEP::RandFlat::shootInt(phiIndexMax-1);
|
|---|
| 731 | // Find probability with the new indeces from LUT
|
|---|
| 732 | AngularDistributionValue = OpticalSurface ->
|
|---|
| 733 | GetAngularDistributionValue(angleIncident,
|
|---|
| 734 | thetaIndex,
|
|---|
| 735 | phiIndex);
|
|---|
| 736 | } while ( !G4BooleanRand(AngularDistributionValue) );
|
|---|
| 737 |
|
|---|
| 738 | thetaRad = (-90 + 4*thetaIndex)*pi/180;
|
|---|
| 739 | phiRad = (-90 + 5*phiIndex)*pi/180;
|
|---|
| 740 | // Rotate Photon Momentum in Theta, then in Phi
|
|---|
| 741 | NewMomentum = -OldMomentum;
|
|---|
| 742 | PerpendicularVectorTheta = NewMomentum.cross(theGlobalNormal);
|
|---|
| 743 | if (PerpendicularVectorTheta.mag() > kCarTolerance ) {
|
|---|
| 744 | PerpendicularVectorPhi =
|
|---|
| 745 | PerpendicularVectorTheta.cross(NewMomentum);
|
|---|
| 746 | }
|
|---|
| 747 | else {
|
|---|
| 748 | PerpendicularVectorTheta = NewMomentum.orthogonal();
|
|---|
| 749 | PerpendicularVectorPhi =
|
|---|
| 750 | PerpendicularVectorTheta.cross(NewMomentum);
|
|---|
| 751 | }
|
|---|
| 752 | NewMomentum =
|
|---|
| 753 | NewMomentum.rotate(anglePhotonToNormal-thetaRad,
|
|---|
| 754 | PerpendicularVectorTheta);
|
|---|
| 755 | NewMomentum = NewMomentum.rotate(-phiRad,PerpendicularVectorPhi);
|
|---|
| 756 | // Rotate Polarization too:
|
|---|
| 757 | theFacetNormal = (NewMomentum - OldMomentum).unit();
|
|---|
| 758 | EdotN = OldPolarization * theFacetNormal;
|
|---|
| 759 | NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;
|
|---|
| 760 | }
|
|---|
| 761 | } while (NewMomentum * theGlobalNormal <= 0.0);
|
|---|
| 762 | }
|
|---|
| 763 |
|
|---|
| 764 | void G4OpBoundaryProcess::DielectricDielectric()
|
|---|
| 765 | {
|
|---|
| 766 | G4bool Inside = false;
|
|---|
| 767 | G4bool Swap = false;
|
|---|
| 768 |
|
|---|
| 769 | leap:
|
|---|
| 770 |
|
|---|
| 771 | G4bool Through = false;
|
|---|
| 772 | G4bool Done = false;
|
|---|
| 773 |
|
|---|
| 774 | do {
|
|---|
| 775 |
|
|---|
| 776 | if (Through) {
|
|---|
| 777 | Swap = !Swap;
|
|---|
| 778 | Through = false;
|
|---|
| 779 | theGlobalNormal = -theGlobalNormal;
|
|---|
| 780 | G4SwapPtr(Material1,Material2);
|
|---|
| 781 | G4SwapObj(&Rindex1,&Rindex2);
|
|---|
| 782 | }
|
|---|
| 783 |
|
|---|
| 784 | if ( theFinish == ground || theFinish == groundbackpainted ) {
|
|---|
| 785 | theFacetNormal =
|
|---|
| 786 | GetFacetNormal(OldMomentum,theGlobalNormal);
|
|---|
| 787 | }
|
|---|
| 788 | else {
|
|---|
| 789 | theFacetNormal = theGlobalNormal;
|
|---|
| 790 | }
|
|---|
| 791 |
|
|---|
| 792 | G4double PdotN = OldMomentum * theFacetNormal;
|
|---|
| 793 | G4double EdotN = OldPolarization * theFacetNormal;
|
|---|
| 794 |
|
|---|
| 795 | cost1 = - PdotN;
|
|---|
| 796 | if (std::abs(cost1) < 1.0-kCarTolerance){
|
|---|
| 797 | sint1 = std::sqrt(1.-cost1*cost1);
|
|---|
| 798 | sint2 = sint1*Rindex1/Rindex2; // *** Snell's Law ***
|
|---|
| 799 | }
|
|---|
| 800 | else {
|
|---|
| 801 | sint1 = 0.0;
|
|---|
| 802 | sint2 = 0.0;
|
|---|
| 803 | }
|
|---|
| 804 |
|
|---|
| 805 | if (sint2 >= 1.0) {
|
|---|
| 806 |
|
|---|
| 807 | // Simulate total internal reflection
|
|---|
| 808 |
|
|---|
| 809 | if (Swap) Swap = !Swap;
|
|---|
| 810 |
|
|---|
| 811 | theStatus = TotalInternalReflection;
|
|---|
| 812 |
|
|---|
| 813 | if ( theModel == unified && theFinish != polished )
|
|---|
| 814 | ChooseReflection();
|
|---|
| 815 |
|
|---|
| 816 | if ( theStatus == LambertianReflection ) {
|
|---|
| 817 | DoReflection();
|
|---|
| 818 | }
|
|---|
| 819 | else if ( theStatus == BackScattering ) {
|
|---|
| 820 | NewMomentum = -OldMomentum;
|
|---|
| 821 | NewPolarization = -OldPolarization;
|
|---|
| 822 | }
|
|---|
| 823 | else {
|
|---|
| 824 |
|
|---|
| 825 | PdotN = OldMomentum * theFacetNormal;
|
|---|
| 826 | NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
|
|---|
| 827 | EdotN = OldPolarization * theFacetNormal;
|
|---|
| 828 | NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;
|
|---|
| 829 |
|
|---|
| 830 | }
|
|---|
| 831 | }
|
|---|
| 832 | else if (sint2 < 1.0) {
|
|---|
| 833 |
|
|---|
| 834 | // Calculate amplitude for transmission (Q = P x N)
|
|---|
| 835 |
|
|---|
| 836 | if (cost1 > 0.0) {
|
|---|
| 837 | cost2 = std::sqrt(1.-sint2*sint2);
|
|---|
| 838 | }
|
|---|
| 839 | else {
|
|---|
| 840 | cost2 = -std::sqrt(1.-sint2*sint2);
|
|---|
| 841 | }
|
|---|
| 842 |
|
|---|
| 843 | G4ThreeVector A_trans, A_paral, E1pp, E1pl;
|
|---|
| 844 | G4double E1_perp, E1_parl;
|
|---|
| 845 |
|
|---|
| 846 | if (sint1 > 0.0) {
|
|---|
| 847 | A_trans = OldMomentum.cross(theFacetNormal);
|
|---|
| 848 | A_trans = A_trans.unit();
|
|---|
| 849 | E1_perp = OldPolarization * A_trans;
|
|---|
| 850 | E1pp = E1_perp * A_trans;
|
|---|
| 851 | E1pl = OldPolarization - E1pp;
|
|---|
| 852 | E1_parl = E1pl.mag();
|
|---|
| 853 | }
|
|---|
| 854 | else {
|
|---|
| 855 | A_trans = OldPolarization;
|
|---|
| 856 | // Here we Follow Jackson's conventions and we set the
|
|---|
| 857 | // parallel component = 1 in case of a ray perpendicular
|
|---|
| 858 | // to the surface
|
|---|
| 859 | E1_perp = 0.0;
|
|---|
| 860 | E1_parl = 1.0;
|
|---|
| 861 | }
|
|---|
| 862 |
|
|---|
| 863 | G4double s1 = Rindex1*cost1;
|
|---|
| 864 | G4double E2_perp = 2.*s1*E1_perp/(Rindex1*cost1+Rindex2*cost2);
|
|---|
| 865 | G4double E2_parl = 2.*s1*E1_parl/(Rindex2*cost1+Rindex1*cost2);
|
|---|
| 866 | G4double E2_total = E2_perp*E2_perp + E2_parl*E2_parl;
|
|---|
| 867 | G4double s2 = Rindex2*cost2*E2_total;
|
|---|
| 868 |
|
|---|
| 869 | G4double TransCoeff;
|
|---|
| 870 |
|
|---|
| 871 | if (cost1 != 0.0) {
|
|---|
| 872 | TransCoeff = s2/s1;
|
|---|
| 873 | }
|
|---|
| 874 | else {
|
|---|
| 875 | TransCoeff = 0.0;
|
|---|
| 876 | }
|
|---|
| 877 |
|
|---|
| 878 | G4double E2_abs, C_parl, C_perp;
|
|---|
| 879 |
|
|---|
| 880 | if ( !G4BooleanRand(TransCoeff) ) {
|
|---|
| 881 |
|
|---|
| 882 | // Simulate reflection
|
|---|
| 883 |
|
|---|
| 884 | if (Swap) Swap = !Swap;
|
|---|
| 885 |
|
|---|
| 886 | theStatus = FresnelReflection;
|
|---|
| 887 |
|
|---|
| 888 | if ( theModel == unified && theFinish != polished )
|
|---|
| 889 | ChooseReflection();
|
|---|
| 890 |
|
|---|
| 891 | if ( theStatus == LambertianReflection ) {
|
|---|
| 892 | DoReflection();
|
|---|
| 893 | }
|
|---|
| 894 | else if ( theStatus == BackScattering ) {
|
|---|
| 895 | NewMomentum = -OldMomentum;
|
|---|
| 896 | NewPolarization = -OldPolarization;
|
|---|
| 897 | }
|
|---|
| 898 | else {
|
|---|
| 899 |
|
|---|
| 900 | PdotN = OldMomentum * theFacetNormal;
|
|---|
| 901 | NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
|
|---|
| 902 |
|
|---|
| 903 | if (sint1 > 0.0) { // incident ray oblique
|
|---|
| 904 |
|
|---|
| 905 | E2_parl = Rindex2*E2_parl/Rindex1 - E1_parl;
|
|---|
| 906 | E2_perp = E2_perp - E1_perp;
|
|---|
| 907 | E2_total = E2_perp*E2_perp + E2_parl*E2_parl;
|
|---|
| 908 | A_paral = NewMomentum.cross(A_trans);
|
|---|
| 909 | A_paral = A_paral.unit();
|
|---|
| 910 | E2_abs = std::sqrt(E2_total);
|
|---|
| 911 | C_parl = E2_parl/E2_abs;
|
|---|
| 912 | C_perp = E2_perp/E2_abs;
|
|---|
| 913 |
|
|---|
| 914 | NewPolarization = C_parl*A_paral + C_perp*A_trans;
|
|---|
| 915 |
|
|---|
| 916 | }
|
|---|
| 917 |
|
|---|
| 918 | else { // incident ray perpendicular
|
|---|
| 919 |
|
|---|
| 920 | if (Rindex2 > Rindex1) {
|
|---|
| 921 | NewPolarization = - OldPolarization;
|
|---|
| 922 | }
|
|---|
| 923 | else {
|
|---|
| 924 | NewPolarization = OldPolarization;
|
|---|
| 925 | }
|
|---|
| 926 |
|
|---|
| 927 | }
|
|---|
| 928 | }
|
|---|
| 929 | }
|
|---|
| 930 | else { // photon gets transmitted
|
|---|
| 931 |
|
|---|
| 932 | // Simulate transmission/refraction
|
|---|
| 933 |
|
|---|
| 934 | Inside = !Inside;
|
|---|
| 935 | Through = true;
|
|---|
| 936 | theStatus = FresnelRefraction;
|
|---|
| 937 |
|
|---|
| 938 | if (sint1 > 0.0) { // incident ray oblique
|
|---|
| 939 |
|
|---|
| 940 | G4double alpha = cost1 - cost2*(Rindex2/Rindex1);
|
|---|
| 941 | NewMomentum = OldMomentum + alpha*theFacetNormal;
|
|---|
| 942 | NewMomentum = NewMomentum.unit();
|
|---|
| 943 | PdotN = -cost2;
|
|---|
| 944 | A_paral = NewMomentum.cross(A_trans);
|
|---|
| 945 | A_paral = A_paral.unit();
|
|---|
| 946 | E2_abs = std::sqrt(E2_total);
|
|---|
| 947 | C_parl = E2_parl/E2_abs;
|
|---|
| 948 | C_perp = E2_perp/E2_abs;
|
|---|
| 949 |
|
|---|
| 950 | NewPolarization = C_parl*A_paral + C_perp*A_trans;
|
|---|
| 951 |
|
|---|
| 952 | }
|
|---|
| 953 | else { // incident ray perpendicular
|
|---|
| 954 |
|
|---|
| 955 | NewMomentum = OldMomentum;
|
|---|
| 956 | NewPolarization = OldPolarization;
|
|---|
| 957 |
|
|---|
| 958 | }
|
|---|
| 959 | }
|
|---|
| 960 | }
|
|---|
| 961 |
|
|---|
| 962 | OldMomentum = NewMomentum.unit();
|
|---|
| 963 | OldPolarization = NewPolarization.unit();
|
|---|
| 964 |
|
|---|
| 965 | if (theStatus == FresnelRefraction) {
|
|---|
| 966 | Done = (NewMomentum * theGlobalNormal <= 0.0);
|
|---|
| 967 | }
|
|---|
| 968 | else {
|
|---|
| 969 | Done = (NewMomentum * theGlobalNormal >= 0.0);
|
|---|
| 970 | }
|
|---|
| 971 |
|
|---|
| 972 | } while (!Done);
|
|---|
| 973 |
|
|---|
| 974 | if (Inside && !Swap) {
|
|---|
| 975 | if( theFinish == polishedbackpainted ||
|
|---|
| 976 | theFinish == groundbackpainted ) {
|
|---|
| 977 |
|
|---|
| 978 | if( !G4BooleanRand(theReflectivity) ) {
|
|---|
| 979 | DoAbsorption();
|
|---|
| 980 | }
|
|---|
| 981 | else {
|
|---|
| 982 | if (theStatus != FresnelRefraction ) {
|
|---|
| 983 | theGlobalNormal = -theGlobalNormal;
|
|---|
| 984 | }
|
|---|
| 985 | else {
|
|---|
| 986 | Swap = !Swap;
|
|---|
| 987 | G4SwapPtr(Material1,Material2);
|
|---|
| 988 | G4SwapObj(&Rindex1,&Rindex2);
|
|---|
| 989 | }
|
|---|
| 990 | if ( theFinish == groundbackpainted )
|
|---|
| 991 | theStatus = LambertianReflection;
|
|---|
| 992 |
|
|---|
| 993 | DoReflection();
|
|---|
| 994 |
|
|---|
| 995 | theGlobalNormal = -theGlobalNormal;
|
|---|
| 996 | OldMomentum = NewMomentum;
|
|---|
| 997 |
|
|---|
| 998 | goto leap;
|
|---|
| 999 | }
|
|---|
| 1000 | }
|
|---|
| 1001 | }
|
|---|
| 1002 | }
|
|---|
| 1003 |
|
|---|
| 1004 | // GetMeanFreePath
|
|---|
| 1005 | // ---------------
|
|---|
| 1006 | //
|
|---|
| 1007 | G4double G4OpBoundaryProcess::GetMeanFreePath(const G4Track& ,
|
|---|
| 1008 | G4double ,
|
|---|
| 1009 | G4ForceCondition* condition)
|
|---|
| 1010 | {
|
|---|
| 1011 | *condition = Forced;
|
|---|
| 1012 |
|
|---|
| 1013 | return DBL_MAX;
|
|---|
| 1014 | }
|
|---|
| 1015 |
|
|---|
| 1016 | G4double G4OpBoundaryProcess::GetIncidentAngle()
|
|---|
| 1017 | {
|
|---|
| 1018 | G4double PdotN = OldMomentum * theFacetNormal;
|
|---|
| 1019 | G4double magP= OldMomentum.mag();
|
|---|
| 1020 | G4double magN= theFacetNormal.mag();
|
|---|
| 1021 | G4double incidentangle = pi - std::acos(PdotN/(magP*magN));
|
|---|
| 1022 |
|
|---|
| 1023 | return incidentangle;
|
|---|
| 1024 | }
|
|---|
| 1025 |
|
|---|
| 1026 | G4double G4OpBoundaryProcess::GetReflectivity(G4double E1_perp,
|
|---|
| 1027 | G4double E1_parl,
|
|---|
| 1028 | G4double incidentangle,
|
|---|
| 1029 | G4double RealRindex,
|
|---|
| 1030 | G4double ImaginaryRindex)
|
|---|
| 1031 | {
|
|---|
| 1032 |
|
|---|
| 1033 | G4complex Reflectivity, Reflectivity_TE, Reflectivity_TM;
|
|---|
| 1034 | G4complex N(RealRindex, ImaginaryRindex);
|
|---|
| 1035 | G4complex CosPhi;
|
|---|
| 1036 |
|
|---|
| 1037 | G4complex u(1,0); //unit number 1
|
|---|
| 1038 |
|
|---|
| 1039 | G4complex numeratorTE; // E1_perp=1 E1_parl=0 -> TE polarization
|
|---|
| 1040 | G4complex numeratorTM; // E1_parl=1 E1_perp=0 -> TM polarization
|
|---|
| 1041 | G4complex denominatorTE, denominatorTM;
|
|---|
| 1042 | G4complex rTM, rTE;
|
|---|
| 1043 |
|
|---|
| 1044 | // Following two equations, rTM and rTE, are from: "Introduction To Modern
|
|---|
| 1045 | // Optics" written by Fowles
|
|---|
| 1046 |
|
|---|
| 1047 | CosPhi=std::sqrt(u-((std::sin(incidentangle)*std::sin(incidentangle))/(N*N)));
|
|---|
| 1048 |
|
|---|
| 1049 | numeratorTE = std::cos(incidentangle) - N*CosPhi;
|
|---|
| 1050 | denominatorTE = std::cos(incidentangle) + N*CosPhi;
|
|---|
| 1051 | rTE = numeratorTE/denominatorTE;
|
|---|
| 1052 |
|
|---|
| 1053 | numeratorTM = N*std::cos(incidentangle) - CosPhi;
|
|---|
| 1054 | denominatorTM = N*std::cos(incidentangle) + CosPhi;
|
|---|
| 1055 | rTM = numeratorTM/denominatorTM;
|
|---|
| 1056 |
|
|---|
| 1057 | // This is my calculaton for reflectivity on a metalic surface
|
|---|
| 1058 | // depending on the fraction of TE and TM polarization
|
|---|
| 1059 | // when TE polarization, E1_parl=0 and E1_perp=1, R=abs(rTE)^2 and
|
|---|
| 1060 | // when TM polarization, E1_parl=1 and E1_perp=0, R=abs(rTM)^2
|
|---|
| 1061 |
|
|---|
| 1062 | Reflectivity_TE = (rTE*conj(rTE))*(E1_perp*E1_perp)
|
|---|
| 1063 | / (E1_perp*E1_perp + E1_parl*E1_parl);
|
|---|
| 1064 | Reflectivity_TM = (rTM*conj(rTM))*(E1_parl*E1_parl)
|
|---|
| 1065 | / (E1_perp*E1_perp + E1_parl*E1_parl);
|
|---|
| 1066 | Reflectivity = Reflectivity_TE + Reflectivity_TM;
|
|---|
| 1067 |
|
|---|
| 1068 | do {
|
|---|
| 1069 | if(G4UniformRand()*real(Reflectivity) > real(Reflectivity_TE))
|
|---|
| 1070 | {iTE = -1;}else{iTE = 1;}
|
|---|
| 1071 | if(G4UniformRand()*real(Reflectivity) > real(Reflectivity_TM))
|
|---|
| 1072 | {iTM = -1;}else{iTM = 1;}
|
|---|
| 1073 | } while(iTE<0&&iTM<0);
|
|---|
| 1074 |
|
|---|
| 1075 | return real(Reflectivity);
|
|---|
| 1076 |
|
|---|
| 1077 | }
|
|---|
| 1078 |
|
|---|
| 1079 | void G4OpBoundaryProcess::CalculateReflectivity()
|
|---|
| 1080 | {
|
|---|
| 1081 | G4double RealRindex =
|
|---|
| 1082 | PropertyPointer1->GetProperty(thePhotonMomentum);
|
|---|
| 1083 | G4double ImaginaryRindex =
|
|---|
| 1084 | PropertyPointer2->GetProperty(thePhotonMomentum);
|
|---|
| 1085 |
|
|---|
| 1086 | // calculate FacetNormal
|
|---|
| 1087 | if ( theFinish == ground ) {
|
|---|
| 1088 | theFacetNormal =
|
|---|
| 1089 | GetFacetNormal(OldMomentum, theGlobalNormal);
|
|---|
| 1090 | } else {
|
|---|
| 1091 | theFacetNormal = theGlobalNormal;
|
|---|
| 1092 | }
|
|---|
| 1093 |
|
|---|
| 1094 | G4double PdotN = OldMomentum * theFacetNormal;
|
|---|
| 1095 | cost1 = -PdotN;
|
|---|
| 1096 |
|
|---|
| 1097 | if (std::abs(cost1) < 1.0 - kCarTolerance) {
|
|---|
| 1098 | sint1 = std::sqrt(1. - cost1*cost1);
|
|---|
| 1099 | } else {
|
|---|
| 1100 | sint1 = 0.0;
|
|---|
| 1101 | }
|
|---|
| 1102 |
|
|---|
| 1103 | G4ThreeVector A_trans, A_paral, E1pp, E1pl;
|
|---|
| 1104 | G4double E1_perp, E1_parl;
|
|---|
| 1105 |
|
|---|
| 1106 | if (sint1 > 0.0 ) {
|
|---|
| 1107 | A_trans = OldMomentum.cross(theFacetNormal);
|
|---|
| 1108 | A_trans = A_trans.unit();
|
|---|
| 1109 | E1_perp = OldPolarization * A_trans;
|
|---|
| 1110 | E1pp = E1_perp * A_trans;
|
|---|
| 1111 | E1pl = OldPolarization - E1pp;
|
|---|
| 1112 | E1_parl = E1pl.mag();
|
|---|
| 1113 | }
|
|---|
| 1114 | else {
|
|---|
| 1115 | A_trans = OldPolarization;
|
|---|
| 1116 | // Here we Follow Jackson's conventions and we set the
|
|---|
| 1117 | // parallel component = 1 in case of a ray perpendicular
|
|---|
| 1118 | // to the surface
|
|---|
| 1119 | E1_perp = 0.0;
|
|---|
| 1120 | E1_parl = 1.0;
|
|---|
| 1121 | }
|
|---|
| 1122 |
|
|---|
| 1123 | //calculate incident angle
|
|---|
| 1124 | G4double incidentangle = GetIncidentAngle();
|
|---|
| 1125 |
|
|---|
| 1126 | //calculate the reflectivity depending on incident angle,
|
|---|
| 1127 | //polarization and complex refractive
|
|---|
| 1128 |
|
|---|
| 1129 | theReflectivity =
|
|---|
| 1130 | GetReflectivity(E1_perp, E1_parl, incidentangle,
|
|---|
| 1131 | RealRindex, ImaginaryRindex);
|
|---|
| 1132 | }
|
|---|