************************************************************* Geant4 version Name: global-V09-00-03 (9-May-2008) Copyright : Geant4 Collaboration Reference : NIM A 506 (2003), 250-303 WWW : http://cern.ch/geant4 ************************************************************* B01PhysicsList::SetCuts:CutLength : 1 (mm) Going to assign importance: 1, to volume: cell_01 Going to assign importance: 2, to volume: cell_02 Going to assign importance: 4, to volume: cell_03 Going to assign importance: 8, to volume: cell_04 Going to assign importance: 16, to volume: cell_05 Going to assign importance: 32, to volume: cell_06 Going to assign importance: 64, to volume: cell_07 Going to assign importance: 128, to volume: cell_08 Going to assign importance: 256, to volume: cell_09 Going to assign importance: 512, to volume: cell_10 Going to assign importance: 1024, to volume: cell_11 Going to assign importance: 2048, to volume: cell_12 Going to assign importance: 4096, to volume: cell_13 Going to assign importance: 8192, to volume: cell_14 Going to assign importance: 16384, to volume: cell_15 Going to assign importance: 32768, to volume: cell_16 Going to assign importance: 65536, to volume: cell_17 Going to assign importance: 131072, to volume: cell_18 preparing importance sampling creating istore creating importance configurator entering configure importance configurator push_back pushed vsampler configurator loop looping 1 sampler configurator entering importance configure, paraflag 0 creating importance process, paraflag is: 0 importance process paraflag is: 0 === G4ProcessPlacer::AddProcessAsSecondDoIt: for: neutron Modifying Process Order for ProcessName: ImportanceProcess The initial AlongStep Vectors: GPIL Vector: Transportation DoIt Vector: Transportation The initial PostStep Vectors: GPIL Vector: Decay HadronCapture HadronFission inelastic HadronElastic Transportation DoIt Vector: Transportation HadronElastic inelastic HadronFission HadronCapture Decay The final AlongStep Vectors: GPIL Vector: ImportanceProcess Transportation DoIt Vector: Transportation ImportanceProcess The final PostStep Vectors: GPIL Vector: Decay HadronCapture HadronFission inelastic HadronElastic ImportanceProcess Transportation DoIt Vector: Transportation ImportanceProcess HadronElastic inelastic HadronFission HadronCapture Decay ================================================ configure preconf conv: Total cross sections has a good parametrisation from 1.5 MeV to 100 GeV for all Z; sampling secondary e+e- according Bethe-Heitler model tables are built for gamma Lambda tables from 1.022 MeV to 100 GeV in 100 bins. compt: Total cross sections has a good parametrisation from 10 KeV to (100/Z) GeV Sampling according Klein-Nishina model tables are built for gamma Lambda tables from 100 eV to 100 GeV in 90 bins. phot: Total cross sections from Sandia parametrisation. Sampling according PhotoElectric model msc: Model variant of multiple scattering for e- Lambda tables from 100 eV to 100 TeV in 120 bins. LateralDisplacementFlag= 1 Skin= 0 Boundary/stepping algorithm is active with RangeFactor= 0.02 Step limit type 1 eIoni: tables are built for e- dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Delta cross sections and sampling from MollerBhabha model Good description from 1 KeV to 100 GeV. Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1, fluct: 1 eBrem: tables are built for e- dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Total cross sections and sampling from StandBrem model (based on the EEDL data library) Good description from 1 KeV to 100 GeV, log scale extrapolation above 100 GeV. LPM flag 1 eIoni: tables are built for e+ dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Delta cross sections and sampling from MollerBhabha model Good description from 1 KeV to 100 GeV. Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1, fluct: 1 eBrem: tables are built for e+ dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Total cross sections and sampling from StandBrem model (based on the EEDL data library) Good description from 1 KeV to 100 GeV, log scale extrapolation above 100 GeV. LPM flag 1 annihil: Sampling according eplus2gg model tables are built for e+ Lambda tables from 100 eV to 100 TeV in 120 bins. msc: Model variant of multiple scattering for proton Lambda tables from 100 eV to 100 TeV in 120 bins. LateralDisplacementFlag= 1 Skin= 0 Boundary/stepping algorithm is active with RangeFactor= 0.02 Step limit type 1 hIoni: tables are built for proton dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Scaling relation is used from proton dE/dx and range. Delta cross sections and sampling from BetheBloch model for scaled energy > 2 MeV Parametrisation from Bragg for protons below. NuclearStopping= 1 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1, fluct: 1 msc: Model variant of multiple scattering for GenericIon LateralDisplacementFlag= 0 Skin= 0 Boundary/stepping algorithm is active with RangeFactor= 0.2 Step limit type 1 hIoni: tables are built for anti_proton dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Scaling relation is used from proton dE/dx and range. Delta cross sections and sampling from BetheBloch model for scaled energy > 2 MeV Parametrisation from Bragg for protons below. NuclearStopping= 1 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1, fluct: 1 msc: Model variant of multiple scattering for mu+ Lambda tables from 100 eV to 100 TeV in 120 bins. LateralDisplacementFlag= 1 Skin= 0 Boundary/stepping algorithm is active with RangeFactor= 0.02 Step limit type 1 muIoni: tables are built for mu+ dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Bether-Bloch model for E > 0.2 MeV, parametrisation of Bragg peak below, radiative corrections for E > 1 GeV Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1, fluct: 1 muBrems: tables are built for mu+ dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Parametrised model muPairProd: tables are built for mu+ dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Parametrised model muIoni: tables are built for mu- dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Bether-Bloch model for E > 0.2 MeV, parametrisation of Bragg peak below, radiative corrections for E > 1 GeV Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1, fluct: 1 muBrems: tables are built for mu- dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Parametrised model muPairProd: tables are built for mu- dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Parametrised model hIoni: tables are built for pi+ dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Scaling relation is used from proton dE/dx and range. Delta cross sections and sampling from BetheBloch model for scaled energy > 0.297504 MeV Parametrisation from Bragg for protons below. NuclearStopping= 1 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1, fluct: 1 msc: Model variant of multiple scattering for pi- Lambda tables from 100 eV to 100 TeV in 120 bins. LateralDisplacementFlag= 1 Skin= 0 Boundary/stepping algorithm is active with RangeFactor= 0.02 Step limit type 1 hIoni: tables are built for pi- dE/dx and range tables from 100 eV to 100 TeV in 120 bins. Lambda tables from threshold to 100 TeV in 120 bins. Scaling relation is used from proton dE/dx and range. Delta cross sections and sampling from BetheBloch model for scaled energy > 0.297504 MeV Parametrisation from Bragg for protons below. NuclearStopping= 1 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1, fluct: 1 ++ ConcreteSD/Collisions id 0 ++ ConcreteSD/CollWeight id 1 ++ ConcreteSD/Population id 2 ++ ConcreteSD/TrackEnter id 3 ++ ConcreteSD/SL id 4 ++ ConcreteSD/SLW id 5 ++ ConcreteSD/SLWE id 6 ++ ConcreteSD/SLW_V id 7 ++ ConcreteSD/SLWE_V id 8 ### Run 0 start. ###### EndOfRunAction ============================================================= Number of event processed : 100 ============================================================= Volume | Tr.Entering | Population | Collisions | Coll*WGT | NumWGTedE | FluxWGTedE | Av.Tr.WGT | SL | SLW | SLW_v | SLWE | SLWE_v | cell_00 | 15 | 115 | 0 | 0 | 6.3966059 | 7.4018992 | 1 | 2718.4878 | 2718.4878 | 82.42747 | 20121.972 | 527.25604 | cell_01 | 110 | 134 | 145 | 145 | 7.2822789 | 8.8443266 | 1 | 11666.037 | 11666.037 | 340.22197 | 103178.24 | 2477.5913 | cell_02 | 70 | 164 | 176 | 88 | 7.0660843 | 8.6092149 | 0.5 | 15544.352 | 7772.1759 | 230.58237 | 66912.332 | 1629.3145 | cell_03 | 97 | 220 | 279 | 69.75 | 6.5176502 | 7.9386173 | 0.25 | 23499.237 | 5874.8093 | 179.88741 | 46637.863 | 1172.4432 | cell_04 | 107 | 253 | 363 | 45.375 | 5.4125517 | 7.0721743 | 0.125 | 28079.769 | 3509.9711 | 120.28028 | 24823.127 | 651.02321 | cell_05 | 124 | 275 | 393 | 24.5625 | 5.0245006 | 6.8916189 | 0.0625 | 30553.015 | 1909.5634 | 69.40684 | 13159.983 | 348.7347 | cell_06 | 139 | 310 | 440 | 13.75 | 5.2835284 | 7.0172979 | 0.03125 | 34126.865 | 1066.4645 | 37.356314 | 7483.6993 | 197.37314 | cell_07 | 157 | 370 | 493 | 7.703125 | 5.5558117 | 6.9976454 | 0.015625 | 40462.287 | 632.22324 | 21.14872 | 4424.0741 | 117.4983 | cell_08 | 191 | 423 | 583 | 4.5546875 | 0.32471447 | 6.83361 | 0.0078125 | 44570.287 | 348.20536 | 196.83204 | 2379.4996 | 63.914211 | cell_09 | 209 | 508 | 780 | 3.046875 | 5.0725839 | 6.5643746 | 0.00390625 | 56497.818 | 220.6946 | 7.8116315 | 1448.722 | 39.625157 | cell_10 | 209 | 490 | 750 | 1.4648438 | 4.2152478 | 6.4791598 | 0.001953125 | 54129.392 | 105.72147 | 4.4552242 | 684.98629 | 18.779874 | cell_11 | 237 | 520 | 750 | 0.73242188 | 0.11190762 | 6.2612863 | 0.0009765625 | 55200.57 | 53.906807 | 83.848515 | 337.52595 | 9.3832878 | cell_12 | 279 | 627 | 978 | 0.47753906 | 0.36186788 | 5.9200159 | 0.00048828125 | 65901.469 | 32.178451 | 14.991671 | 190.49694 | 5.4250043 | cell_13 | 323 | 701 | 1173 | 0.28637695 | 0.36848322 | 5.7881594 | 0.00024414062 | 79304.733 | 19.361507 | 8.7598914 | 112.06749 | 3.227873 | cell_14 | 376 | 846 | 1398 | 0.1706543 | 0.17152547 | 5.5058521 | 0.00012207031 | 96136.852 | 11.735456 | 11.136915 | 64.613683 | 1.9102646 | cell_15 | 411 | 923 | 1583 | 0.096618652 | 3.7639995 | 5.2299054 | 6.1035156e-05 | 107618.6 | 6.5685181 | 0.27495831 | 34.352728 | 1.0349429 | cell_16 | 456 | 1005 | 1797 | 0.054840088 | 3.7486376 | 5.2165757 | 3.0517578e-05 | 117973.81 | 3.6002748 | 0.15117532 | 18.781106 | 0.56670149 | cell_17 | 509 | 1163 | 2231 | 0.034042358 | 0.20193182 | 4.8897997 | 1.5258789e-05 | 133150.38 | 2.0317135 | 1.5335292 | 9.9346721 | 0.30966836 | cell_18 | 495 | 1197 | 2241 | 0.017097473 | 0.20257811 | 4.6206295 | 7.6293945e-06 | 139424.93 | 1.0637278 | 0.7729574 | 4.9150921 | 0.15658425 | cell_19 | 544 | 544 | 0 | 0 | 2.9819583 | 4.7405471 | 7.6293945e-06 | 81292.743 | 0.62021441 | 0.03100179 | 2.9401557 | 0.092446045 | ============================================= === G4ProcessPlacer::RemoveProcess: for: neutron ProcessName: ImportanceProcess, will be removed! The initial AlongStep Vectors: GPIL Vector: ImportanceProcess Transportation DoIt Vector: Transportation ImportanceProcess The initial PostStep Vectors: GPIL Vector: Decay HadronCapture HadronFission inelastic HadronElastic ImportanceProcess Transportation DoIt Vector: Transportation ImportanceProcess HadronElastic inelastic HadronFission HadronCapture Decay The final AlongStep Vectors: GPIL Vector: Transportation DoIt Vector: Transportation The final PostStep Vectors: GPIL Vector: Decay HadronCapture HadronFission inelastic HadronElastic Transportation DoIt Vector: Transportation HadronElastic inelastic HadronFission HadronCapture Decay ================================================