

F. Touze, G. Le Meur,
M. Alabau, Ph. Bambade, O.
Dadoun, C. Rimbault, D. Schulte
LAL, ORSAY

overview

- Recall of what is guinea-pig++?
- New features
- Next developments

What is guinea-pig++?

- An object oriented version (C++) of the beam-beam simulation code guinea-pig written by Daniel Schulte (1996)
- More safety and modularity
- Easy evolution to add new features and functionnalities
- Use Standard Template Library: strings, containers (vectors, lists...)

What is guinea-pig++?

- C-structures become C++ classes
- Original algorithms are kept
- Ready for specific developments for future ILC simulations : new classes, new algorithms
- Project designed by G. Le Meur at LAL-Orsay
 - https://trac.lal.in2p3.fr/GuineaPig

New features

- beam-beam effects on bhabhas
- all keywords of guinea-pig are now available:
 - hadrons (do_hadrons)
 - minijets (do_jets)
 - pairs (do pairs) ...
- abstract I/O interface :
 - separate algorithms and I/O
 - plugging different format (ascii)
 - plugging graphical interface

New features

- fast Fourier transform : FFTW library
 - version 2.5.1 or 3.1.2
- random number generation :
 - choose a specified rndm seed
 - algorithms for 32-bits and 64-bits computers
 - random generator checked before computing
- use on the computing Grid to increase performance for high statistic simulations :
 - http://flc.web.lal.in2p3.fr/mdi/BBSIM/bbsim.html

Next developments

- Automatic choice of the grid dimensions and number of cells
- Depolarization effects
- Complete the I/O abstract interface for implement other formats than ASCII (HDF5?)
- Work on feasibility of parallelization

Why parallel computing?

- How does guinea-pig work?
 - bunches are cut into slices which are moved longitudinaly and interact when they are in the same transverse plan

Why parallel computing?

- for each slice-slice interaction
 - particles are distributed on the grid
 - integration of the field equation
 - particles are moved and photons are generated
 - e-e+ interaction: luminosity, ...
 - if asked
 - photons are distributed and moved on the grid
 - if asked, pairs are generated and moved

Why parallel computing?

computation time

_ _/ _		
	nm= 10,000	nm= 100,000
distribute particles	11.7%	2.3%
fftw	15%	0.5%
distribute photons	6.7%	15%
generate pairs	40%	80%
tracking pairs	22%	0.5%

