| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4OpRayleigh.cc,v 1.19 2010/10/29 23:18:35 gum Exp $
|
|---|
| 28 | // GEANT4 tag $Name: op-V09-03-06 $
|
|---|
| 29 | //
|
|---|
| 30 | //
|
|---|
| 31 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 32 | // Optical Photon Rayleigh Scattering Class Implementation
|
|---|
| 33 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 34 | //
|
|---|
| 35 | // File: G4OpRayleigh.cc
|
|---|
| 36 | // Description: Discrete Process -- Rayleigh scattering of optical
|
|---|
| 37 | // photons
|
|---|
| 38 | // Version: 1.0
|
|---|
| 39 | // Created: 1996-05-31
|
|---|
| 40 | // Author: Juliet Armstrong
|
|---|
| 41 | // Updated: 2010-06-11 - Fix Bug 207; Thanks to Xin Qian
|
|---|
| 42 | // (Kellogg Radiation Lab of Caltech)
|
|---|
| 43 | // 2005-07-28 - add G4ProcessType to constructor
|
|---|
| 44 | // 2001-10-18 by Peter Gumplinger
|
|---|
| 45 | // eliminate unused variable warning on Linux (gcc-2.95.2)
|
|---|
| 46 | // 2001-09-18 by mma
|
|---|
| 47 | // >numOfMaterials=G4Material::GetNumberOfMaterials() in BuildPhy
|
|---|
| 48 | // 2001-01-30 by Peter Gumplinger
|
|---|
| 49 | // > allow for positiv and negative CosTheta and force the
|
|---|
| 50 | // > new momentum direction to be in the same plane as the
|
|---|
| 51 | // > new and old polarization vectors
|
|---|
| 52 | // 2001-01-29 by Peter Gumplinger
|
|---|
| 53 | // > fix calculation of SinTheta (from CosTheta)
|
|---|
| 54 | // 1997-04-09 by Peter Gumplinger
|
|---|
| 55 | // > new physics/tracking scheme
|
|---|
| 56 | // mail: gum@triumf.ca
|
|---|
| 57 | //
|
|---|
| 58 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 59 |
|
|---|
| 60 | #include "G4ios.hh"
|
|---|
| 61 | #include "G4OpProcessSubType.hh"
|
|---|
| 62 |
|
|---|
| 63 | #include "G4OpRayleigh.hh"
|
|---|
| 64 |
|
|---|
| 65 | /////////////////////////
|
|---|
| 66 | // Class Implementation
|
|---|
| 67 | /////////////////////////
|
|---|
| 68 |
|
|---|
| 69 | //////////////
|
|---|
| 70 | // Operators
|
|---|
| 71 | //////////////
|
|---|
| 72 |
|
|---|
| 73 | // G4OpRayleigh::operator=(const G4OpRayleigh &right)
|
|---|
| 74 | // {
|
|---|
| 75 | // }
|
|---|
| 76 |
|
|---|
| 77 | /////////////////
|
|---|
| 78 | // Constructors
|
|---|
| 79 | /////////////////
|
|---|
| 80 |
|
|---|
| 81 | G4OpRayleigh::G4OpRayleigh(const G4String& processName, G4ProcessType type)
|
|---|
| 82 | : G4VDiscreteProcess(processName, type)
|
|---|
| 83 | {
|
|---|
| 84 | SetProcessSubType(fOpRayleigh);
|
|---|
| 85 |
|
|---|
| 86 | thePhysicsTable = 0;
|
|---|
| 87 |
|
|---|
| 88 | DefaultWater = false;
|
|---|
| 89 |
|
|---|
| 90 | if (verboseLevel>0) {
|
|---|
| 91 | G4cout << GetProcessName() << " is created " << G4endl;
|
|---|
| 92 | }
|
|---|
| 93 |
|
|---|
| 94 | BuildThePhysicsTable();
|
|---|
| 95 | }
|
|---|
| 96 |
|
|---|
| 97 | // G4OpRayleigh::G4OpRayleigh(const G4OpRayleigh &right)
|
|---|
| 98 | // {
|
|---|
| 99 | // }
|
|---|
| 100 |
|
|---|
| 101 | ////////////////
|
|---|
| 102 | // Destructors
|
|---|
| 103 | ////////////////
|
|---|
| 104 |
|
|---|
| 105 | G4OpRayleigh::~G4OpRayleigh()
|
|---|
| 106 | {
|
|---|
| 107 | if (thePhysicsTable!= 0) {
|
|---|
| 108 | thePhysicsTable->clearAndDestroy();
|
|---|
| 109 | delete thePhysicsTable;
|
|---|
| 110 | }
|
|---|
| 111 | }
|
|---|
| 112 |
|
|---|
| 113 | ////////////
|
|---|
| 114 | // Methods
|
|---|
| 115 | ////////////
|
|---|
| 116 |
|
|---|
| 117 | // PostStepDoIt
|
|---|
| 118 | // -------------
|
|---|
| 119 | //
|
|---|
| 120 | G4VParticleChange*
|
|---|
| 121 | G4OpRayleigh::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
|
|---|
| 122 | {
|
|---|
| 123 | aParticleChange.Initialize(aTrack);
|
|---|
| 124 |
|
|---|
| 125 | const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
|
|---|
| 126 |
|
|---|
| 127 | if (verboseLevel>0) {
|
|---|
| 128 | G4cout << "Scattering Photon!" << G4endl;
|
|---|
| 129 | G4cout << "Old Momentum Direction: "
|
|---|
| 130 | << aParticle->GetMomentumDirection() << G4endl;
|
|---|
| 131 | G4cout << "Old Polarization: "
|
|---|
| 132 | << aParticle->GetPolarization() << G4endl;
|
|---|
| 133 | }
|
|---|
| 134 |
|
|---|
| 135 | G4double cosTheta;
|
|---|
| 136 | G4ThreeVector OldMomentumDirection, NewMomentumDirection;
|
|---|
| 137 | G4ThreeVector OldPolarization, NewPolarization;
|
|---|
| 138 |
|
|---|
| 139 | do {
|
|---|
| 140 | // Try to simulate the scattered photon momentum direction
|
|---|
| 141 | // w.r.t. the initial photon momentum direction
|
|---|
| 142 |
|
|---|
| 143 | G4double CosTheta = G4UniformRand();
|
|---|
| 144 | G4double SinTheta = std::sqrt(1.-CosTheta*CosTheta);
|
|---|
| 145 | // consider for the angle 90-180 degrees
|
|---|
| 146 | if (G4UniformRand() < 0.5) CosTheta = -CosTheta;
|
|---|
| 147 |
|
|---|
| 148 | // simulate the phi angle
|
|---|
| 149 | G4double rand = twopi*G4UniformRand();
|
|---|
| 150 | G4double SinPhi = std::sin(rand);
|
|---|
| 151 | G4double CosPhi = std::cos(rand);
|
|---|
| 152 |
|
|---|
| 153 | // start constructing the new momentum direction
|
|---|
| 154 | G4double unit_x = SinTheta * CosPhi;
|
|---|
| 155 | G4double unit_y = SinTheta * SinPhi;
|
|---|
| 156 | G4double unit_z = CosTheta;
|
|---|
| 157 | NewMomentumDirection.set (unit_x,unit_y,unit_z);
|
|---|
| 158 |
|
|---|
| 159 | // Rotate the new momentum direction into global reference system
|
|---|
| 160 | OldMomentumDirection = aParticle->GetMomentumDirection();
|
|---|
| 161 | OldMomentumDirection = OldMomentumDirection.unit();
|
|---|
| 162 | NewMomentumDirection.rotateUz(OldMomentumDirection);
|
|---|
| 163 | NewMomentumDirection = NewMomentumDirection.unit();
|
|---|
| 164 |
|
|---|
| 165 | // calculate the new polarization direction
|
|---|
| 166 | // The new polarization needs to be in the same plane as the new
|
|---|
| 167 | // momentum direction and the old polarization direction
|
|---|
| 168 | OldPolarization = aParticle->GetPolarization();
|
|---|
| 169 | G4double constant = -1./NewMomentumDirection.dot(OldPolarization);
|
|---|
| 170 |
|
|---|
| 171 | NewPolarization = NewMomentumDirection + constant*OldPolarization;
|
|---|
| 172 | NewPolarization = NewPolarization.unit();
|
|---|
| 173 |
|
|---|
| 174 | // There is a corner case, where the Newmomentum direction
|
|---|
| 175 | // is the same as oldpolariztion direction:
|
|---|
| 176 | // random generate the azimuthal angle w.r.t. Newmomentum direction
|
|---|
| 177 | if (NewPolarization.mag() == 0.) {
|
|---|
| 178 | rand = G4UniformRand()*twopi;
|
|---|
| 179 | NewPolarization.set(std::cos(rand),std::sin(rand),0.);
|
|---|
| 180 | NewPolarization.rotateUz(NewMomentumDirection);
|
|---|
| 181 | } else {
|
|---|
| 182 | // There are two directions which are perpendicular
|
|---|
| 183 | // to the new momentum direction
|
|---|
| 184 | if (G4UniformRand() < 0.5) NewPolarization = -NewPolarization;
|
|---|
| 185 | }
|
|---|
| 186 |
|
|---|
| 187 | // simulate according to the distribution cos^2(theta)
|
|---|
| 188 | cosTheta = NewPolarization.dot(OldPolarization);
|
|---|
| 189 | } while (std::pow(cosTheta,2) < G4UniformRand());
|
|---|
| 190 |
|
|---|
| 191 | aParticleChange.ProposePolarization(NewPolarization);
|
|---|
| 192 | aParticleChange.ProposeMomentumDirection(NewMomentumDirection);
|
|---|
| 193 |
|
|---|
| 194 | if (verboseLevel>0) {
|
|---|
| 195 | G4cout << "New Polarization: "
|
|---|
| 196 | << NewPolarization << G4endl;
|
|---|
| 197 | G4cout << "Polarization Change: "
|
|---|
| 198 | << *(aParticleChange.GetPolarization()) << G4endl;
|
|---|
| 199 | G4cout << "New Momentum Direction: "
|
|---|
| 200 | << NewMomentumDirection << G4endl;
|
|---|
| 201 | G4cout << "Momentum Change: "
|
|---|
| 202 | << *(aParticleChange.GetMomentumDirection()) << G4endl;
|
|---|
| 203 | }
|
|---|
| 204 |
|
|---|
| 205 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 | // BuildThePhysicsTable for the Rayleigh Scattering process
|
|---|
| 209 | // --------------------------------------------------------
|
|---|
| 210 | //
|
|---|
| 211 | void G4OpRayleigh::BuildThePhysicsTable()
|
|---|
| 212 | {
|
|---|
| 213 | // Builds a table of scattering lengths for each material
|
|---|
| 214 |
|
|---|
| 215 | if (thePhysicsTable) return;
|
|---|
| 216 |
|
|---|
| 217 | const G4MaterialTable* theMaterialTable=
|
|---|
| 218 | G4Material::GetMaterialTable();
|
|---|
| 219 | G4int numOfMaterials = G4Material::GetNumberOfMaterials();
|
|---|
| 220 |
|
|---|
| 221 | // create a new physics table
|
|---|
| 222 |
|
|---|
| 223 | thePhysicsTable = new G4PhysicsTable(numOfMaterials);
|
|---|
| 224 |
|
|---|
| 225 | // loop for materials
|
|---|
| 226 |
|
|---|
| 227 | for (G4int i=0 ; i < numOfMaterials; i++)
|
|---|
| 228 | {
|
|---|
| 229 | G4PhysicsOrderedFreeVector* ScatteringLengths = NULL;
|
|---|
| 230 |
|
|---|
| 231 | G4MaterialPropertiesTable *aMaterialPropertiesTable =
|
|---|
| 232 | (*theMaterialTable)[i]->GetMaterialPropertiesTable();
|
|---|
| 233 |
|
|---|
| 234 | if(aMaterialPropertiesTable){
|
|---|
| 235 |
|
|---|
| 236 | G4MaterialPropertyVector* AttenuationLengthVector =
|
|---|
| 237 | aMaterialPropertiesTable->GetProperty("RAYLEIGH");
|
|---|
| 238 |
|
|---|
| 239 | if(!AttenuationLengthVector){
|
|---|
| 240 |
|
|---|
| 241 | if ((*theMaterialTable)[i]->GetName() == "Water")
|
|---|
| 242 | {
|
|---|
| 243 | // Call utility routine to Generate
|
|---|
| 244 | // Rayleigh Scattering Lengths
|
|---|
| 245 |
|
|---|
| 246 | DefaultWater = true;
|
|---|
| 247 |
|
|---|
| 248 | ScatteringLengths =
|
|---|
| 249 | RayleighAttenuationLengthGenerator(aMaterialPropertiesTable);
|
|---|
| 250 | }
|
|---|
| 251 | }
|
|---|
| 252 | }
|
|---|
| 253 |
|
|---|
| 254 | thePhysicsTable->insertAt(i,ScatteringLengths);
|
|---|
| 255 | }
|
|---|
| 256 | }
|
|---|
| 257 |
|
|---|
| 258 | // GetMeanFreePath()
|
|---|
| 259 | // -----------------
|
|---|
| 260 | //
|
|---|
| 261 | G4double G4OpRayleigh::GetMeanFreePath(const G4Track& aTrack,
|
|---|
| 262 | G4double ,
|
|---|
| 263 | G4ForceCondition* )
|
|---|
| 264 | {
|
|---|
| 265 | const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
|
|---|
| 266 | const G4Material* aMaterial = aTrack.GetMaterial();
|
|---|
| 267 |
|
|---|
| 268 | G4double thePhotonEnergy = aParticle->GetTotalEnergy();
|
|---|
| 269 |
|
|---|
| 270 | G4double AttenuationLength = DBL_MAX;
|
|---|
| 271 |
|
|---|
| 272 | if (aMaterial->GetName() == "Water" && DefaultWater){
|
|---|
| 273 |
|
|---|
| 274 | G4bool isOutRange;
|
|---|
| 275 |
|
|---|
| 276 | AttenuationLength =
|
|---|
| 277 | (*thePhysicsTable)(aMaterial->GetIndex())->
|
|---|
| 278 | GetValue(thePhotonEnergy, isOutRange);
|
|---|
| 279 | }
|
|---|
| 280 | else {
|
|---|
| 281 |
|
|---|
| 282 | G4MaterialPropertiesTable* aMaterialPropertyTable =
|
|---|
| 283 | aMaterial->GetMaterialPropertiesTable();
|
|---|
| 284 |
|
|---|
| 285 | if(aMaterialPropertyTable){
|
|---|
| 286 | G4MaterialPropertyVector* AttenuationLengthVector =
|
|---|
| 287 | aMaterialPropertyTable->GetProperty("RAYLEIGH");
|
|---|
| 288 | if(AttenuationLengthVector){
|
|---|
| 289 | AttenuationLength = AttenuationLengthVector ->
|
|---|
| 290 | GetProperty(thePhotonEnergy);
|
|---|
| 291 | }
|
|---|
| 292 | else{
|
|---|
| 293 | // G4cout << "No Rayleigh scattering length specified" << G4endl;
|
|---|
| 294 | }
|
|---|
| 295 | }
|
|---|
| 296 | else{
|
|---|
| 297 | // G4cout << "No Rayleigh scattering length specified" << G4endl;
|
|---|
| 298 | }
|
|---|
| 299 | }
|
|---|
| 300 |
|
|---|
| 301 | return AttenuationLength;
|
|---|
| 302 | }
|
|---|
| 303 |
|
|---|
| 304 | // RayleighAttenuationLengthGenerator()
|
|---|
| 305 | // ------------------------------------
|
|---|
| 306 | // Private method to compute Rayleigh Scattering Lengths (for water)
|
|---|
| 307 | //
|
|---|
| 308 | G4PhysicsOrderedFreeVector*
|
|---|
| 309 | G4OpRayleigh::RayleighAttenuationLengthGenerator(G4MaterialPropertiesTable *aMPT)
|
|---|
| 310 | {
|
|---|
| 311 | // Physical Constants
|
|---|
| 312 |
|
|---|
| 313 | // isothermal compressibility of water
|
|---|
| 314 | G4double betat = 7.658e-23*m3/MeV;
|
|---|
| 315 |
|
|---|
| 316 | // K Boltzman
|
|---|
| 317 | G4double kboltz = 8.61739e-11*MeV/kelvin;
|
|---|
| 318 |
|
|---|
| 319 | // Temperature of water is 10 degrees celsius
|
|---|
| 320 | // conversion to kelvin:
|
|---|
| 321 | // TCelsius = TKelvin - 273.15 => 273.15 + 10 = 283.15
|
|---|
| 322 | G4double temp = 283.15*kelvin;
|
|---|
| 323 |
|
|---|
| 324 | // Retrieve vectors for refraction index
|
|---|
| 325 | // and photon energy from the material properties table
|
|---|
| 326 |
|
|---|
| 327 | G4MaterialPropertyVector* Rindex = aMPT->GetProperty("RINDEX");
|
|---|
| 328 |
|
|---|
| 329 | G4double refsq;
|
|---|
| 330 | G4double e;
|
|---|
| 331 | G4double xlambda;
|
|---|
| 332 | G4double c1, c2, c3, c4;
|
|---|
| 333 | G4double Dist;
|
|---|
| 334 | G4double refraction_index;
|
|---|
| 335 |
|
|---|
| 336 | G4PhysicsOrderedFreeVector *RayleighScatteringLengths =
|
|---|
| 337 | new G4PhysicsOrderedFreeVector();
|
|---|
| 338 |
|
|---|
| 339 | if (Rindex ) {
|
|---|
| 340 |
|
|---|
| 341 | Rindex->ResetIterator();
|
|---|
| 342 |
|
|---|
| 343 | while (++(*Rindex)) {
|
|---|
| 344 |
|
|---|
| 345 | e = (Rindex->GetPhotonEnergy());
|
|---|
| 346 |
|
|---|
| 347 | refraction_index = Rindex->GetProperty();
|
|---|
| 348 | refsq = refraction_index*refraction_index;
|
|---|
| 349 | xlambda = h_Planck*c_light/e;
|
|---|
| 350 |
|
|---|
| 351 | if (verboseLevel>0) {
|
|---|
| 352 | G4cout << Rindex->GetPhotonEnergy() << " MeV\t";
|
|---|
| 353 | G4cout << xlambda << " mm\t";
|
|---|
| 354 | }
|
|---|
| 355 |
|
|---|
| 356 | c1 = 1 / (6.0 * pi);
|
|---|
| 357 | c2 = std::pow((2.0 * pi / xlambda), 4);
|
|---|
| 358 | c3 = std::pow( ( (refsq - 1.0) * (refsq + 2.0) / 3.0 ), 2);
|
|---|
| 359 | c4 = betat * temp * kboltz;
|
|---|
| 360 |
|
|---|
| 361 | Dist = 1.0 / (c1*c2*c3*c4);
|
|---|
| 362 |
|
|---|
| 363 | if (verboseLevel>0) {
|
|---|
| 364 | G4cout << Dist << " mm" << G4endl;
|
|---|
| 365 | }
|
|---|
| 366 | RayleighScatteringLengths->
|
|---|
| 367 | InsertValues(Rindex->GetPhotonEnergy(), Dist);
|
|---|
| 368 | }
|
|---|
| 369 |
|
|---|
| 370 | }
|
|---|
| 371 |
|
|---|
| 372 | return RayleighScatteringLengths;
|
|---|
| 373 | }
|
|---|