source: HiSusy/trunk/Delphes/Delphes-3.0.9/external/fastjet/internal/SearchTree.hh @ 5

Last change on this file since 5 was 5, checked in by zerwas, 11 years ago

update to Delphes-3.0.9

File size: 25.2 KB
Line 
1//STARTHEADER
2// $Id: SearchTree.hh 2577 2011-09-13 15:11:38Z salam $
3//
4// Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
5//
6//----------------------------------------------------------------------
7// This file is part of FastJet.
8//
9//  FastJet is free software; you can redistribute it and/or modify
10//  it under the terms of the GNU General Public License as published by
11//  the Free Software Foundation; either version 2 of the License, or
12//  (at your option) any later version.
13//
14//  The algorithms that underlie FastJet have required considerable
15//  development and are described in hep-ph/0512210. If you use
16//  FastJet as part of work towards a scientific publication, please
17//  include a citation to the FastJet paper.
18//
19//  FastJet is distributed in the hope that it will be useful,
20//  but WITHOUT ANY WARRANTY; without even the implied warranty of
21//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22//  GNU General Public License for more details.
23//
24//  You should have received a copy of the GNU General Public License
25//  along with FastJet. If not, see <http://www.gnu.org/licenses/>.
26//----------------------------------------------------------------------
27//ENDHEADER
28
29
30#ifndef __FASTJET_SEARCHTREE_HH__
31#define __FASTJET_SEARCHTREE_HH__
32
33#include<vector>
34#include<cassert>
35#include<cstddef>
36#include "fastjet/internal/base.hh"
37
38FASTJET_BEGIN_NAMESPACE      // defined in fastjet/internal/base.hh
39
40
41//======================================================================
42/// \if internal_doc
43/// @ingroup internal
44/// \class SearchTree
45/// Efficient class for a search tree
46///
47/// This is the class for a search tree designed to be especially efficient
48/// when looking for successors and predecessors (to be used in Chan's
49/// CP algorithm). It has the requirement that the maximum size of the
50/// search tree must be known in advance.
51/// \endif
52template<class T> class SearchTree {
53public:
54
55  class Node;
56  class circulator;
57  class const_circulator;
58
59  /// constructor for a search tree from an ordered vector
60  SearchTree(const std::vector<T> & init);
61
62  /// constructor for a search tree from an ordered vector allowing
63  /// for future growth beyond the current size, up to max_size
64  SearchTree(const std::vector<T> & init, unsigned int max_size);
65
66  /// remove the node corresponding to node_index from the search tree
67  void remove(unsigned node_index);
68  void remove(typename SearchTree::Node * node);
69  void remove(typename SearchTree::circulator & circ);
70
71  /// insert the supplied value into the tree and return a pointer to
72  /// the relevant SearchTreeNode.
73  //Node * insert(const T & value);
74  circulator insert(const T & value);
75
76  const Node & operator[](int i) const {return _nodes[i];};
77
78  /// return the number of elements currently in the search tree
79  unsigned int size() const {return _nodes.size() - _available_nodes.size();}
80
81  /// check that the structure we've obtained makes sense...
82  void verify_structure();
83  void verify_structure_linear() const;
84  void verify_structure_recursive(const Node * , const Node * , const Node * ) const;
85
86  /// print out all elements...
87  void print_elements();
88
89  // tracking the depth may have some speed overhead -- so leave it
90  // out for the time being...
91#ifdef TRACK_DEPTH
92  /// the max depth the tree has ever reached
93  inline unsigned int max_depth() const {return _max_depth;};
94#else
95  inline unsigned int max_depth() const {return 0;};
96#endif
97
98  int loc(const Node * node) const ;
99
100  /// return predecessor by walking through the tree
101  Node * _find_predecessor(const Node *);
102  /// return successor by walking through the tree
103  Node * _find_successor(const Node *);
104
105  const Node & operator[](unsigned int i) const {return _nodes[i];};
106
107  /// return a circulator to some place in the tree (with a circulator
108  /// you don't care where...)
109  const_circulator somewhere() const;
110  circulator somewhere();
111
112private:
113 
114  void _initialize(const std::vector<T> & init);
115
116  std::vector<Node> _nodes;
117  std::vector<Node *> _available_nodes;
118  Node * _top_node;
119  unsigned int _n_removes;
120
121 
122  /// recursive routine for doing the initial connections assuming things
123  /// are ordered. Assumes this_one's parent is labelled, and was
124  /// generated at a scale "scale" -- connections will be carried out
125  /// including left edge and excluding right edge
126  void _do_initial_connections(unsigned int this_one, unsigned int scale,
127                               unsigned int left_edge, unsigned int right_edge,
128                               unsigned int depth);
129
130 
131#ifdef TRACK_DEPTH
132  unsigned int _max_depth;
133#endif
134
135};
136
137
138//======================================================================
139/// \if internal_doc
140/// @ingroup internal
141/// \class SearchTree::Node
142/// A node in the search tree
143/// \endif
144template<class T> class SearchTree<T>::Node{
145public:
146  Node() {}; /// default constructor
147 
148 
149  /// returns tree if all the tree-related links are set to null for this node
150  bool treelinks_null() const {
151    return ((parent==0) && (left==0) && (right==0));};
152 
153  /// set all the tree-related links are set to null for this node
154  inline void nullify_treelinks() {
155    parent = NULL; 
156    left   = NULL; 
157    right  = NULL;
158  };
159 
160  /// if my parent exists, determine whether I am it's left or right
161  /// node and set the relevant link equal to XX.
162  void reset_parents_link_to_me(Node * XX);
163 
164  T      value;
165  Node * left;
166  Node * right;
167  Node * parent;
168  Node * successor;
169  Node * predecessor;
170};
171
172//----------------------------------------------------------------------
173template<class T> void SearchTree<T>::Node::reset_parents_link_to_me(typename SearchTree<T>::Node * XX) {
174  if (parent == NULL) {return;}
175  if (parent->right == this) {parent->right = XX;}
176  else {parent->left = XX;}
177}
178
179
180
181//======================================================================
182/// \if internal_doc
183/// @ingroup internal
184/// \class SearchTree::circulator
185/// circulator for the search tree
186/// \endif
187template<class T> class SearchTree<T>::circulator{
188public:
189
190  // so that it can access out _node object;
191  friend class SearchTree<T>::const_circulator;
192  friend class SearchTree<T>;
193
194  circulator() : _node(NULL) {}
195
196  circulator(Node * node) : _node(node) {}
197
198  const T * operator->() const {return &(_node->value);}
199  T * operator->() {return &(_node->value);}
200  const T & operator*() const {return _node->value;}
201  T & operator*() {return _node->value;}
202
203  /// prefix increment (structure copied from stl_bvector.h)
204  circulator & operator++() {
205    _node = _node->successor; 
206    return *this;}
207
208  /// postfix increment ["int" argument tells compiler it's postfix]
209  /// (structure copied from stl_bvector.h)
210  circulator operator++(int) {
211    circulator tmp = *this;
212    _node = _node->successor; 
213    return tmp;}
214
215  /// prefix decrement (structure copied from stl_bvector.h)
216  circulator & operator--() {
217    _node = _node->predecessor; 
218    return *this;}
219
220  /// postfix decrement ["int" argument tells compiler it's postfix]
221  /// (structure copied from stl_bvector.h)
222  circulator operator--(int) {
223    circulator tmp = *this;
224    _node = _node->predecessor; 
225    return tmp;}
226
227  /// return a circulator referring to the next node
228  circulator next() const {
229    return circulator(_node->successor);}
230
231  /// return a circulator referring to the previous node
232  circulator previous() const {
233    return circulator(_node->predecessor);}
234
235  bool operator!=(const circulator & other) const {return other._node != _node;}
236  bool operator==(const circulator & other) const {return other._node == _node;}
237
238private:
239  Node * _node;
240};
241
242
243//======================================================================
244/// \if internal_doc
245/// @ingroup internal
246/// \class SearchTree::const_circulator
247/// A const_circulator for the search tree
248/// \endif
249template<class T> class SearchTree<T>::const_circulator{
250public:
251
252  const_circulator() : _node(NULL) {}
253
254  const_circulator(const Node * node) : _node(node) {}
255  const_circulator(const circulator & circ) :_node(circ._node) {}
256
257  const T * operator->() {return &(_node->value);}
258  const T & operator*() const {return _node->value;}
259
260  /// prefix increment (structure copied from stl_bvector.h)
261  const_circulator & operator++() {
262    _node = _node->successor; 
263    return *this;}
264
265  /// postfix increment ["int" argument tells compiler it's postfix]
266  /// (structure copied from stl_bvector.h)
267  const_circulator operator++(int) {
268    const_circulator tmp = *this;
269    _node = _node->successor; 
270    return tmp;}
271
272
273  /// prefix decrement (structure copied from stl_bvector.h)
274  const_circulator & operator--() {
275    _node = _node->predecessor; 
276    return *this;}
277
278  /// postfix decrement ["int" argument tells compiler it's postfix]
279  /// (structure copied from stl_bvector.h)
280  const_circulator operator--(int) {
281    const_circulator tmp = *this;
282    _node = _node->predecessor; 
283    return tmp;}
284
285  /// return a circulator referring to the next node
286  const_circulator next() const {
287    return const_circulator(_node->successor);}
288
289  /// return a circulator referring to the previous node
290  const_circulator previous() const {
291    return const_circulator(_node->predecessor);}
292
293
294
295  bool operator!=(const const_circulator & other) const {return other._node != _node;}
296  bool operator==(const const_circulator & other) const {return other._node == _node;}
297
298private:
299  const Node * _node;
300};
301
302
303
304
305//----------------------------------------------------------------------
306/// initialise from a sorted initial array allowing for a larger
307/// maximum size of the array...
308template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init,
309                                            unsigned int max_size) :
310  _nodes(max_size) {
311
312  _available_nodes.reserve(max_size);
313  _available_nodes.resize(max_size - init.size());
314  for (unsigned int i = init.size(); i < max_size; i++) {
315    _available_nodes[i-init.size()] = &(_nodes[i]);
316  }
317
318  _initialize(init);
319}
320
321//----------------------------------------------------------------------
322/// initialise from a sorted initial array
323template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init) :
324  _nodes(init.size()), _available_nodes(0) {
325
326  // reserve space for the list of available nodes
327  _available_nodes.reserve(init.size());
328  _initialize(init);
329}
330
331//----------------------------------------------------------------------
332/// do the actual hard work of initialization
333template<class T> void SearchTree<T>::_initialize(const std::vector<T> & init) {
334
335  _n_removes = 0;
336  unsigned n = init.size();
337  assert(n>=1);
338
339  // reserve space for the list of available nodes
340  //_available_nodes.reserve();
341
342#ifdef TRACK_DEPTH
343  _max_depth     = 0;
344#endif
345
346
347  // validate the input
348  for (unsigned int i = 1; i<n; i++) {
349    assert(!(init[i] < init[i-1]));
350  }
351 
352  // now initialise the vector; link neighbours in the sequence
353  for(unsigned int i = 0; i < n; i++) {
354    _nodes[i].value = init[i];
355    _nodes[i].predecessor = (& (_nodes[i])) - 1;
356    _nodes[i].successor   = (& (_nodes[i])) + 1;
357    _nodes[i].nullify_treelinks();
358  }
359  // make a loop structure so that we can circulate...
360  _nodes[0].predecessor = (& (_nodes[n-1]));
361  _nodes[n-1].successor = (& (_nodes[0]));
362
363  // now label the rest of the nodes
364  unsigned int scale = (n+1)/2;
365  unsigned int top   = std::min(n-1,scale);
366  _nodes[top].parent = NULL;
367  _top_node = &(_nodes[top]);
368  _do_initial_connections(top, scale, 0, n, 0);
369
370  // make sure things are sensible...
371  //verify_structure();
372}
373
374
375
376//----------------------------------------------------------------------
377template<class T> inline  int SearchTree<T>::loc(const Node * node) const {return node == NULL? 
378      -999 : node - &(_nodes[0]);}
379
380
381//----------------------------------------------------------------------
382/// Recursive creation of connections, assuming the _nodes vector is
383/// completely filled and ordered
384template<class T> void SearchTree<T>::_do_initial_connections(
385                                         unsigned int this_one, 
386                                         unsigned int scale,
387                                         unsigned int left_edge,
388                                         unsigned int right_edge,
389                                         unsigned int depth
390                                         ) {
391
392#ifdef TRACK_DEPTH
393  // keep track of tree depth for checking things stay reasonable...
394  _max_depth = max(depth, _max_depth);
395#endif
396
397  //std::cout << this_one << " "<< scale<< std::endl;
398  unsigned int ref_new_scale = (scale+1)/2;
399
400  // work through children to our left
401  unsigned new_scale = ref_new_scale;
402  bool     did_child  = false;
403  while(true) {
404    int left = this_one - new_scale; // be careful here to use signed int...
405    // if there is something unitialised to our left, link to it
406    if (left >= static_cast<int>(left_edge) 
407                        && _nodes[left].treelinks_null() ) {
408      _nodes[left].parent = &(_nodes[this_one]);
409      _nodes[this_one].left = &(_nodes[left]);
410      // create connections between left_edge and this_one
411      _do_initial_connections(left, new_scale, left_edge, this_one, depth+1);
412      did_child = true;
413      break;
414    }
415    // reduce the scale so as to try again
416    unsigned int old_new_scale = new_scale;
417    new_scale = (old_new_scale + 1)/2;
418    // unless we've reached end of tree
419    if (new_scale == old_new_scale) break;
420  }
421  if (!did_child) {_nodes[this_one].left = NULL;}
422
423
424  // work through children to our right
425  new_scale = ref_new_scale;
426  did_child  = false;
427  while(true) {
428    unsigned int right = this_one + new_scale;
429    if (right < right_edge  && _nodes[right].treelinks_null()) {
430      _nodes[right].parent = &(_nodes[this_one]);
431      _nodes[this_one].right = &(_nodes[right]);
432      // create connections between this_one+1 and right_edge
433      _do_initial_connections(right, new_scale, this_one+1,right_edge,depth+1);
434      did_child = true;
435      break;
436    }
437    // reduce the scale so as to try again
438    unsigned int old_new_scale = new_scale;
439    new_scale = (old_new_scale + 1)/2;
440    // unless we've reached end of tree
441    if (new_scale == old_new_scale) break;
442  }
443  if (!did_child) {_nodes[this_one].right = NULL;}
444
445}
446
447
448
449//----------------------------------------------------------------------
450template<class T> void SearchTree<T>::remove(unsigned int node_index) {
451  remove(&(_nodes[node_index]));
452}
453
454//----------------------------------------------------------------------
455template<class T> void SearchTree<T>::remove(circulator & circ) {
456  remove(circ._node);
457}
458
459//----------------------------------------------------------------------
460// Useful reference for this:
461//   http://en.wikipedia.org/wiki/Binary_search_tree#Deletion
462template<class T> void SearchTree<T>::remove(typename SearchTree<T>::Node * node) {
463
464  // we don't remove things from the tree if we've reached the last
465  // elements... (is this wise?)
466  assert(size() > 1); // switch this to throw...?
467  assert(!node->treelinks_null());
468
469  // deal with relinking predecessor and successor
470  node->predecessor->successor = node->successor;
471  node->successor->predecessor = node->predecessor;
472
473  if (node->left == NULL && node->right == NULL) {
474    // node has no children, so remove it by nullifying the pointer
475    // from the parent
476    node->reset_parents_link_to_me(NULL); 
477
478  } else if (node->left != NULL && node->right == NULL){
479    // make parent point to my child
480    node->reset_parents_link_to_me(node->left);
481    // and child to parent
482    node->left->parent = node->parent;         
483    // sort out the top node...
484    if (_top_node == node) {_top_node = node->left;}
485
486  } else if (node->left == NULL && node->right != NULL){
487    // make parent point to my child
488    node->reset_parents_link_to_me(node->right);
489    // and child to parent
490    node->right->parent = node->parent;   
491    // sort out the top node...
492    if (_top_node == node) {_top_node = node->right;}
493
494  } else {
495    // we have two children; we will put a replacement in our place
496    Node * replacement;
497    //SearchTree<T>::Node * replacements_child;
498    // chose predecessor or successor (one, then other, then first, etc...)
499    bool use_predecessor = (_n_removes % 2 == 1);
500    if (use_predecessor) {
501      // Option 1: put predecessor in our place, and have its parent
502      // point to its left child (as a predecessor it has no right child)
503      replacement = node->predecessor;
504      assert(replacement->right == NULL); // guaranteed if it's our predecessor
505      // we have to be careful of replacing certain links when the
506      // replacement is this node's child
507      if (replacement != node->left) {
508        if (replacement->left != NULL) {
509          replacement->left->parent = replacement->parent;}
510        replacement->reset_parents_link_to_me(replacement->left);
511        replacement->left   = node->left;
512      }
513      replacement->parent = node->parent;
514      replacement->right  = node->right;
515    } else {
516      // Option 2: put successor in our place, and have its parent
517      // point to its right child (as a successor it has no left child)
518      replacement = node->successor;
519      assert(replacement->left == NULL); // guaranteed if it's our successor
520      if (replacement != node->right) {
521        if (replacement->right != NULL) {
522          replacement->right->parent = replacement->parent;}
523        replacement->reset_parents_link_to_me(replacement->right);
524        replacement->right  = node->right;
525      }
526      replacement->parent = node->parent;
527      replacement->left   = node->left;
528    }
529    node->reset_parents_link_to_me(replacement);
530
531    // make sure node's original children now point to the replacement
532    if (node->left  != replacement) {node->left->parent  = replacement;}
533    if (node->right != replacement) {node->right->parent = replacement;}
534
535    // sort out the top node...
536    if (_top_node == node) {_top_node = replacement;}
537  }
538
539  // make sure we leave something nice and clean...
540  node->nullify_treelinks();
541  node->predecessor = NULL;
542  node->successor   = NULL;
543
544  // for bookkeeping (and choosing whether to use pred. or succ.)
545  _n_removes++;
546  // for when we next need access to a free node...
547  _available_nodes.push_back(node);
548}
549
550
551//----------------------------------------------------------------------
552//template<class T> typename SearchTree<T>::Node * SearchTree<T>::insert(const T & value) {
553
554//----------------------------------------------------------------------
555template<class T> typename SearchTree<T>::circulator SearchTree<T>::insert(const T & value) {
556  // make sure we don't exceed allowed number of nodes...
557  assert(_available_nodes.size() > 0);
558
559  Node * node = _available_nodes.back();
560  _available_nodes.pop_back();
561  node->value = value;
562
563  Node * location = _top_node;
564  Node * old_location = NULL;
565  bool             on_left = true; // (init not needed -- but soothes g++4)
566  // work through tree until we reach its end
567#ifdef TRACK_DEPTH
568  unsigned int depth = 0;
569#endif
570  while(location != NULL) {
571#ifdef TRACK_DEPTH
572    depth++;
573#endif
574    old_location = location;
575    on_left = value < location->value;
576    if (on_left) {location = location->left;}
577    else {location = location->right;}
578  }
579#ifdef TRACK_DEPTH
580  _max_depth = max(depth, _max_depth);
581#endif
582  // now create tree links
583  node->parent = old_location;
584  if (on_left) {node->parent->left = node;} 
585  else {node->parent->right = node;}
586  node->left = NULL;
587  node->right = NULL;
588  // and create predecessor / successor links
589  node->predecessor = _find_predecessor(node);
590  if (node->predecessor != NULL) {
591    // it exists, so make use of its info (will include a cyclic case,
592    // when successor is round the bend)
593    node->successor = node->predecessor->successor;
594    node->predecessor->successor = node;
595    node->successor->predecessor = node;
596  } else {
597    // deal with case when we are left-most edge of tree (then successor
598    // will exist...)
599    node->successor = _find_successor(node);
600    assert(node->successor != NULL); // can only happen if we're sole element
601                                     // (but not allowed, since tree size>=1)
602    node->predecessor = node->successor->predecessor;
603    node->successor->predecessor = node;
604    node->predecessor->successor = node;
605  }
606
607  return circulator(node);
608}
609
610
611//----------------------------------------------------------------------
612template<class T> void SearchTree<T>::verify_structure() {
613 
614  // do a check running through all elements
615  verify_structure_linear();
616
617  // do a recursive check down tree from top
618
619  // first establish the extremities
620  const Node * left_limit = _top_node;
621  while (left_limit->left != NULL) {left_limit = left_limit->left;}
622  const Node * right_limit = _top_node;
623  while (right_limit->right != NULL) {right_limit = right_limit->right;}
624
625  // then actually do recursion
626  verify_structure_recursive(_top_node, left_limit, right_limit);
627}
628
629
630//----------------------------------------------------------------------
631template<class T> void SearchTree<T>::verify_structure_recursive(
632                      const typename SearchTree<T>::Node * element, 
633                      const typename SearchTree<T>::Node * left_limit,
634                      const typename SearchTree<T>::Node * right_limit)  const {
635
636  assert(!(element->value < left_limit->value));
637  assert(!(right_limit->value < element->value));
638
639  const Node * left = element->left;
640  if (left != NULL) {
641    assert(!(element->value < left->value));
642    if (left != left_limit) {
643      // recurse down the tree with this element as the right-hand limit
644      verify_structure_recursive(left, left_limit, element);}
645  }
646 
647  const Node * right = element->right;
648  if (right != NULL) {
649    assert(!(right->value < element->value));
650    if (right != right_limit) {
651      // recurse down the tree with this element as the left-hand limit
652      verify_structure_recursive(right, element, right_limit);}
653  }
654}
655
656//----------------------------------------------------------------------
657template<class T> void SearchTree<T>::verify_structure_linear() const {
658
659  //print_elements();
660
661  unsigned n_top = 0;
662  unsigned n_null = 0;
663  for(unsigned i = 0; i < _nodes.size(); i++) {
664    const typename SearchTree<T>::Node * node = &(_nodes[i]);
665    // make sure node is defined
666    if (node->treelinks_null()) {n_null++; continue;}
667
668    // make sure of the number of "top" nodes
669    if (node->parent == NULL) {
670      n_top++;
671      //assert(node->left != NULL);
672      //assert(node->right != NULL);
673    } else {
674      // make sure that I am a child of my parent...
675      //assert((node->parent->left == node) || (node->parent->right == node));
676      assert((node->parent->left == node) ^ (node->parent->right == node));
677    }
678
679    // when there is a left child make sure it's value is ordered
680    // (note use of !(b<a), to allow for a<=b while using just the <
681    // operator)
682    if (node->left != NULL) {
683      assert(!(node->value < node->left->value ));}
684
685    // when there is a right child make sure it's value is ordered
686    if (node->right != NULL) {
687      assert(!(node->right->value < node->value ));}
688
689  }
690  assert(n_top == 1 || (n_top == 0 && size() <= 1) );
691  assert(n_null == _available_nodes.size() ||
692         (n_null == _available_nodes.size() + 1 && size() == 1));
693}
694
695
696//----------------------------------------------------------------------
697template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_predecessor(const typename SearchTree<T>::Node * node) {
698
699  typename SearchTree<T>::Node * newnode;
700  if (node->left != NULL) {
701    // go down left, and then down right as far as possible.
702    newnode = node->left;
703    while(newnode->right != NULL) {newnode = newnode->right;}
704    return newnode;
705  } else {
706    const typename SearchTree<T>::Node * lastnode = node;
707    newnode = node->parent;
708    // go up the tree as long as we're going right (when we go left then
709    // we've found something smaller, so stop)
710    while(newnode != NULL) {
711      if (newnode->right == lastnode) {return newnode;}
712      lastnode = newnode;
713      newnode = newnode->parent;
714    }
715    return newnode;
716  }
717}
718
719
720//----------------------------------------------------------------------
721template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_successor(const typename SearchTree<T>::Node * node) {
722
723  typename SearchTree<T>::Node * newnode;
724  if (node->right != NULL) {
725    // go down right, and then down left as far as possible.
726    newnode = node->right;
727    while(newnode->left != NULL) {newnode = newnode->left;}
728    return newnode;
729  } else {
730    const typename SearchTree<T>::Node * lastnode = node;
731    newnode = node->parent;
732    // go up the tree as long as we're going left (when we go right then
733    // we've found something larger, so stop)
734    while(newnode != NULL) {
735      if (newnode->left == lastnode) {return newnode;}
736      lastnode = newnode;
737      newnode = newnode->parent;
738    }
739    return newnode;
740  }
741}
742
743
744//----------------------------------------------------------------------
745// print out all the elements for visual checking...
746template<class T> void SearchTree<T>::print_elements() {
747  typename SearchTree<T>::Node * base_node = &(_nodes[0]);
748  typename SearchTree<T>::Node * node = base_node;
749 
750  int n = _nodes.size();
751  for(; node - base_node < n ; node++) {
752    printf("%4d parent:%4d left:%4d right:%4d pred:%4d succ:%4d value:%10.6f\n",loc(node), loc(node->parent), loc(node->left), loc(node->right), loc(node->predecessor),loc(node->successor),node->value);
753  }
754}
755
756//----------------------------------------------------------------------
757template<class T> typename SearchTree<T>::circulator SearchTree<T>::somewhere() {
758  return circulator(_top_node);
759}
760
761
762//----------------------------------------------------------------------
763template<class T> typename SearchTree<T>::const_circulator SearchTree<T>::somewhere() const {
764  return const_circulator(_top_node);
765}
766
767
768FASTJET_END_NAMESPACE
769
770#endif // __FASTJET_SEARCHTREE_HH__
Note: See TracBrowser for help on using the repository browser.