Changeset 1230 for trunk/examples/advanced/microbeam
- Timestamp:
- Jan 8, 2010, 3:02:48 PM (16 years ago)
- Location:
- trunk/examples/advanced/microbeam
- Files:
-
- 7 edited
-
History (modified) (2 diffs)
-
microbeam.out (modified) (24 diffs)
-
plot.C (modified) (2 diffs)
-
src/MicrobeamEMField.cc (modified) (4 diffs)
-
src/MicrobeamPhantomConfiguration.cc (modified) (4 diffs)
-
src/MicrobeamPhysicsList.cc (modified) (4 diffs)
-
src/MicrobeamSteppingAction.cc (modified) (3 diffs)
Legend:
- Unmodified
- Added
- Removed
-
trunk/examples/advanced/microbeam/History
r807 r1230 1 1 ------------------------------------------------------------------- 2 $Id: History,v 1. 16 2007/08/28 09:48:40 gcosmoExp $2 $Id: History,v 1.21 2009/04/30 10:23:57 sincerti Exp $ 3 3 ------------------------------------------------------------------- 4 4 … … 9 9 Package History file 10 10 -------------------- 11 12 30 April 2009 - S. Incerti - tag microbeam-V09-02-01 13 - Updated Physics list to migrated Livermore processes 14 - Corrected plot.C 15 - Corrected switching field value 16 17 26 February 2009 - G.Folger - tag microbeam-V09-02-00 18 - Correct MicrobeamEMField.cc to use logical &&, not bit & in if(). 19 20 23 October 2008 - tag microbeam-V09-01-03 21 - Corrected typos in zero field region in MicrobeamEMField.cc 22 23 20 August 2008 - tag microbeam-V09-01-02 24 - Modified process ordering of G4eBremsstrahlung and G4StepLimiter in MicrobeamPhysicstList.cc 25 26 16 June 2008 - tag microbeam-V09-01-01 27 - Added units in MicrobeamPhantomconfiguration.cc and 28 MicrobeamSteppingAction.cc 11 29 12 30 28 August 2007 - tag microbeam-V09-00-03 - G. Cosmo -
trunk/examples/advanced/microbeam/microbeam.out
r807 r1230 1 2 ############################################ 3 !!! WARNING - FPE detection is activated !!! 4 ############################################ 1 5 2 6 ************************************************************* 3 Geant4 version Name: g lobal-V09-00-03 (9-May-2008)7 Geant4 version Name: geant4-09-03-ref-00 (18-December-2009) 4 8 Copyright : Geant4 Collaboration 5 9 Reference : NIM A 506 (2003), 250-303 … … 20 24 VRML1FILE (VRML1FILE) 21 25 VRML2FILE (VRML2FILE) 26 gMocrenFile (gMocrenFile) 22 27 OpenGLImmediateX (OGLIX) 23 28 OpenGLStoredX (OGLSX) … … 43 48 ***** Table : Nb of materials = 16 ***** 44 49 45 Material: Vacuum density: 0.000 mg/cm3 RadL: 204727576.737pc Imean: 21.800 eV temperature: 273.15 K pressure: 1.00 atm50 Material: Vacuum density: 0.000 kg/m3 RadL: 204727512.315 pc Nucl.Int.Length: 113804112.800 pc Imean: 21.800 eV temperature: 273.15 K pressure: 1.00 atm 46 51 ---> Element: Vacuum ( ) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 100.00 % ElmAbundance 100.00 % 47 52 48 Material: H2O density: 1.000 g/cm3 RadL: 36.092 cm Imean: 70.893 eV53 Material: H2O density: 1.000 g/cm3 RadL: 36.092 cm Nucl.Int.Length: 75.416 cm Imean: 70.893 eV 49 54 ---> Element: Hydrogen (H) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 11.21 % ElmAbundance 66.67 % 50 55 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 88.79 % ElmAbundance 33.33 % 51 56 52 Material: Air density: 1.290 mg/cm3 RadL: 285.161 m Imean: 85.684 eV temperature: 293.16 K pressure: 1.00 atm57 Material: Air density: 1.290 mg/cm3 RadL: 285.161 m Nucl.Int.Length: 662.680 m Imean: 85.684 eV temperature: 293.16 K pressure: 1.00 atm 53 58 ---> Element: Nitrogen (N) Z = 7.0 N = 14.0 A = 14.01 g/mole ElmMassFraction: 70.00 % ElmAbundance 72.71 % 54 59 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 30.00 % ElmAbundance 27.29 % 55 60 56 Material: LPAir density: 0.000 mg/cm3 RadL: 56273252.573km Imean: 87.308 eV temperature: 293.16 K pressure: 1.00 atm61 Material: LPAir density: 0.000 kg/m3 RadL: 56273234.858 km Nucl.Int.Length: 135377105.890 km Imean: 87.308 eV temperature: 293.16 K pressure: 1.00 atm 57 62 ---> Element: Nitrogen (N) Z = 7.0 N = 14.0 A = 14.01 g/mole ElmMassFraction: 71.50 % ElmAbundance 75.57 % 58 63 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 25.00 % ElmAbundance 23.14 % 59 64 ---> Element: Argon (Ar) Z = 18.0 N = 39.9 A = 39.95 g/mole ElmMassFraction: 3.50 % ElmAbundance 1.30 % 60 65 61 Material: Pl density: 21.400 g/cm3 RadL: 3.058 mm Imean: 787.800 eV66 Material: Pl density: 21.400 g/cm3 RadL: 3.058 mm Nucl.Int.Length: 9.486 cm Imean: 787.800 eV 62 67 ---> Element: Pl ( ) Z = 78.0 N = 195.1 A = 195.09 g/mole ElmMassFraction: 100.00 % ElmAbundance 100.00 % 63 68 64 Material: Butane density: 0.026 mg/cm3 RadL: 17.729km Imean: 53.612 eV temperature: 293.16 K pressure: 0.01 atm69 Material: Butane density: 0.026 kg/m3 RadL: 17.729 km Nucl.Int.Length: 25.686 km Imean: 53.612 eV temperature: 293.16 K pressure: 0.01 atm 65 70 ---> Element: Carbon (C) Z = 6.0 N = 12.0 A = 12.01 g/mole ElmMassFraction: 82.63 % ElmAbundance 28.57 % 66 71 ---> Element: Hydrogen (H) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 17.37 % ElmAbundance 71.43 % 67 72 68 Material: Polyprop density: 900.000 mg/cm3 RadL: 49.764 cm Imean: 56.713 eV73 Material: Polyprop density: 900.000 mg/cm3 RadL: 49.764 cm Nucl.Int.Length: 75.179 cm Imean: 56.713 eV 69 74 ---> Element: Carbon (C) Z = 6.0 N = 12.0 A = 12.01 g/mole ElmMassFraction: 85.60 % ElmAbundance 33.33 % 70 75 ---> Element: Hydrogen (H) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 14.40 % ElmAbundance 66.67 % 71 76 72 Material: Si3N4 density: 3.440 g/cm3 RadL: 7.644 cm Imean: 128.542 eV77 Material: Si3N4 density: 3.440 g/cm3 RadL: 7.644 cm Nucl.Int.Length: 28.008 cm Imean: 128.542 eV 73 78 ---> Element: Silicon (Si) Z = 14.0 N = 28.1 A = 28.09 g/mole ElmMassFraction: 60.06 % ElmAbundance 42.86 % 74 79 ---> Element: Nitrogen (N) Z = 7.0 N = 14.0 A = 14.01 g/mole ElmMassFraction: 39.94 % ElmAbundance 57.14 % 75 80 76 Material: SiO2 density: 2.500 g/cm3 RadL: 10.819 cm Imean: 126.007 eV81 Material: SiO2 density: 2.500 g/cm3 RadL: 10.819 cm Nucl.Int.Length: 38.343 cm Imean: 126.007 eV 77 82 ---> Element: Silicon (Si) Z = 14.0 N = 28.1 A = 28.09 g/mole ElmMassFraction: 46.74 % ElmAbundance 33.33 % 78 83 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 53.26 % ElmAbundance 66.67 % 79 84 80 Material: Laiton density: 8.500 g/cm3 RadL: 1.487 cm Imean: 325.993 eV85 Material: Laiton density: 8.500 g/cm3 RadL: 1.487 cm Nucl.Int.Length: 16.512 cm Imean: 325.993 eV 81 86 ---> Element: Cuivre (Cu) Z = 29.0 N = 63.5 A = 63.55 g/mole ElmMassFraction: 49.28 % ElmAbundance 50.00 % 82 87 ---> Element: Zinc (Zn) Z = 30.0 N = 65.4 A = 65.41 g/mole ElmMassFraction: 50.72 % ElmAbundance 50.00 % 83 88 84 Material: Cytoplasm1 density: 1.000 g/cm3 RadL: 48.413 cm Imean: 31.293 eV89 Material: Cytoplasm1 density: 1.000 g/cm3 RadL: 48.413 cm Nucl.Int.Length: 46.131 cm Imean: 31.293 eV 85 90 ---> Element: Hydrogen (H) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 59.60 % ElmAbundance 95.53 % 86 91 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 24.24 % ElmAbundance 2.45 % … … 89 94 ---> Element: Phosphorus (P) Z = 15.0 N = 31.0 A = 30.97 g/mole ElmMassFraction: 1.01 % ElmAbundance 0.05 % 90 95 91 Material: Cytoplasm2 density: 10.000 g/cm3 RadL: 3.619 cm Imean: 71.338 eV96 Material: Cytoplasm2 density: 10.000 g/cm3 RadL: 3.619 cm Nucl.Int.Length: 7.563 cm Imean: 71.338 eV 92 97 ---> Element: Hydrogen (H) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 10.64 % ElmAbundance 64.80 % 93 98 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 74.50 % ElmAbundance 28.64 % … … 96 101 ---> Element: Phosphorus (P) Z = 15.0 N = 31.0 A = 30.97 g/mole ElmMassFraction: 2.61 % ElmAbundance 0.52 % 97 102 98 Material: Cytoplasm3 density: 1.000 g/cm3 RadL: 48.413 cm Imean: 31.293 eV103 Material: Cytoplasm3 density: 1.000 g/cm3 RadL: 48.413 cm Nucl.Int.Length: 46.131 cm Imean: 31.293 eV 99 104 ---> Element: Hydrogen (H) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 59.60 % ElmAbundance 95.53 % 100 105 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 24.24 % ElmAbundance 2.45 % … … 103 108 ---> Element: Phosphorus (P) Z = 15.0 N = 31.0 A = 30.97 g/mole ElmMassFraction: 1.01 % ElmAbundance 0.05 % 104 109 105 Material: Nucleus1 density: 1.000 g/cm3 RadL: 36.185 cm Imean: 71.338 eV110 Material: Nucleus1 density: 1.000 g/cm3 RadL: 36.185 cm Nucl.Int.Length: 75.626 cm Imean: 71.338 eV 106 111 ---> Element: Hydrogen (H) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 10.64 % ElmAbundance 64.80 % 107 112 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 74.50 % ElmAbundance 28.64 % … … 110 115 ---> Element: Phosphorus (P) Z = 15.0 N = 31.0 A = 30.97 g/mole ElmMassFraction: 2.61 % ElmAbundance 0.52 % 111 116 112 Material: Nucleus2 density: 1.100 g/cm3 RadL: 32.896 cm Imean: 71.338 eV117 Material: Nucleus2 density: 1.100 g/cm3 RadL: 32.896 cm Nucl.Int.Length: 68.751 cm Imean: 71.338 eV 113 118 ---> Element: Hydrogen (H) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 10.64 % ElmAbundance 64.80 % 114 119 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 74.50 % ElmAbundance 28.64 % … … 117 122 ---> Element: Phosphorus (P) Z = 15.0 N = 31.0 A = 30.97 g/mole ElmMassFraction: 2.61 % ElmAbundance 0.52 % 118 123 119 Material: Nucleus3 density: 1.000 g/cm3 RadL: 36.185 cm Imean: 71.338 eV124 Material: Nucleus3 density: 1.000 g/cm3 RadL: 36.185 cm Nucl.Int.Length: 75.626 cm Imean: 71.338 eV 120 125 ---> Element: Hydrogen (H) Z = 1.0 N = 1.0 A = 1.01 g/mole ElmMassFraction: 10.64 % ElmAbundance 64.80 % 121 126 ---> Element: Oxygen (O) Z = 8.0 N = 16.0 A = 16.00 g/mole ElmMassFraction: 74.50 % ElmAbundance 28.64 % … … 127 132 ==========> The phantom contains 53480 voxels 128 133 129 Thank you for using G4BinaryCascade.130 134 MicrobeamPhysicsList::SetCuts:CutLength : 10 nm 131 135 132 msc: Model variant of multiple scattering for e- 133 Lambda tables from 100 eV to 100 TeV in 120 bins. 134 LateralDisplacementFlag= 1 Skin= 0 135 Boundary/stepping algorithm is active with RangeFactor= 0.02 Step limit type 1 136 G4AugerData for Element no. 6 are loaded 137 G4AugerData for Element no. 7 are loaded 138 G4AugerData for Element no. 8 are loaded 139 G4AugerData for Element no. 14 are loaded 140 G4AugerData for Element no. 15 are loaded 141 G4AugerData for Element no. 18 are loaded 142 G4AugerData for Element no. 29 are loaded 143 G4AugerData for Element no. 30 are loaded 144 G4AugerData for Element no. 78 are loaded 145 AugerTransitionTable complete 146 147 IONI: Total cross sections from EEDL database. 148 Gamma energy sampled from a parametrised formula. 149 Implementation of the continuous dE/dx part. 150 At present it can be used for electrons in the energy range [250eV,100GeV]. 151 The process must work with G4LowEnergyBremsstrahlung. 152 153 LowEnBrem: Total cross sections from EEDL database. 154 Gamma energy sampled from a parameterised formula. 155 Implementation of the continuous dE/dx part. 156 At present it can be used for electrons in the energy range [250eV,100GeV]. 157 The process must work with G4LowEnergyIonisation. 158 159 eIoni: tables are built for e+ 160 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 161 Lambda tables from threshold to 100 TeV in 120 bins. 162 Delta cross sections and sampling from MollerBhabha model 163 Good description from 1 KeV to 100 GeV. 164 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1, fluct: 1 165 166 eBrem: tables are built for e+ 167 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 168 Lambda tables from threshold to 100 TeV in 120 bins. 169 Total cross sections and sampling from StandBrem model (based on the EEDL data library) 170 Good description from 1 KeV to 100 GeV, log scale extrapolation above 100 GeV. LPM flag 1 171 172 annihil: Sampling according eplus2gg model 173 tables are built for e+ 174 Lambda tables from 100 eV to 100 TeV in 120 bins. 175 176 msc: Model variant of multiple scattering for proton 177 Lambda tables from 100 eV to 100 TeV in 120 bins. 178 LateralDisplacementFlag= 1 Skin= 0 179 Boundary/stepping algorithm is active with RangeFactor= 0.2 Step limit type 0 180 181 hLowEIoni: Knock-on electron cross sections . 182 Good description above the mean excitation energy. 183 Delta ray energy sampled from differential Xsection. 184 PhysicsTables from 10 eV to 0.1 TeV in 360 bins. 185 Electronic stopping power model is ICRU_R49He 186 from 1 keV to 2.5 MeV . 187 188 Parametrisation model for antiprotons is ICRU_R49p 189 from 25 keV to 2 MeV . 190 Parametrization of the Barkas effect is switched on. 191 Nuclear stopping power model is ICRU_R49 192 193 msc: Model variant of multiple scattering for GenericIon 194 LateralDisplacementFlag= 0 Skin= 0 195 Boundary/stepping algorithm is active with RangeFactor= 0.2 Step limit type 1 196 197 hLowEIoni: Knock-on electron cross sections . 198 Good description above the mean excitation energy. 199 Delta ray energy sampled from differential Xsection. 200 PhysicsTables from 10 eV to 0.1 TeV in 360 bins. 201 Electronic stopping power model is ICRU_R49p 202 from 1 keV to 2 MeV . 203 204 Parametrisation model for antiprotons is ICRU_R49He 205 from 25 keV to 2 MeV . 206 Parametrization of the Barkas effect is switched on. 207 Nuclear stopping power model is ICRU_R49 208 209 msc: Model variant of multiple scattering for pi- 210 Lambda tables from 100 eV to 100 TeV in 120 bins. 211 LateralDisplacementFlag= 1 Skin= 0 212 Boundary/stepping algorithm is active with RangeFactor= 0.2 Step limit type 0 136 phot: for gamma SubType= 12 137 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 138 LivermorePhElectric : Emin= 0 eV Emax= 100 GeV 139 PhotoElectric : Emin= 100 GeV Emax= 10 TeV 140 141 compt: for gamma SubType= 13 142 Lambda tables from 100 eV to 10 TeV in 77 bins, spline: 1 143 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 144 LivermoreCompton : Emin= 0 eV Emax= 100 GeV 145 Klein-Nishina : Emin= 100 GeV Emax= 10 TeV 146 147 conv: for gamma SubType= 14 148 Lambda tables from 1.022 MeV to 10 TeV in 77 bins, spline: 1 149 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 150 LivermoreConversion : Emin= 0 eV Emax= 100 GeV 151 Bethe-Heitler : Emin= 100 GeV Emax= 10 TeV 152 153 Rayl: for gamma SubType= 11 154 Lambda tables from 100 eV to 10 TeV in 200 bins, spline: 1 155 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 156 LivermoreRayleigh : Emin= 0 eV Emax= 100 GeV 157 158 msc: for e- SubType= 10 159 Lambda tables from 100 eV to 10 TeV in 77 bins, spline: 1 160 RangeFactor= 0.04, step limit type: 2, lateralDisplacement: 1, skin= 3, geomFactor= 2.5 161 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 162 UrbanMsc92 : Emin= 0 eV Emax= 10 TeV 163 164 eIoni: for e- SubType= 2 165 dE/dx and range tables from 100 eV to 10 TeV in 77 bins 166 Lambda tables from threshold to 10 TeV in 77 bins, spline: 1 167 finalRange(mm)= 0.1, dRoverRange= 0.2, integral: 1, fluct: 1, linLossLimit= 0.01 168 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 169 LowEnergyIoni : Emin= 0 eV Emax= 100 GeV 170 MollerBhabha : Emin= 100 GeV Emax= 10 TeV 171 172 eBrem: for e- SubType= 3 173 dE/dx and range tables from 100 eV to 10 TeV in 77 bins 174 Lambda tables from threshold to 10 TeV in 77 bins, spline: 1 175 LPM flag: 1 for E > 1 GeV 176 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 177 LowEnBrem : Emin= 0 eV Emax= 100 GeV 178 eBremRel : Emin= 100 GeV Emax= 10 TeV 179 180 eIoni: for e+ SubType= 2 181 dE/dx and range tables from 100 eV to 10 TeV in 77 bins 182 Lambda tables from threshold to 10 TeV in 77 bins, spline: 1 183 finalRange(mm)= 0.1, dRoverRange= 0.2, integral: 1, fluct: 1, linLossLimit= 0.01 184 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 185 MollerBhabha : Emin= 0 eV Emax= 10 TeV 186 187 eBrem: for e+ SubType= 3 188 dE/dx and range tables from 100 eV to 10 TeV in 77 bins 189 Lambda tables from threshold to 10 TeV in 77 bins, spline: 1 190 LPM flag: 1 for E > 1 GeV 191 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 192 eBrem : Emin= 0 eV Emax= 1 GeV 193 eBremRel : Emin= 1 GeV Emax= 10 TeV 194 195 annihil: for e+ SubType= 5 196 Lambda tables from 100 eV to 10 TeV in 77 bins, spline: 1 197 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 198 eplus2gg : Emin= 0 eV Emax= 10 TeV 199 200 msc: for GenericIon SubType= 10 201 RangeFactor= 0.2, stepLimitType: 0, latDisplacement: 0, skin= 3, geomFactor= 2.5 202 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 203 UrbanMsc90 : Emin= 0 eV Emax= 10 TeV 204 205 ionIoni: for GenericIon SubType= 2 206 dE/dx and range tables from 100 eV to 10 TeV in 77 bins 207 Lambda tables from threshold to 10 TeV in 77 bins, spline: 1 208 finalRange(mm)= 0.02, dRoverRange= 0.1, integral: 1, fluct: 1, linLossLimit= 0.02 209 Stopping Power data for 17 ion/material pairs, nuclearStopping: 1 210 ===== EM models for the G4Region DefaultRegionForTheWorld ====== 211 ParamICRU73 : Emin= 0 eV Emax= 10 TeV 212 ============================================================================================ 213 HADRONIC PROCESSES SUMMARY (verbose level 1) 214 ============================================================================================ 213 215 214 216 ========= Table of registered couples ============================== … … 216 218 Index : 0 used in the geometry : Yes recalculation needed : No 217 219 Material : Vacuum 218 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm219 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV220 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 221 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 220 222 Region(s) which use this couple : 221 223 DefaultRegionForTheWorld … … 223 225 Index : 1 used in the geometry : Yes recalculation needed : No 224 226 Material : Pl 225 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm226 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV227 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 228 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 227 229 Region(s) which use this couple : 228 230 DefaultRegionForTheWorld … … 230 232 Index : 2 used in the geometry : Yes recalculation needed : No 231 233 Material : Butane 232 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm233 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV234 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 235 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 234 236 Region(s) which use this couple : 235 237 DefaultRegionForTheWorld … … 237 239 Index : 3 used in the geometry : Yes recalculation needed : No 238 240 Material : Laiton 239 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm240 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV241 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 242 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 241 243 Region(s) which use this couple : 242 244 DefaultRegionForTheWorld … … 244 246 Index : 4 used in the geometry : Yes recalculation needed : No 245 247 Material : Si3N4 246 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm247 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV248 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 249 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 248 250 Region(s) which use this couple : 249 251 DefaultRegionForTheWorld … … 251 253 Index : 5 used in the geometry : Yes recalculation needed : No 252 254 Material : Air 253 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm254 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV255 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 256 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 255 257 Region(s) which use this couple : 256 258 DefaultRegionForTheWorld … … 258 260 Index : 6 used in the geometry : Yes recalculation needed : No 259 261 Material : Polyprop 260 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm261 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV262 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 263 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 262 264 Region(s) which use this couple : 263 265 DefaultRegionForTheWorld … … 265 267 Index : 7 used in the geometry : Yes recalculation needed : No 266 268 Material : H2O 267 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm268 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV269 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 270 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 269 271 Region(s) which use this couple : 270 272 DefaultRegionForTheWorld … … 272 274 Index : 8 used in the geometry : Yes recalculation needed : No 273 275 Material : Cytoplasm1 274 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm275 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV276 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 277 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 276 278 Region(s) which use this couple : 277 279 DefaultRegionForTheWorld … … 279 281 Index : 9 used in the geometry : Yes recalculation needed : No 280 282 Material : Nucleus1 281 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm282 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV283 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 284 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 283 285 Region(s) which use this couple : 284 286 DefaultRegionForTheWorld … … 286 288 Index : 10 used in the geometry : Yes recalculation needed : No 287 289 Material : Nucleus2 288 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm289 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV290 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 291 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 290 292 Region(s) which use this couple : 291 293 DefaultRegionForTheWorld … … 293 295 Index : 11 used in the geometry : Yes recalculation needed : No 294 296 Material : Cytoplasm2 295 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm296 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV297 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 298 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 297 299 Region(s) which use this couple : 298 300 DefaultRegionForTheWorld … … 300 302 Index : 12 used in the geometry : Yes recalculation needed : No 301 303 Material : SiO2 302 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm303 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV304 Range cuts : gamma 10 nm e- 10 nm e+ 10 nm proton 0 fm 305 Energy thresholds : gamma 990 eV e- 990 eV e+ 990 eV proton 0 eV 304 306 Region(s) which use this couple : 305 307 DefaultRegionForTheWorld … … 321 323 -> Event # 2 generated 322 324 ===> The incident alpha particle has reached the targeted cell : 323 -----> total absorbed dose within Nucleus is (Gy) = 0. 40389574324 -----> total absorbed dose within Cytoplasm is (Gy) = 0.0 4089877325 -----> total absorbed dose within Nucleus is (Gy) = 0.35642141103745 326 -----> total absorbed dose within Cytoplasm is (Gy) = 0.06113151460886 325 327 326 328 -> Event # 3 generated 329 ===> Sorry, the incident alpha particle has missed the targeted cell ! 330 331 -> Event # 4 generated 332 ===> Sorry, the incident alpha particle has missed the targeted cell ! 333 334 -> Event # 5 generated 335 ===> Sorry, the incident alpha particle has missed the targeted cell ! 336 337 -> Event # 6 generated 327 338 ===> The incident alpha particle has reached the targeted cell : 328 -----> total absorbed dose within Nucleus is (Gy) = 0.30514622 329 -----> total absorbed dose within Cytoplasm is (Gy) = 0.090157568 330 331 -> Event # 4 generated 332 ===> Sorry, the incident alpha particle has missed the targeted cell ! 333 334 -> Event # 5 generated 335 ===> Sorry, the incident alpha particle has missed the targeted cell ! 336 337 -> Event # 6 generated 338 ===> Sorry, the incident alpha particle has missed the targeted cell ! 339 -----> total absorbed dose within Nucleus is (Gy) = 0.37929552793503 340 -----> total absorbed dose within Cytoplasm is (Gy) = 0.073292337357998 339 341 340 342 -> Event # 7 generated 341 343 ===> The incident alpha particle has reached the targeted cell : 342 -----> total absorbed dose within Nucleus is (Gy) = 0. 37321898343 -----> total absorbed dose within Cytoplasm is (Gy) = 0.0 70893854344 -----> total absorbed dose within Nucleus is (Gy) = 0.44333383440971 345 -----> total absorbed dose within Cytoplasm is (Gy) = 0.088046304881573 344 346 345 347 -> Event # 8 generated 346 ===> Sorry, the incident alpha particle has missed the targeted cell ! 348 ===> The incident alpha particle has reached the targeted cell : 349 -----> total absorbed dose within Nucleus is (Gy) = 0.31207606196404 350 -----> total absorbed dose within Cytoplasm is (Gy) = 0.077978290617466 347 351 348 352 -> Event # 9 generated … … 353 357 354 358 ERROR: G4VisCommandsViewerUpdate::SetNewValue: no current viewer. 355 -> Total number of particles detected by the gas detector : 3356 357 Graphics systems deleted.359 -> Total number of particles detected by the gas detector : 4 360 361 Idle> Graphics systems deleted. 358 362 Visualization Manager deleting... 363 -
trunk/examples/advanced/microbeam/plot.C
r807 r1230 1 1 // ------------------------------------------------------------------- 2 // $Id: plot.C,v 1. 4 2006/06/01 22:25:19sincerti Exp $2 // $Id: plot.C,v 1.5 2009/04/30 10:23:57 sincerti Exp $ 3 3 // ------------------------------------------------------------------- 4 4 // … … 117 117 h2->SetFillColor(4); 118 118 h2->SetLineColor(4); 119 h2->Fit("gaus"); 119 120 gaus->SetLineColor(6); 120 121 h2->Fit("gaus"); -
trunk/examples/advanced/microbeam/src/MicrobeamEMField.cc
r807 r1230 25 25 // 26 26 // ------------------------------------------------------------------- 27 // $Id: MicrobeamEMField.cc,v 1. 6 2007/07/06 06:52:54sincerti Exp $27 // $Id: MicrobeamEMField.cc,v 1.9 2009/04/30 10:23:57 sincerti Exp $ 28 28 // ------------------------------------------------------------------- 29 29 … … 58 58 // *********************** 59 59 60 // MAGNETIC FIELD VALUE FOR 3 MeV ALPHAS 61 G4double switchingField = 0.0589768635 * tesla ; 60 // MAGNETIC FIELD VALUE FOR 3 MeV ALPHAS 61 // G4double switchingField = 0.0589768635 * tesla ; 62 G4double switchingField = 0.0590201 * tesla ; 62 63 63 64 // BEAM START … … 181 182 G4double xoprime, zoprime; 182 183 183 if (z>=-1400*mm & z <-200*mm)184 if (z>=-1400*mm && z <-200*mm) 184 185 { 185 186 Bx=0; By=0; Bz=0; … … 523 524 524 525 if ( 525 (Bfield[0]==0.&526 Bfield[1]==0.&527 Bfield[2]==0.&528 Bfield[4]==0.&529 Bfield[5]==0.&530 Bfield[6]==0. )531 )526 (Bfield[0]==0. && 527 Bfield[1]==0. && 528 Bfield[2]==0. && 529 Bfield[3]==0. && 530 Bfield[4]==0. && 531 Bfield[5]==0. ) 532 ) 532 533 { 533 534 -
trunk/examples/advanced/microbeam/src/MicrobeamPhantomConfiguration.cc
r807 r1230 25 25 // 26 26 // ------------------------------------------------------------------- 27 // $Id: MicrobeamPhantomConfiguration.cc,v 1. 5 2006/06/29 16:05:31 gunterExp $27 // $Id: MicrobeamPhantomConfiguration.cc,v 1.6 2008/06/16 07:46:11 sincerti Exp $ 28 28 // ------------------------------------------------------------------- 29 29 … … 87 87 if (mat==2) // NUCLEUS 88 88 { 89 if (den==1) density = denNucl1 ;90 if (den==2) density = denNucl2 ;91 if (den==3) density = denNucl3 ;89 if (den==1) density = denNucl1*(g/cm3); 90 if (den==2) density = denNucl2*(g/cm3); 91 if (den==3) density = denNucl3*(g/cm3); 92 92 nucleusMass = nucleusMass + density * dx * dy * dz ; 93 93 } … … 95 95 if (mat==1) // CYTOPLASM 96 96 { 97 if (den==1) density = denCyto1 ;98 if (den==2) density = denCyto2 ;99 if (den==3) density = denCyto3 ;97 if (den==1) density = denCyto1*(g/cm3); 98 if (den==2) density = denCyto2*(g/cm3); 99 if (den==3) density = denCyto3*(g/cm3); 100 100 cytoplasmMass = cytoplasmMass + density * dx * dy * dz ; 101 101 } … … 106 106 107 107 fclose(fMap); 108 109 nucleusMass = nucleusMass * 1e-6 ; 110 cytoplasmMass = cytoplasmMass * 1e-6 ; 111 108 112 109 return 0; 113 110 } -
trunk/examples/advanced/microbeam/src/MicrobeamPhysicsList.cc
r807 r1230 25 25 // 26 26 // ------------------------------------------------------------------- 27 // $Id: MicrobeamPhysicsList.cc,v 1. 6 2006/11/23 12:24:20sincerti Exp $27 // $Id: MicrobeamPhysicsList.cc,v 1.8 2009/04/30 10:23:57 sincerti Exp $ 28 28 // ------------------------------------------------------------------- 29 29 … … 107 107 } 108 108 109 #include "G4MultipleScattering.hh" 109 // *** Processes and models 110 111 // gamma 112 113 #include "G4PhotoElectricEffect.hh" 114 #include "G4LivermorePhotoElectricModel.hh" 115 116 #include "G4ComptonScattering.hh" 117 #include "G4LivermoreComptonModel.hh" 118 119 #include "G4GammaConversion.hh" 120 #include "G4LivermoreGammaConversionModel.hh" 121 122 #include "G4RayleighScattering.hh" 123 #include "G4LivermoreRayleighModel.hh" 124 125 // e- 126 127 #include "G4eMultipleScattering.hh" 128 #include "G4UniversalFluctuation.hh" 129 110 130 #include "G4eIonisation.hh" 131 #include "G4LivermoreIonisationModel.hh" 132 111 133 #include "G4eBremsstrahlung.hh" 134 #include "G4LivermoreBremsstrahlungModel.hh" 135 136 // e+ 137 112 138 #include "G4eplusAnnihilation.hh" 139 140 // mu 113 141 114 142 #include "G4MuIonisation.hh" … … 116 144 #include "G4MuPairProduction.hh" 117 145 118 #include "G4LowEnergyPhotoElectric.hh" 119 #include "G4LowEnergyCompton.hh" 120 #include "G4LowEnergyGammaConversion.hh" 121 #include "G4LowEnergyRayleigh.hh" 122 123 #include "G4LowEnergyIonisation.hh" 124 #include "G4LowEnergyBremsstrahlung.hh" 125 126 #include "G4hLowEnergyIonisation.hh" 146 // hadrons 147 127 148 #include "G4hMultipleScattering.hh" 149 #include "G4MscStepLimitType.hh" 150 151 #include "G4hBremsstrahlung.hh" 152 #include "G4hPairProduction.hh" 153 154 #include "G4hIonisation.hh" 155 #include "G4ionIonisation.hh" 156 #include "G4IonParametrisedLossModel.hh" 157 158 // 159 160 #include "G4LossTableManager.hh" 161 #include "G4EmProcessOptions.hh" 128 162 129 163 … … 143 177 144 178 145 pmanager->AddDiscreteProcess(new G4LowEnergyCompton); 146 147 G4LowEnergyPhotoElectric * LePeprocess = new G4LowEnergyPhotoElectric(); 148 LePeprocess->ActivateAuger(true); 149 LePeprocess->SetCutForLowEnSecPhotons(0.250 * keV); 150 LePeprocess->SetCutForLowEnSecElectrons(0.250 * keV); 151 pmanager->AddDiscreteProcess(LePeprocess); 152 153 pmanager->AddDiscreteProcess(new G4LowEnergyGammaConversion()); 154 155 pmanager->AddDiscreteProcess(new G4LowEnergyRayleigh()); 156 157 pmanager->AddProcess(new G4StepLimiter(), -1, -1, 3); 158 179 G4PhotoElectricEffect* thePhotoElectricEffect = new G4PhotoElectricEffect(); 180 G4LivermorePhotoElectricModel* theLivermorePhotoElectricModel = new G4LivermorePhotoElectricModel(); 181 thePhotoElectricEffect->AddEmModel(0, theLivermorePhotoElectricModel); 182 pmanager->AddDiscreteProcess(thePhotoElectricEffect); 183 184 G4ComptonScattering* theComptonScattering = new G4ComptonScattering(); 185 G4LivermoreComptonModel* theLivermoreComptonModel = new G4LivermoreComptonModel(); 186 theComptonScattering->AddEmModel(0, theLivermoreComptonModel); 187 pmanager->AddDiscreteProcess(theComptonScattering); 188 189 G4GammaConversion* theGammaConversion = new G4GammaConversion(); 190 G4LivermoreGammaConversionModel* theLivermoreGammaConversionModel = new G4LivermoreGammaConversionModel(); 191 theGammaConversion->AddEmModel(0, theLivermoreGammaConversionModel); 192 pmanager->AddDiscreteProcess(theGammaConversion); 193 194 G4RayleighScattering* theRayleigh = new G4RayleighScattering(); 195 G4LivermoreRayleighModel* theRayleighModel = new G4LivermoreRayleighModel(); 196 theRayleigh->AddEmModel(0, theRayleighModel); 197 pmanager->AddDiscreteProcess(theRayleigh); 198 199 pmanager->AddProcess(new G4StepLimiter(), -1, -1, 5); 159 200 160 201 } else if (particleName == "e-") { 161 202 162 pmanager->AddProcess(new G4MultipleScattering,-1, 1,1); 163 164 G4LowEnergyIonisation * LeIoprocess = new G4LowEnergyIonisation("IONI"); 165 LeIoprocess->ActivateAuger(true); 166 LeIoprocess->SetCutForLowEnSecPhotons(0.1*keV); 167 LeIoprocess->SetCutForLowEnSecElectrons(0.1*keV); 168 pmanager->AddProcess(LeIoprocess, -1, 2, 2); 169 170 G4LowEnergyBremsstrahlung * LeBrprocess = new G4LowEnergyBremsstrahlung(); 171 pmanager->AddProcess(LeBrprocess, -1, -1, 3); 203 G4eMultipleScattering* msc = new G4eMultipleScattering(); 204 msc->SetStepLimitType(fUseDistanceToBoundary); 205 pmanager->AddProcess(msc, -1, 1, 1); 206 207 // Ionisation 208 G4eIonisation* eIoni = new G4eIonisation(); 209 eIoni->AddEmModel(0, new G4LivermoreIonisationModel(), new G4UniversalFluctuation() ); 210 eIoni->SetStepFunction(0.2, 100*um); // 211 pmanager->AddProcess(eIoni, -1, 2, 2); 212 213 // Bremsstrahlung 214 G4eBremsstrahlung* eBrem = new G4eBremsstrahlung(); 215 eBrem->AddEmModel(0, new G4LivermoreBremsstrahlungModel()); 216 pmanager->AddProcess(eBrem, -1,-3, 3); 217 218 pmanager->AddProcess(new G4StepLimiter(), -1, -1, 4); 219 220 } else if (particleName == "e+") { 221 222 // Identical to G4EmStandardPhysics_option3 223 224 G4eMultipleScattering* msc = new G4eMultipleScattering(); 225 msc->SetStepLimitType(fUseDistanceToBoundary); 226 pmanager->AddProcess(msc, -1, 1, 1); 227 228 G4eIonisation* eIoni = new G4eIonisation(); 229 eIoni->SetStepFunction(0.2, 100*um); 230 pmanager->AddProcess(eIoni, -1, 2, 2); 231 232 pmanager->AddProcess(new G4eBremsstrahlung, -1,-3, 3); 233 234 pmanager->AddProcess(new G4eplusAnnihilation,0,-1, 4); 235 236 pmanager->AddProcess(new G4StepLimiter(), -1, -1, 5); 237 238 } else if (particleName == "GenericIon") { 239 240 pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1); 241 242 G4ionIonisation* ionIoni = new G4ionIonisation(); 243 ionIoni->SetEmModel(new G4IonParametrisedLossModel()); 244 ionIoni->SetStepFunction(0.1, 20*um); 245 pmanager->AddProcess(ionIoni, -1, 2, 2); 246 172 247 pmanager->AddProcess(new G4StepLimiter(), -1, -1, 3); 173 174 } else if (particleName == "e+") { 175 176 pmanager->AddProcess(new G4MultipleScattering,-1, 1,1); 177 178 pmanager->AddProcess(new G4eIonisation, -1, 2,2); 179 180 pmanager->AddProcess(new G4eBremsstrahlung, -1,-1,3); 181 182 pmanager->AddProcess(new G4eplusAnnihilation, 0,-1,4); 183 248 249 } else if (particleName == "alpha" || 250 particleName == "He3" ) { 251 252 // Identical to G4EmStandardPhysics_option3 253 254 pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1); 255 256 G4ionIonisation* ionIoni = new G4ionIonisation(); 257 ionIoni->SetStepFunction(0.1, 20*um); 258 pmanager->AddProcess(ionIoni, -1, 2, 2); 259 184 260 pmanager->AddProcess(new G4StepLimiter(), -1, -1, 3); 185 186 } else if( particleName == "mu+" ||187 particleName == "mu-" ) {188 189 } else if ((!particle->IsShortLived()) &&190 (particle->GetPDGCharge() != 0.0) &&191 (particle->GetParticleName() != "chargedgeantino")) {192 193 //pmanager->AddProcess(new G4MultipleScattering(),-1,1,1);194 pmanager->AddProcess(new G4hMultipleScattering(),-1,1,1);195 196 G4hLowEnergyIonisation* hLowEnergyIonisation = new G4hLowEnergyIonisation();197 pmanager->AddProcess(hLowEnergyIonisation,-1,2,2);198 199 hLowEnergyIonisation->SetElectronicStoppingPowerModel(particle,"ICRU_R49He");200 hLowEnergyIonisation->SetNuclearStoppingOn();201 hLowEnergyIonisation->SetNuclearStoppingPowerModel("ICRU_R49");202 hLowEnergyIonisation->SetFluorescence(true);203 hLowEnergyIonisation->ActivateAugerElectronProduction(true);204 205 pmanager->AddProcess(new G4StepLimiter(), -1, -1, 3);206 207 261 } 208 262 209 //end 263 // 210 264 211 265 } -
trunk/examples/advanced/microbeam/src/MicrobeamSteppingAction.cc
r807 r1230 25 25 // 26 26 // ------------------------------------------------------------------- 27 // $Id: MicrobeamSteppingAction.cc,v 1. 8 2007/08/22 13:58:33sincerti Exp $27 // $Id: MicrobeamSteppingAction.cc,v 1.9 2008/06/16 07:46:11 sincerti Exp $ 28 28 // ------------------------------------------------------------------- 29 29 … … 158 158 159 159 { 160 G4double dose = ( e_SI*(aStep->GetTotalEnergyDeposit()/eV))/(Run->GetMassNucleus());160 G4double dose = (aStep->GetTotalEnergyDeposit()/joule)/(Run->GetMassNucleus()/kg); 161 161 Run->AddDoseN(dose); 162 162 … … 170 170 171 171 { 172 G4double dose = ( e_SI*(aStep->GetTotalEnergyDeposit()/eV))/(Run->GetMassCytoplasm());172 G4double dose = (aStep->GetTotalEnergyDeposit()/joule)/(Run->GetMassCytoplasm()/kg); 173 173 Run->AddDoseC(dose); 174 174
Note:
See TracChangeset
for help on using the changeset viewer.
