source: HiSusy/trunk/Pythia8/pythia8170/htmldoc/ExtraDimensionalProcesses.html @ 1

Last change on this file since 1 was 1, checked in by zerwas, 11 years ago

first import of structure, PYTHIA8 and DELPHES

File size: 29.1 KB
Line 
1<html>
2<head>
3<title>Extra-Dimensional Processes</title>
4<link rel="stylesheet" type="text/css" href="pythia.css"/>
5<link rel="shortcut icon" href="pythia32.gif"/>
6</head>
7<body>
8
9<h2>Extra-Dimensional Processes</h2>
10
11Scenarios with extra dimensions (ED) allow a multitude of processes.
12Currently three different categories of processes are implemented.
13The first involves the production of excited Kaluza Klein states
14within so-called Randall-Sundrum (RS) scenarios, the second is
15related to resonance production in TeV-1 sized extra dimensions
16and the third relates to phenomena from large extra dimensions (LED).
17Due to the close relation between the LED model and a so-called
18unparticle model, similar unparticle processes are also kept in this
19section.
20
21<h3>Randall-Sundrum Resonances, production processes</h3>
22
23The graviton (G*) and gluon (KKgluon*) resonance states are assigned
24PDG code 5100039 and 5100021 respectively. The G* processes are
25described in [<a href="Bibliography.html" target="page">Bij01</a>] and the KKgluon* process in [<a href="Bibliography.html" target="page">Ask11</a>].
26Decays into fermion and boson pairs are handled with the correct
27angular distributions, while subsequent decays are handled
28isotropically.
29
30<p/>
31There are two lowest-order processes that together normally
32should be sufficient for a simulation of <i>G^*</i> production.
33
34<p/><code>flag&nbsp; </code><strong> ExtraDimensionsG*:all &nbsp;</strong> 
35 (<code>default = <strong>off</strong></code>)<br/>
36Common switch for the group of lowest-order <i>G^*</i> production
37processes, i.e. the two ones below.
38 
39
40<p/><code>flag&nbsp; </code><strong> ExtraDimensionsG*:gg2G* &nbsp;</strong> 
41 (<code>default = <strong>off</strong></code>)<br/>
42Scatterings <i>g g -> G^*</i>.
43Code 5001.
44 
45
46<p/><code>flag&nbsp; </code><strong> ExtraDimensionsG*:ffbar2G* &nbsp;</strong> 
47 (<code>default = <strong>off</strong></code>)<br/>
48Scatterings <i>f fbar -> G^*</i>.
49Code 5002.
50 
51
52<p/>
53In addition there are three first-order processes included. These
54are of less interest, but can be used for dedicated studies of the
55high-<i>pT</i> tail of <i>G^*</i> production. As usual, it would
56be double counting to include the lowest-order and first-order
57processes simultaneously. Therefore the latter ones are not included
58with the <code>ExtraDimensionsG*:all = on</code> option. In this set
59of processes all decay angles are assumed isotropic.
60
61<p/><code>flag&nbsp; </code><strong> ExtraDimensionsG*:gg2G*g &nbsp;</strong> 
62 (<code>default = <strong>off</strong></code>)<br/>
63Scatterings <i>g g -> G^* g</i>.
64Code 5003.
65 
66
67<p/><code>flag&nbsp; </code><strong> ExtraDimensionsG*:qg2G*q &nbsp;</strong> 
68 (<code>default = <strong>off</strong></code>)<br/>
69Scatterings <i>q g -> G^* q</i>.
70Code 5004.
71 
72
73<p/><code>flag&nbsp; </code><strong> ExtraDimensionsG*:qqbar2G*g &nbsp;</strong> 
74 (<code>default = <strong>off</strong></code>)<br/>
75Scatterings <i>q qbar -> G^* g</i>.
76Code 5005.
77 
78
79<p/>
80There is also one process for the production of a gluon resonance.
81
82<p/><code>flag&nbsp; </code><strong> ExtraDimensionsG*:qqbar2KKgluon* &nbsp;</strong> 
83 (<code>default = <strong>off</strong></code>)<br/>
84Scatterings <i>q qbar -> g^*/KKgluon^*</i>.
85Code 5006.
86 
87
88<h3>Randall-Sundrum Resonances, parameters</h3>
89
90In the above scenario the main free parameters are the masses, which
91are set as usual. In addition there are the following coupling parameters.
92The coupling <i>kappaMG</i> follows the conventions in [<a href="Bibliography.html" target="page">Bij01</a>],
93where as the flavour dependent couplings follow the conventions used in
94[<a href="Bibliography.html" target="page">Dav01</a>].
95
96<p/><code>flag&nbsp; </code><strong> ExtraDimensionsG*:SMinBulk &nbsp;</strong> 
97 (<code>default = <strong>off</strong></code>)<br/>
98Parameter to choose between the two scenarios:
99<i>off</i>, SM on the TeV brane (common <i>kappaMG</i> coupling);
100<i>on</i>, SM in the ED bulk (flavour dependent couplings).
101This parameter is only relevant for the lowest-order graviton
102(<i>G*</i>) processes, where as the first-order processes
103corresponds to the <i>off</i> scenario.
104 
105
106<p/><code>flag&nbsp; </code><strong> ExtraDimensionsG*:VLVL &nbsp;</strong> 
107 (<code>default = <strong>on</strong></code>)<br/>
108Parameter to specify Z/W coupling scenario:
109<i>off</i>, usual Z/W boson couplings;
110<i>on</i>, coupling only to longitudinal Z/W bosons.
111In both cases the <i>GZZ</i> and <i>GWW</i> values are used
112and this parameter is only relevant when <i>SMinBulk = on</i>.
113The formulas for longitudinal bosons should be appropriate up to
114<i>O(m_V/E_V)</i> corrections.
115 
116
117<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:kappaMG &nbsp;</strong> 
118 (<code>default = <strong>0.054</strong></code>; <code>minimum = 0.0</code>)<br/>
119dimensionless coupling, which enters quadratically in all partial
120widths of the <i>G^*</i>. Is
121<i>kappa m_G* = sqrt(2) x_1 k / Mbar_Pl</i>,
122where <i>x_1 = 3.83</i> is the first zero of the <i>J_1</i> Bessel
123function and <i>Mbar_Pl</i> is the modified Planck mass.
124 
125
126<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:Gll &nbsp;</strong> 
127 (<code>default = <strong>0.0</strong></code>; <code>minimum = 0.0</code>)<br/>
128Coupling between graviton and leptons.
129 
130
131<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:Gqq &nbsp;</strong> 
132 (<code>default = <strong>0.0</strong></code>; <code>minimum = 0.0</code>)<br/>
133Coupling between graviton and light quarks.
134 
135
136<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:Gbb &nbsp;</strong> 
137 (<code>default = <strong>0.0</strong></code>; <code>minimum = 0.0</code>)<br/>
138Coupling between graviton and bottom quark.
139 
140
141<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:Gtt &nbsp;</strong> 
142 (<code>default = <strong>0.001</strong></code>; <code>minimum = 0.0</code>)<br/>
143Coupling between graviton and top quark.
144 
145
146<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:Ggg &nbsp;</strong> 
147 (<code>default = <strong>0.000013</strong></code>; <code>minimum = 0.0</code>)<br/>
148Coupling between graviton and gluon.
149 
150
151<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:Ggmgm &nbsp;</strong> 
152 (<code>default = <strong>0.000013</strong></code>; <code>minimum = 0.0</code>)<br/>
153Coupling between graviton and gamma.
154 
155
156<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:GZZ &nbsp;</strong> 
157 (<code>default = <strong>0.001</strong></code>; <code>minimum = 0.0</code>)<br/>
158Coupling between graviton and Z boson.
159 
160
161<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:GWW &nbsp;</strong> 
162 (<code>default = <strong>0.001</strong></code>; <code>minimum = 0.0</code>)<br/>
163Coupling between graviton and W boson.
164 
165
166<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:Ghh &nbsp;</strong> 
167 (<code>default = <strong>0.001</strong></code>; <code>minimum = 0.0</code>)<br/>
168Coupling between graviton and Higgs bosons.
169 
170
171<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:KKgqR &nbsp;</strong> 
172 (<code>default = <strong>-0.2</strong></code>)<br/>
173Coupling between KK-gluon and a right-handed light quark.
174 
175
176<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:KKgqL &nbsp;</strong> 
177 (<code>default = <strong>-0.2</strong></code>)<br/>
178Coupling between KK-gluon and a left-handed light quark.
179 
180
181<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:KKgbR &nbsp;</strong> 
182 (<code>default = <strong>-0.2</strong></code>)<br/>
183Coupling between KK-gluon and a right-handed bottom quark.
184 
185
186<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:KKgbL &nbsp;</strong> 
187 (<code>default = <strong>1.0</strong></code>)<br/>
188Coupling between KK-gluon and a left-handed bottom quark.
189 
190
191<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:KKgtR &nbsp;</strong> 
192 (<code>default = <strong>4.0</strong></code>)<br/>
193Coupling between KK-gluon and a right-handed top quark.
194 
195
196<p/><code>parm&nbsp; </code><strong> ExtraDimensionsG*:KKgtL &nbsp;</strong> 
197 (<code>default = <strong>1.0</strong></code>)<br/>
198Coupling between KK-gluon and a left-handed top quark.
199 
200
201<p/><code>mode&nbsp; </code><strong> ExtraDimensionsG*:KKintMode &nbsp;</strong> 
202 (<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
203Choice of full <i>g^*/KK-gluon^*</i> structure or not in relevant
204processes.
205<br/><code>option </code><strong> 0</strong> : full <i>g^*/KK-gluon^*</i> structure, with
206interference included. 
207<br/><code>option </code><strong> 1</strong> : only pure <i>gluon_{SM}</i> contribution. 
208<br/><code>option </code><strong> 2</strong> : only pure <i>gluon_{KK}</i> contribution. 
209 
210
211<h3>TeV^-1 Sized Extra Dimension, production processes</h3>
212
213This section contains a processes involving the production
214of electroweak KK gauge bosons, i.e. <i>gamma_{KK}/Z_{KK}</i>,
215in one TeV^-1 sized extra dimension. The process is described
216in [<a href="Bibliography.html" target="page">Bel10</a>] and allows for individual final states to be
217specified.
218
219<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2ddbar &nbsp;</strong> 
220 (<code>default = <strong>off</strong></code>)<br/>
221Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> d dbar </i>,
222Code 5061.
223 
224
225<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2uubar &nbsp;</strong> 
226 (<code>default = <strong>off</strong></code>)<br/>
227Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> u ubar </i>,
228Code 5062.
229 
230
231<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2ssbar &nbsp;</strong> 
232 (<code>default = <strong>off</strong></code>)<br/>
233Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> s sbar </i>,
234Code 5063.
235 
236
237<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2ccbar &nbsp;</strong> 
238 (<code>default = <strong>off</strong></code>)<br/>
239Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> c cbar </i>,
240Code 5064.
241 
242
243<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2bbbar &nbsp;</strong> 
244 (<code>default = <strong>off</strong></code>)<br/>
245Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> b bbar </i>,
246Code 5065.
247 
248
249<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2ttbar &nbsp;</strong> 
250 (<code>default = <strong>off</strong></code>)<br/>
251Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> t tbar </i>,
252Code 5066.
253 
254
255<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2e+e- &nbsp;</strong> 
256 (<code>default = <strong>off</strong></code>)<br/>
257Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> e+ e- </i>,
258Code 5071.
259 
260
261<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2nuenuebar &nbsp;</strong> 
262 (<code>default = <strong>off</strong></code>)<br/>
263Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> nue nuebar </i>,
264Code 5072.
265 
266
267<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2mu+mu- &nbsp;</strong> 
268 (<code>default = <strong>off</strong></code>)<br/>
269Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> mu+ mu- </i>,
270Code 5073.
271 
272
273<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2numunumubar &nbsp;</strong> 
274 (<code>default = <strong>off</strong></code>)<br/>
275Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> numu numubar </i>,
276Code 5074.
277 
278
279<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2tau+tau- &nbsp;</strong> 
280 (<code>default = <strong>off</strong></code>)<br/>
281Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> tau+ tau- </i>,
282Code 5075.
283 
284
285<p/><code>flag&nbsp; </code><strong> ExtraDimensionsTEV:ffbar2nutaunutaubar &nbsp;</strong> 
286 (<code>default = <strong>off</strong></code>)<br/>
287Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> nutau nutaubar </i>,
288Code 5076.
289 
290
291<h3>TeV^-1 Sized Extra Dimension, parameters</h3>
292
293Irrespective of the parameter options used, the particle produced,
294<i>gamma_{KK}/Z_{KK}</i>, will always be assigned code 5000023.
295
296<p/><code>mode&nbsp; </code><strong> ExtraDimensionsTEV:gmZmode &nbsp;</strong> 
297 (<code>default = <strong>3</strong></code>; <code>minimum = 0</code>; <code>maximum = 5</code>)<br/>
298Choice of full <i>gamma_{KK}/Z_{KK}</i> structure or not in relevant
299processes.
300<br/><code>option </code><strong> 0</strong> : full <i>gamma_{SM}/Z_{SM}</i> structure, with
301interference included. 
302<br/><code>option </code><strong> 1</strong> : only pure <i>gamma_{SM}</i> contribution. 
303<br/><code>option </code><strong> 2</strong> : only pure <i>Z_{SM}</i> contribution. 
304<br/><code>option </code><strong> 3</strong> : full <i>gamma_{KK}/Z_{KK}</i> structure, with
305interference included. 
306<br/><code>option </code><strong> 4</strong> : only pure <i>gamma_{KK}</i> contribution, with
307SM interference included. 
308<br/><code>option </code><strong> 5</strong> : only pure <i>Z_{KK}</i> contribution, with SM
309interference included. 
310 
311
312<p/><code>parm&nbsp; </code><strong> ExtraDimensionsTEV:nMax &nbsp;</strong> 
313 (<code>default = <strong>10</strong></code>; <code>minimum = 1</code>; <code>maximum = 100</code>)<br/>
314The number of included KK excitations.
315 
316
317<p/><code>parm&nbsp; </code><strong> ExtraDimensionsTEV:mStar &nbsp;</strong> 
318 (<code>default = <strong>4000.0</strong></code>; <code>minimum = 1000.0</code>)<br/>
319The KK mass <i>m^*</i>, given by the inverse of the single extra
320dimension radius.
321 
322
323<h3>Large Extra Dimensions, production processes</h3>
324
325The LED graviton, where the KK-modes normally are summed and do not
326give rise to phenomena individually, is assigned PDG code 5000039.
327The graviton emission and virtual graviton exchange processes use
328the same implementation as the corresponding unparticle processes,
329which are all described in [<a href="Bibliography.html" target="page">Ask10</a>]. It is also possible to
330generate monojet events from scalar graviton emission as described
331in [<a href="Bibliography.html" target="page">Azu05</a>], by turning on the option <i>GravScalar</i>.
332
333<p/>
334<i>Note:</i> As discussed in [<a href="Bibliography.html" target="page">Ask09</a>], for the graviton or
335unparticle emission processes the underlying Breit-Wigner mass
336distribution should be matched to the graviton mass spectrum in order
337to achieve an optimal MC efficiency.
338
339<p/>
340The following lowest order graviton emission processes are available.
341
342<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:monojet &nbsp;</strong> 
343 (<code>default = <strong>off</strong></code>)<br/>
344Common switch for the group of lowest-order <i>G jet</i> emission
345processes, i.e. the three ones below.
346 
347
348<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:gg2Gg &nbsp;</strong> 
349 (<code>default = <strong>off</strong></code>)<br/>
350Scatterings <i>g g -> G g</i>.
351Code 5021.
352 
353
354<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:qg2Gq &nbsp;</strong> 
355 (<code>default = <strong>off</strong></code>)<br/>
356Scatterings <i>q g -> G q</i>.
357Code 5022.
358 
359
360<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:qqbar2Gg &nbsp;</strong> 
361 (<code>default = <strong>off</strong></code>)<br/>
362Scatterings <i>q qbar -> G g</i>.
363Code 5023.
364 
365
366<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:ffbar2GZ &nbsp;</strong> 
367 (<code>default = <strong>off</strong></code>)<br/>
368Scatterings <i>f fbar -> G Z</i>.
369Code 5024.
370 
371
372<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:ffbar2Ggamma &nbsp;</strong> 
373 (<code>default = <strong>off</strong></code>)<br/>
374Scatterings <i>f fbar -> G gamma</i>. This process corresponds
375to the photon limit of the <i>G Z</i> process, as described in
376[<a href="Bibliography.html" target="page">Ask09</a>].
377Code 5025.
378 
379
380<p/>
381The following LED processes with virtual graviton exchange are
382available.
383
384<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:ffbar2gammagamma &nbsp;</strong> 
385 (<code>default = <strong>off</strong></code>)<br/>
386Scatterings <i>f fbar -> (LED G*) -> gamma gamma</i>. If the
387graviton contribution is zero, the results corresponds to the
388SM contribution, i.e. equivalent to
389<code>PromptPhoton:ffbar2gammagamma</code>.
390Code 5026.
391 
392
393<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:gg2gammagamma &nbsp;</strong> 
394 (<code>default = <strong>off</strong></code>)<br/>
395Scatterings <i>g g -> (LED G*) -> gamma gamma</i>.
396Code 5027.
397 
398
399<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:ffbar2llbar &nbsp;</strong> 
400 (<code>default = <strong>off</strong></code>)<br/>
401Scatterings <i>f fbar -> (LED G*) -> l l </i>, where
402<i>l</i> is a charged lepton. If the graviton contribution
403is zero, the results corresponds to the SM contribution, i.e.
404similar to <code>WeakSingleBoson:ffbar2gmZ</code>. Does not
405include t-channel amplitude relevant for e^+e^- to e^+e^-
406and no K-factor is used.
407Code 5028.
408 
409
410<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:gg2llbar &nbsp;</strong> 
411 (<code>default = <strong>off</strong></code>)<br/>
412Scatterings <i>g g -> (LED G*) -> l l</i>.
413Code 5029.
414 
415
416<p/> 
417Dijet production including graviton exchange is also available, using
418the same effective theory approach as the LED G exchange processes
419above or including more detailed amplitudes in accordance with
420[<a href="Bibliography.html" target="page">Fra11</a>]. In case of the latter, the value of <i>LambdaT</i> 
421is used as the value of the cut-off scale <i>Lambda</i>. For this
422reason the dijet processes only relates to the LED model and no
423unparticle versions are available. The processes are grouped together
424like their <i>HardQCD</i> equivalents and should therefore converge
425to the same results in the limit of an insignificant graviton
426contribution.
427
428<p/>
429<i>Warning:</i> These LED dijets processes are still being validated.
430
431<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:dijets &nbsp;</strong> 
432 (<code>default = <strong>off</strong></code>)<br/>
433Common switch for the group of lowest-order <i>jet jet</i> 
434production processes with graviton exchange, i.e. the six ones
435below.
436 
437
438<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:gg2DJgg &nbsp;</strong> 
439 (<code>default = <strong>off</strong></code>)<br/>
440Scatterings <i>g g -> (LED G*) -> g g</i>.
441Code 5030.
442 
443
444<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:gg2DJqqbar &nbsp;</strong> 
445 (<code>default = <strong>off</strong></code>)<br/>
446Scatterings <i>g g -> (LED G*) -> q qbar</i>. Number of
447outgoing flavours specified by <i>nQuarkNew</i> parameter
448below.
449Code 5031.
450 
451
452<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:qg2DJqg &nbsp;</strong> 
453 (<code>default = <strong>off</strong></code>)<br/>
454Scatterings <i>q g -> (LED G*) -> q g</i> and
455<i>qbar g -> (LED G*) -> qbar g</i>.
456Code 5032.
457 
458
459<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:qq2DJqq &nbsp;</strong> 
460 (<code>default = <strong>off</strong></code>)<br/>
461Scatterings <i>q q(bar)' -> (LED G*) -> q q(bar)'</i>.
462Including <i>q</i> and <i>qbar</i> of same or different
463flavours, but the outgoing flavours equals the incoming ones.
464Code 5033.
465 
466
467<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:qqbar2DJgg &nbsp;</strong> 
468 (<code>default = <strong>off</strong></code>)<br/>
469Scatterings <i>q qbar -> (LED G*) -> g g</i>.
470Code 5034.
471 
472
473<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:qqbar2DJqqbarNew &nbsp;</strong> 
474 (<code>default = <strong>off</strong></code>)<br/>
475Scatterings <i>q qbar -> (LED G*) -> q' qbar'</i>. Number of
476outgoing flavours specified by <i>nQuarkNew</i> parameter below.
477Code 5035.
478 
479
480<h3>Large Extra Dimensions, parameters</h3>
481
482<p/><code>flag&nbsp; </code><strong> ExtraDimensionsLED:GravScalar &nbsp;</strong> 
483 (<code>default = <strong>off</strong></code>)<br/>
484Allow the monojet processes to produce scalar graviton emission
485instead of the default tensor one. The scalar option is according
486to the processes described in [<a href="Bibliography.html" target="page">Azu05</a>] and includes two
487coupling constants below.
488 
489
490<p/><code>mode&nbsp; </code><strong> ExtraDimensionsLED:n &nbsp;</strong> 
491 (<code>default = <strong>2</strong></code>; <code>minimum = 1</code>)<br/>
492Number of extra dimensions.
493 
494
495<p/><code>parm&nbsp; </code><strong> ExtraDimensionsLED:MD &nbsp;</strong> 
496 (<code>default = <strong>2000.</strong></code>; <code>minimum = 100.0</code>)<br/>
497Fundamental scale of gravity in <i>D = 4 + n</i> dimensions.
498 
499
500<p/><code>parm&nbsp; </code><strong> ExtraDimensionsLED:LambdaT &nbsp;</strong> 
501 (<code>default = <strong>2000.</strong></code>; <code>minimum = 100.0</code>)<br/>
502Ultraviolet cutoff parameter for the virtual graviton exchange processes.
503 
504
505<p/><code>mode&nbsp; </code><strong> ExtraDimensionsLED:NegInt &nbsp;</strong> 
506 (<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 1</code>)<br/>
507Allows to change sign of the interference terms in the graviton exchange
508processes, common in connection to using the <i>Hewett</i> convention
509[<a href="Bibliography.html" target="page">Hew99</a>].
510<br/><code>option </code><strong> 0</strong> : 1 
511<br/><code>option </code><strong> 1</strong> : -1 
512 
513
514<p/><code>mode&nbsp; </code><strong> ExtraDimensionsLED:CutOffMode &nbsp;</strong> 
515 (<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
516Options for when the hard scale of the process (e.g. <i>sHat</i>)
517approaches or exceed the scale of validity of the low energy effective
518theory (e.g. <i>M_D</i>). <i>Note:</i> Option 1 only concerns the
519graviton emission processes and the form factor is currently not available
520for the scalar graviton processes.
521<br/><code>option </code><strong> 0</strong> : Do nothing, i.e. all values of <i>sHat</i> contribute.
522 
523<br/><code>option </code><strong> 1</strong> : Truncate contributing <i>sHat</i> region
524([<a href="Bibliography.html" target="page">Ask09</a>]). 
525<br/><code>option </code><strong> 2</strong> : Form factor, using <i>mu = renormScale2</i> . 
526<br/><code>option </code><strong> 3</strong> : Form factor, using <i>mu = E_jet</i>
527 
528
529<p/><code>parm&nbsp; </code><strong> ExtraDimensionsLED:t &nbsp;</strong> 
530 (<code>default = <strong>1.</strong></code>; <code>minimum = 0.001</code>)<br/>
531Form factor parameter.
532 
533
534<p/><code>parm&nbsp; </code><strong> ExtraDimensionsLED:g &nbsp;</strong> 
535 (<code>default = <strong>1.0</strong></code>; <code>minimum = 0.0</code>)<br/>
536Coupling related to scalar graviton emission.
537 
538
539<p/><code>parm&nbsp; </code><strong> ExtraDimensionsLED:c &nbsp;</strong> 
540 (<code>default = <strong>1.0</strong></code>; <code>minimum = 0.0</code>)<br/>
541Coupling related to scalar graviton emission.
542 
543
544<p/><code>mode&nbsp; </code><strong> ExtraDimensionsLED:nQuarkNew &nbsp;</strong> 
545 (<code>default = <strong>3</strong></code>; <code>minimum = 0</code>; <code>maximum = 5</code>)<br/>
546Number of allowed outgoing new quark flavours in the above
547<i>q qbar -> (LED G*) -> q' qbar'</i> and <i>g g -> (LED G*) -> q' qbar'</i> 
548processes. Similar to <i>HardQCD:nQuarkNew</i> for the QCD processes.
549 
550
551<p/><code>mode&nbsp; </code><strong> ExtraDimensionsLED:opMode &nbsp;</strong> 
552 (<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 1</code>)<br/>
553Options to specify <i>S</i> function for LED dijet amplitudes.
554<br/><code>option </code><strong> 0</strong> : Use detailed amplitude, as described in [<a href="Bibliography.html" target="page">Fra11</a>]. 
555<br/><code>option </code><strong> 1</strong> : Use conventional <i>LambdaT</i> parametrization, like the other LED processes. 
556 
557
558<h3>Unparticles, production processes</h3>
559
560As mentioned above, the similar unparticle and graviton processes
561share the same implementations. The unparticle processes, however,
562only use the dedicated unparticle parameters below. The unparticle
563is also assigned the PDG code 5000039 and is therefore called
564<i>Graviton</i> in the event record. The graviton and unparticle
565emission as well as virtual graviton and unparticle exchange processes
566are described in [<a href="Bibliography.html" target="page">Ask10</a>].
567
568<p/>
569<i>Note:</i> As discussed in [<a href="Bibliography.html" target="page">Ask09</a>], for the graviton or
570unparticle emission processes the underlying Breit-Wigner mass
571distribution should be matched to the graviton mass spectrum in order
572to achieve an optimal MC efficiency.
573
574<p/>
575The following unparticle emission processes are available.
576
577<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:monojet &nbsp;</strong> 
578 (<code>default = <strong>off</strong></code>)<br/>
579Common switch for the group of lowest-order <i>U jet</i> emission
580processes, i.e. the three ones below.
581 
582
583<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:gg2Ug &nbsp;</strong> 
584 (<code>default = <strong>off</strong></code>)<br/>
585Scatterings <i>g g -> U g</i>.
586Code 5045.
587 
588
589<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:qg2Uq &nbsp;</strong> 
590 (<code>default = <strong>off</strong></code>)<br/>
591Scatterings <i>q g -> U q</i>.
592Code 5046.
593 
594
595<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:qqbar2Ug &nbsp;</strong> 
596 (<code>default = <strong>off</strong></code>)<br/>
597Scatterings <i>q qbar -> U g</i>.
598Code 5047.
599 
600
601<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:ffbar2UZ &nbsp;</strong> 
602 (<code>default = <strong>off</strong></code>)<br/>
603Scatterings <i>f fbar -> U Z</i>
604Code 5041.
605 
606
607<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:ffbar2Ugamma &nbsp;</strong> 
608 (<code>default = <strong>off</strong></code>)<br/>
609Scatterings <i>f fbar -> U gamma</i>. This process corresponds
610to the photon limit of the <i>U Z</i> process, as described in
611[<a href="Bibliography.html" target="page">Ask09</a>].
612Code 5042.
613 
614
615<p/>
616The following processes with virtual unparticle exchange are available.
617
618<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:ffbar2gammagamma &nbsp;</strong> 
619 (<code>default = <strong>off</strong></code>)<br/>
620Scatterings <i>f fbar -> (U*) -> gamma gamma</i>. If the unparticle 
621contribution is zero in the spin-2 case, the results corresponds to
622the SM contribution, i.e. equivalent to
623<code>PromptPhoton:ffbar2gammagamma</code>.
624Code 5043.
625 
626
627<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:gg2gammagamma &nbsp;</strong> 
628 (<code>default = <strong>off</strong></code>)<br/>
629Scatterings <i>g g -> (U*) -> gamma gamma</i>.
630Code 5044.
631 
632
633<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:ffbar2llbar &nbsp;</strong> 
634 (<code>default = <strong>off</strong></code>)<br/>
635Scatterings <i>f fbar -> (U*) -> l lbar </i>, where
636<i>l</i> is a charged lepton. If the unparticle contribution
637is zero, the results corresponds to the SM contribution, i.e.
638similar to <code>WeakSingleBoson:ffbar2gmZ</code>. Does not
639include t-channel amplitude relevant for e^+e^- to e^+e^-
640and no K-factor is used.
641Code 5048.
642 
643
644<p/><code>flag&nbsp; </code><strong> ExtraDimensionsUnpart:gg2llbar &nbsp;</strong> 
645 (<code>default = <strong>off</strong></code>)<br/>
646Scatterings <i>g g -> (U*) -> l lbar</i>.
647Code 5049.
648 
649
650<h3>Unparticles, parameters</h3>
651
652<p/><code>mode&nbsp; </code><strong> ExtraDimensionsUnpart:spinU &nbsp;</strong> 
653 (<code>default = <strong>2</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
654Unparticle spin.
655 
656
657<p/><code>parm&nbsp; </code><strong> ExtraDimensionsUnpart:dU &nbsp;</strong> 
658 (<code>default = <strong>1.4</strong></code>; <code>minimum = 1.0</code>)<br/>
659Scale dimension parameter.
660 
661
662<p/><code>parm&nbsp; </code><strong> ExtraDimensionsUnpart:LambdaU &nbsp;</strong> 
663 (<code>default = <strong>2000.</strong></code>; <code>minimum = 100.0</code>)<br/>
664Unparticle renormalization scale.
665 
666
667<p/><code>parm&nbsp; </code><strong> ExtraDimensionsUnpart:lambda &nbsp;</strong> 
668 (<code>default = <strong>1.0</strong></code>; <code>minimum = 0.0</code>)<br/>
669Unparticle coupling to the SM fields.
670 
671
672<p/><code>parm&nbsp; </code><strong> ExtraDimensionsUnpart:ratio &nbsp;</strong> 
673 (<code>default = <strong>1.0</strong></code>; <code>minimum = 1.0</code>; <code>maximum = 1.0</code>)<br/>
674Ratio, <i>lambda'/lambda</i>, between the two possible coupling constants
675of the spin-2 ME. <b>Warning:</b> A <i>ratio</i> value different from one
676give rise to an IR divergence which makes the event generation very slow, so
677this values is fixed to <i>ratio = 1</i> for the moment.
678 
679
680<p/><code>mode&nbsp; </code><strong> ExtraDimensionsUnpart:CutOffMode &nbsp;</strong> 
681 (<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 1</code>)<br/>
682Options for when the hard scale of the process (e.g. <i>sHat</i>)
683approaches or exceed the scale of validity of the low energy effective
684theory (<i>Lambda_U</i>). This mode only concerns the unparticle
685emission processes.
686<br/><code>option </code><strong> 0</strong> : Do nothing, i.e. all values of <i>sHat</i> 
687contribute. 
688<br/><code>option </code><strong> 1</strong> : Truncate contributing <i>sHat</i> region
689([<a href="Bibliography.html" target="page">Ask09</a>]). 
690 
691
692<p/><code>mode&nbsp; </code><strong> ExtraDimensionsUnpart:gXX &nbsp;</strong> 
693 (<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
694Chiral unparticle couplings, <i>gXX = gLL = gRR</i>. Only relevant
695for lepton production from spin-1 unparticle exchange.
696<br/><code>option </code><strong> 0</strong> : 1 
697<br/><code>option </code><strong> 1</strong> : -1 
698<br/><code>option </code><strong> 2</strong> : 0 
699 
700
701<p/><code>mode&nbsp; </code><strong> ExtraDimensionsUnpart:gXY &nbsp;</strong> 
702 (<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
703Chiral unparticle couplings, <i>gXY = gLR = gRL</i>. Only relevant
704for lepton production from spin-1 unparticle exchange.
705<br/><code>option </code><strong> 0</strong> : 1 
706<br/><code>option </code><strong> 1</strong> : -1 
707<br/><code>option </code><strong> 2</strong> : 0 
708 
709
710</body>
711</html>
712
713<!-- Copyright (C) 2012 Torbjorn Sjostrand -->
714
Note: See TracBrowser for help on using the repository browser.