source: trunk/source/run/include/G4AdjointSimManager.hh@ 1226

Last change on this file since 1226 was 1197, checked in by garnier, 16 years ago

nvx fichiers dans CVS

File size: 15.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4AdjointSimManager.hh,v 1.2 2009/11/18 18:02:06 gcosmo Exp $
27// GEANT4 tag $Name: geant4-09-03-cand-01 $
28//
29/////////////////////////////////////////////////////////////////////////////////
30// Class Name: G4AdjointSimManager.hh
31// Author: L. Desorgher
32// Organisation: SpaceIT GmbH
33// Contract: ESA contract 21435/08/NL/AT
34// Customer: ESA/ESTEC
35/////////////////////////////////////////////////////////////////////////////////
36//
37// CHANGE HISTORY
38// --------------
39// ChangeHistory:
40// -15-01-2007 creation by L. Desorgher
41// -March 2008 Redesigned as a non RunManager. L. Desorgher
42// -01-11-2009 Add the possibility to use user defined run, event, tracking, stepping,
43// and stacking actions during the adjoint tracking phase. L. Desorgher
44//
45//
46//
47//-------------------------------------------------------------
48// Documentation:
49// This class represents the Manager of an adjoint/reverse MC simulation.
50// An adjoint run is divided in a serie of alternative adjoint and forward tracking
51// of adjoint and normal particles.
52//
53// Reverse tracking phase:
54// -----------------------
55// An adjoint particle of a given type (adjoint_e-, adjoint_gamma,...) is first generated on the so called adjoint source
56// with a random energy (1/E distribution) and direction. The adjoint source is the
57// external surface of a user defined volume or of a user defined sphere. The adjoint
58// source should contain one or several sensitive volumes and should be small
59// compared to the entire geometry.
60// The user can set the min and max energy of the adjoint source. After its
61// generation the adjoint primary particle is tracked
62// bacward in the geometry till a user defined external surface (spherical or boundary of a volume)
63// or is killed before if it reaches a user defined upper energy limit that represents
64// the maximum energy of the external source. During the reverse tracking, reverse
65// processes take place where the adjoint particle being tracked can be either scattered
66// or transformed in another type of adjoint paticle. During the reverse tracking the
67// G4SimulationManager replaces the user defined Primary, Run, ... actions, by its own actions.
68//
69// Forward tracking phase
70// -----------------------
71// When an adjoint particle reaches the external surface its weight,type, position,
72// and directions are registered and a normal primary particle with a type equivalent to the last generated primary adjoint is
73// generated with the same energy, position but opposite direction and is tracked normally in the sensitive region as in a fwd MC simulation.
74// During this forward tracking phase the
75// event, stacking, stepping, tracking actions defined by the user for its general fwd application are used. By this clear separation between
76// adjoint and fwd tracking phases , the code of the user developed for a fwd simulation should be only slightly modified to adapt it for an adjoint
77// simulation. Indeed the computation of the signal is done by the same actions or classes that the one used in the fwd simulation mode.
78//
79// Modification to brought in a existing G4 application to use the ReverseMC method
80// -------------------------------
81// In order to be able to use the ReverseMC method in his simulation, the user should modify its code as such:
82// 1) Adapt its physics list to use ReverseProcesses for adjoint particles. An example of such physics list is provided in an extended
83// example.
84// 2) Create an instance of G4AdjointSimManager somewhere in the main code.
85// 3) Modify the analysis part of the code to normalise the signal computed during the fwd phase to the weight of the last adjoint particle
86// that reaches the external surface. This is done by using the following method of G4AdjointSimManager.
87//
88// G4int GetIDOfLastAdjParticleReachingExtSource()
89// G4ThreeVector GetPositionAtEndOfLastAdjointTrack(){ return last_pos;}
90// G4ThreeVector GetDirectionAtEndOfLastAdjointTrack(){ return last_direction;}
91// G4double GetEkinAtEndOfLastAdjointTrack(){ return last_ekin;}
92// G4double GetEkinNucAtEndOfLastAdjointTrack(){ return last_ekin_nuc;}
93// G4double GetWeightAtEndOfLastAdjointTrack(){return last_weight;}
94// G4double GetCosthAtEndOfLastAdjointTrack(){return last_cos_th;}
95// G4String GetFwdParticleNameAtEndOfLastAdjointTrack(){return last_fwd_part_name;}
96// G4int GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack(){return last_fwd_part_PDGEncoding;}
97// G4int GetFwdParticleIndexAtEndOfLastAdjointTrack().
98//
99// In orther to have a code working for both forward and adjoint simulation mode, the extra code needed in user actions for the adjoint
100// simulation mode can be seperated to the code needed only for the normal forward simulation by using the following method
101//
102// G4bool GetAdjointSimMode() that return true if an adjoint simulation is running and false if not!
103//
104// Example of modification in the analysis part of the code:
105// -------------------------------------------------------------
106// Let say that in the forward simulation a G4 application computes the energy deposited in a volume.
107// The user wants to normalise its results for an external isotropic source of e- with differential spectrum given by f(E).
108// A possible modification of the code where the deposited energy Edep during an event is registered would be the following
109//
110// G4AdjointSimManager* theAdjSimManager = G4AdjointSimManager::GetInstance();
111// if (theAdjSimManager->GetAdjointSimMode()) {
112// //code of the user that should be consider only for forwrad simulation
113// G4double normalised_edep = 0.;
114// if (theAdjSimManager->GetFwdParticleNameAtEndOfLastAdjointTrack() == "e-"){
115// G4double ekin_prim = theAdjSimManager->GetEkinAtEndOfLastAdjointTrack();
116// G4double weight_prim = theAdjSimManager->GetWeightAtEndOfLastAdjointTrack();
117// normalised_edep = weight_prim*f(ekin_prim);
118// }
119// //then follow the code where normalised_edep is printed, or registered or whatever ....
120// }
121//
122// else { //code of the user that should be consider only for forward simulation
123// }
124// Note that in this example a normalisation to only primary e- with only one spectrum f(E) is considered. The example code could be easily
125// adapted for a normalisatin to several spectra and several type of primary particles in the same simulation.
126//
127
128#ifndef G4AdjointSimManager_h
129#define G4AdjointSimManager_h 1
130#include "globals.hh"
131#include "G4ThreeVector.hh"
132#include <vector>
133
134
135class G4UserEventAction;
136class G4VUserPrimaryGeneratorAction;
137class G4UserTrackingAction;
138class G4UserSteppingAction;
139class G4UserStackingAction;
140class G4UserRunAction;
141class G4AdjointRunAction;
142class G4AdjointPrimaryGeneratorAction;
143class G4AdjointSteppingAction;
144class G4AdjointEventAction;
145class G4AdjointStackingAction;
146class G4ParticleDefinition;
147class G4AdjointSimMessenger;
148class G4PhysicsLogVector;
149
150class G4AdjointSimManager
151{
152 public:
153
154 static G4AdjointSimManager* GetInstance();
155
156 public: //publich methods
157
158 void RunAdjointSimulation(G4int nb_evt);
159
160 inline G4int GetNbEvtOfLastRun(){return nb_evt_of_last_run;}
161
162 void SetAdjointTrackingMode(G4bool aBool);
163 inline G4bool GetAdjointTrackingMode(){return adjoint_tracking_mode;} //true if an adjoint track is being processed
164 inline G4bool GetAdjointSimMode(){return adjoint_sim_mode;} //true if an adjoint simulation is running
165
166 G4bool GetDidAdjParticleReachTheExtSource();
167 void RegisterAtEndOfAdjointTrack();
168 void RegisterAdjointPrimaryWeight(G4double aWeight);
169
170 inline G4int GetIDOfLastAdjParticleReachingExtSource(){return ID_of_last_particle_that_reach_the_ext_source;};
171 inline G4ThreeVector GetPositionAtEndOfLastAdjointTrack(){ return last_pos;}
172 inline G4ThreeVector GetDirectionAtEndOfLastAdjointTrack(){ return last_direction;}
173 inline G4double GetEkinAtEndOfLastAdjointTrack(){ return last_ekin;}
174 inline G4double GetEkinNucAtEndOfLastAdjointTrack(){ return last_ekin_nuc;}
175 inline G4double GetWeightAtEndOfLastAdjointTrack(){return last_weight;}
176 inline G4double GetCosthAtEndOfLastAdjointTrack(){return last_cos_th;}
177 inline const G4String& GetFwdParticleNameAtEndOfLastAdjointTrack(){return last_fwd_part_name;}
178 inline G4int GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack(){return last_fwd_part_PDGEncoding;}
179 inline G4int GetFwdParticleIndexAtEndOfLastAdjointTrack(){return last_fwd_part_index;}
180
181 std::vector<G4ParticleDefinition*> GetListOfPrimaryFwdParticles();
182
183 G4bool DefineSphericalExtSource(G4double radius, G4ThreeVector pos);
184 G4bool DefineSphericalExtSourceWithCentreAtTheCentreOfAVolume(G4double radius, const G4String& volume_name);
185 G4bool DefineExtSourceOnTheExtSurfaceOfAVolume(const G4String& volume_name);
186 void SetExtSourceEmax(G4double Emax);
187
188 //Definition of adjoint source
189 //----------------------------
190
191 G4bool DefineSphericalAdjointSource(G4double radius, G4ThreeVector pos);
192 G4bool DefineSphericalAdjointSourceWithCentreAtTheCentreOfAVolume(G4double radius, const G4String& volume_name);
193 G4bool DefineAdjointSourceOnTheExtSurfaceOfAVolume(const G4String& volume_name);
194 void SetAdjointSourceEmin(G4double Emin);
195 void SetAdjointSourceEmax(G4double Emax);
196 inline G4double GetAdjointSourceArea(){return area_of_the_adjoint_source;}
197 void ConsiderParticleAsPrimary(const G4String& particle_name);
198 void NeglectParticleAsPrimary(const G4String& particle_name);
199 void SetPrimaryIon(G4ParticleDefinition* adjointIon, G4ParticleDefinition* fwdIon);
200 const G4String& GetPrimaryIonName();
201
202 inline void SetNormalisationMode(G4int n){normalisation_mode=n;};
203 G4int GetNormalisationMode(){return normalisation_mode;};
204 G4double GetNumberNucleonsInIon(){return nb_nuc;};
205
206 //Definition of user actions for the adjoint tracking phase
207 //----------------------------
208 void SetAdjointEventAction(G4UserEventAction* anAction);
209 void SetAdjointSteppingAction(G4UserSteppingAction* anAction);
210 void SetAdjointStackingAction(G4UserStackingAction* anAction);
211 void SetAdjointTrackingAction(G4UserTrackingAction* anAction);
212 void SetAdjointRunAction(G4UserRunAction* anAction);
213
214 //Set methods for user run actions
215 //--------------------------------
216 inline void UseUserStackingActionInFwdTrackingPhase(G4bool aBool){use_user_StackingAction=aBool;}
217
218 //Convergence test
219 //-----------------------
220 /*
221 void RegisterSignalForConvergenceTest(G4double aSignal);
222 void DefineExponentialPrimarySpectrumForConvergenceTest(G4ParticleDefinition* aPartDef, G4double E0);
223 void DefinePowerLawPrimarySpectrumForConvergenceTest(G4ParticleDefinition* aPartDef, G4double alpha);
224
225 */
226
227 private:
228
229 static G4AdjointSimManager* instance;
230
231 private: // methods
232
233 void SetRestOfAdjointActions();
234 void SetAdjointPrimaryRunAndStackingActions();
235 void ResetRestOfUserActions();
236 void ResetUserPrimaryRunAndStackingActions();
237 void DefineUserActions();
238
239 private: //constructor and destructor
240
241 G4AdjointSimManager();
242 ~G4AdjointSimManager();
243
244 private ://attributes
245
246 //Messenger
247 //----------
248 G4AdjointSimMessenger* theMessenger;
249
250 //user defined actions for the normal fwd simulation. Taken from the G4RunManager
251 //-------------------------------------------------
252 bool user_action_already_defined;
253 G4UserRunAction* fUserRunAction;
254 G4UserEventAction* fUserEventAction;
255 G4VUserPrimaryGeneratorAction* fUserPrimaryGeneratorAction;
256 G4UserTrackingAction* fUserTrackingAction;
257 G4UserSteppingAction* fUserSteppingAction;
258 G4UserStackingAction* fUserStackingAction;
259 bool use_user_StackingAction; //only for fwd part of the adjoint simulation
260
261 //action for adjoint simulation
262 //-----------------------------
263 G4UserRunAction* theAdjointRunAction;
264 G4UserEventAction* theAdjointEventAction;
265 G4AdjointPrimaryGeneratorAction* theAdjointPrimaryGeneratorAction;
266 G4UserTrackingAction* theAdjointTrackingAction;
267 G4AdjointSteppingAction* theAdjointSteppingAction;
268 G4AdjointStackingAction* theAdjointStackingAction;
269
270 //adjoint mode
271 //-------------
272 G4bool adjoint_tracking_mode;
273 G4bool adjoint_sim_mode;
274
275 //adjoint particle information on the external surface
276 //-----------------------------
277 G4ThreeVector last_pos;
278 G4ThreeVector last_direction;
279 G4double last_ekin,last_ekin_nuc; //last_ekin_nuc=last_ekin/nuc, nuc is 1 if not a nucleus
280 G4double last_cos_th;
281 G4String last_fwd_part_name;
282 G4int last_fwd_part_PDGEncoding;
283 G4int last_fwd_part_index;
284 G4double last_weight;
285 G4int ID_of_last_particle_that_reach_the_ext_source;
286
287 G4int nb_evt_of_last_run;
288 G4int normalisation_mode;
289
290 //Adjoint source
291 //--------------
292 G4double area_of_the_adjoint_source;
293 G4double nb_nuc;
294 G4double theAdjointPrimaryWeight;
295
296 //Weight Analysis
297 //----------
298 G4PhysicsLogVector* electron_last_weight_vector;
299 G4PhysicsLogVector* proton_last_weight_vector;
300 G4PhysicsLogVector* gamma_last_weight_vector;
301
302 G4bool welcome_message;
303
304/* For the future
305 //Convergence test
306 //----------------
307
308 G4double normalised_signal;
309 G4double error_signal;
310 G4bool convergence_test_is_used;
311 G4bool power_law_spectrum_for_convergence_test; // true PowerLaw, ;
312 G4ParticleDefinition* the_par_def_for_convergence_test;
313*/
314
315};
316
317#endif
318
Note: See TracBrowser for help on using the repository browser.