source: HiSusy/trunk/Pythia8/pythia8170/htmldoc/HiggsProcesses.html @ 1

Last change on this file since 1 was 1, checked in by zerwas, 11 years ago

first import of structure, PYTHIA8 and DELPHES

File size: 43.1 KB
Line 
1<html>
2<head>
3<title>Higgs Processes</title>
4<link rel="stylesheet" type="text/css" href="pythia.css"/>
5<link rel="shortcut icon" href="pythia32.gif"/>
6</head>
7<body>
8
9<h2>Higgs Processes</h2>
10
11This page documents Higgs production within and beyond the Standard Model
12(SM and BSM for short). This includes several different processes and,
13for the BSM scenarios, a large set of parameters that would only be fixed
14within a more specific framework such as MSSM. Three choices can be made
15irrespective of the particular model:
16
17<p/><code>flag&nbsp; </code><strong> Higgs:cubicWidth &nbsp;</strong> 
18 (<code>default = <strong>off</strong></code>)<br/>
19The partial width of a Higgs particle to a pair of gauge bosons,
20<i>W^+ W^-</i> or <i>Z^0 Z^0</i>, depends cubically on the
21Higgs mass. When selecting the Higgs according to a Breit-Wigner,
22so that the actual mass <i>mHat</i> does not agree with the
23nominal <i>m_Higgs</i> one, an ambiguity arises which of the
24two to use [<a href="Bibliography.html" target="page">Sey95</a>]. The default is to use a linear
25dependence on <i>mHat</i>, i.e. a width proportional to
26<i>m_Higgs^2 * mHat</i>, while <code>on</code> gives a
27<i>mHat^3</i> dependence. This does not affect the widths to
28fermions, which only depend linearly on <i>mHat</i>.
29This flag is used both for SM and BSM Higgses.
30 
31
32<p/><code>flag&nbsp; </code><strong> Higgs:runningLoopMass &nbsp;</strong> 
33 (<code>default = <strong>on</strong></code>)<br/>
34The partial width of a Higgs particle to a pair of gluons or photons,
35or a <i>gamma Z^0</i> pair, proceeds in part through quark loops,
36mainly <i>b</i> and <i>t</i>. There is some ambiguity what kind
37of masses to use. Default is running MSbar ones, but alternatively
38fixed pole masses are allowed (as was standard in PYTHIA 6), which
39typically gives a noticeably higher cross section for these channels.
40(For a decay to a pair of fermions, such as top, the running mass is
41used for couplings and the fixed one for phase space.)
42 
43
44<p/><code>flag&nbsp; </code><strong> Higgs:clipWings &nbsp;</strong> 
45 (<code>default = <strong>on</strong></code>)<br/>
46The Breit-Wigner shape of a Higgs is nontrivial, owing to the rapid
47width variation with the mass of a Higgs. This imples that a Higgs
48of low nominal mass may still acquire a non-negligible high-end tail.
49The validity of the calculation may be questioned in these wings.
50With this option on, the <code>Higgs:wingsFac</code> value is used to
51cut away the wings.
52 
53
54<p/><code>parm&nbsp; </code><strong> Higgs:wingsFac &nbsp;</strong> 
55 (<code>default = <strong>50.</strong></code>; <code>minimum = 0.</code>)<br/>
56With <code>Higgs:clipWings</code> on, all Higgs masses which deviate
57from the nominal one by more than <code>Higgs:wingsFac</code>
58times the nominal width are forbidden. This is achieved by setting
59the <code>mMin</code> and <code>mMax</code> values of the Higgs states
60at initialization (but never so as to allow a wider range than already
61set by the user, alternatively by the default values).   
62 
63
64<h3>Standard-Model Higgs, basic processes</h3>
65
66This section provides the standard set of processes that can be
67run together to provide a reasonably complete overview of possible
68production channels for a single SM Higgs.
69The main parameter is the choice of Higgs mass, which can be set in the
70normal <code>ParticleData</code> database; thereafter the properties
71within the SM are essentially fixed.
72
73<p/><code>flag&nbsp; </code><strong> HiggsSM:all &nbsp;</strong> 
74 (<code>default = <strong>off</strong></code>)<br/>
75Common switch for the group of Higgs production within the Standard Model.
76 
77
78<p/><code>flag&nbsp; </code><strong> HiggsSM:ffbar2H &nbsp;</strong> 
79 (<code>default = <strong>off</strong></code>)<br/>
80Scattering <i>f fbar -> H^0</i>, where <i>f</i> sums over available
81flavours except top. Related to the mass-dependent Higgs point coupling
82to fermions, so at hadron colliders the bottom contribution will
83dominate.
84Code 901.
85 
86
87<p/><code>flag&nbsp; </code><strong> HiggsSM:gg2H &nbsp;</strong> 
88 (<code>default = <strong>off</strong></code>)<br/>
89Scattering <i>g g -> H^0</i> via loop contributions primarily from
90top.
91Code 902.
92 
93
94<p/><code>flag&nbsp; </code><strong> HiggsSM:gmgm2H &nbsp;</strong> 
95 (<code>default = <strong>off</strong></code>)<br/>
96Scattering <i>gamma gamma -> H^0</i> via loop contributions primarily
97from top and <i>W</i>.
98Code 903.
99 
100
101<p/><code>flag&nbsp; </code><strong> HiggsSM:ffbar2HZ &nbsp;</strong> 
102 (<code>default = <strong>off</strong></code>)<br/>
103Scattering <i>f fbar -> H^0 Z^0</i> via <i>s</i>-channel <i>Z^0</i>
104exchange.
105Code 904.
106 
107
108<p/><code>flag&nbsp; </code><strong> HiggsSM:ffbar2HW &nbsp;</strong> 
109 (<code>default = <strong>off</strong></code>)<br/>
110Scattering <i>f fbar -> H^0 W^+-</i> via <i>s</i>-channel <i>W^+-</i>
111exchange.
112Code 905.
113 
114
115<p/><code>flag&nbsp; </code><strong> HiggsSM:ff2Hff(t:ZZ) &nbsp;</strong> 
116 (<code>default = <strong>off</strong></code>)<br/>
117Scattering <i>f f' -> H^0 f f'</i> via <i>Z^0 Z^0</i> fusion.
118Code 906.
119 
120
121<p/><code>flag&nbsp; </code><strong> HiggsSM:ff2Hff(t:WW) &nbsp;</strong> 
122 (<code>default = <strong>off</strong></code>)<br/>
123Scattering <i>f_1 f_2 -> H^0 f_3 f_4</i> via <i>W^+ W^-</i> fusion.
124Code 907.
125 
126
127<p/><code>flag&nbsp; </code><strong> HiggsSM:gg2Httbar &nbsp;</strong> 
128 (<code>default = <strong>off</strong></code>)<br/>
129Scattering <i>g g -> H^0 t tbar</i> via <i>t tbar</i> fusion
130(or, alternatively put, Higgs radiation off a top line).
131Warning: unfortunately this process is rather slow, owing to a
132lengthy cross-section expression and inefficient phase-space selection.
133Code 908.
134 
135
136<p/><code>flag&nbsp; </code><strong> HiggsSM:qqbar2Httbar &nbsp;</strong> 
137 (<code>default = <strong>off</strong></code>)<br/>
138Scattering <i>q qbar -> H^0 t tbar</i> via <i>t tbar</i> fusion
139(or, alternatively put, Higgs radiation off a top line).
140Warning: unfortunately this process is rather slow, owing to a
141lengthy cross-section expression and inefficient phase-space selection.
142Code 909.
143 
144
145<h3>Standard-Model Higgs, further processes</h3>
146
147A number of further production processes has been implemented, that
148are specializations of some of the above ones to the high-<i>pT</i> 
149region. The sets therefore could not be used simultaneously
150without unphysical doublecounting, as further explained below.
151They are not switched on by the <code>HiggsSM:all</code> flag, but
152have to be switched on for each separate process after due consideration.
153
154<p/>
155The first three processes in this section are related to the Higgs
156point coupling to fermions, and so primarily are of interest for
157<i>b</i> quarks. It is here useful to begin by reminding that
158a process like <i>b bbar -> H^0</i> implies that a <i>b/bbar</i> 
159is taken from each incoming hadron, leaving behind its respective
160antiparticle. The initial-state showers will then add one
161<i>g -> b bbar</i> branching on either side, so that effectively
162the process becomes <i>g g -> H0 b bbar</i>. This would be the
163same basic process as the <i>g g -> H^0 t tbar</i> one used for top.
164The difference is that (a) no PDF's are defined for top and
165(b) the shower approach would not be good enough to provide sensible
166kinematics for the <i>H^0 t tbar</i> subsystem. By contrast, owing
167to the <i>b</i> being much lighter than the Higgs, multiple
168gluon emissions must be resummed for <i>b</i>, as is done by PDF's
169and showers, in order to obtain a sensible description of the total
170production rate,  when the <i>b</i> quarks predominantly are produced
171at small <i>pT</i> values.
172
173<p/><code>flag&nbsp; </code><strong> HiggsSM:qg2Hq &nbsp;</strong> 
174 (<code>default = <strong>off</strong></code>)<br/>
175Scattering <i>q g -> H^0 q</i>. This process gives first-order
176corrections to the <i>f fbar -> H^0</i> one above, and should only be
177used to study  the high-<i>pT</i> tail, while <i>f fbar -> H^0</i> 
178should be used for inclusive production. Only the dominant <i>c</i> 
179and <i>b</i> contributions are included, and generated separately
180for technical reasons. Note that another first-order process would be
181<i>q qbar -> H^0 g</i>, which is not explicitly implemented here,
182but is obtained from showering off the lowest-order process. It does not
183contain any <i>b</i> at large <i>pT</i>, however, so is less
184interesting for many applications.
185Code 911.
186
187 
188<p/><code>flag&nbsp; </code><strong> HiggsSM:gg2Hbbbar &nbsp;</strong> 
189 (<code>default = <strong>off</strong></code>)<br/>
190Scattering <i>g g -> H^0 b bbar</i>. This process is yet one order
191higher of the <i>b bbar -> H^0</i> and <i>b g -> H^0 b</i> chain,
192where now two quarks should be required above some large <i>pT</i>
193threshold.
194Warning: unfortunately this process is rather slow, owing to a
195lengthy cross-section expression and inefficient phase-space selection.
196Code 912.
197 
198
199<p/><code>flag&nbsp; </code><strong> HiggsSM:qqbar2Hbbbar &nbsp;</strong> 
200 (<code>default = <strong>off</strong></code>)<br/>
201Scattering <i>q qbar -> H^0 b bbar</i> via an <i>s</i>-channel
202gluon, so closely related to the previous one, but typically less
203important owing to the smaller rate of (anti)quarks relative to
204gluons.
205Warning: unfortunately this process is rather slow, owing to a
206lengthy cross-section expression and inefficient phase-space selection.
207Code 913.
208 
209
210<p/>
211The second set of processes are predominantly first-order corrections
212to the <i>g g -> H^0</i> process, again dominated by the top loop.
213We here only provide the kinematical expressions obtained in the
214limit that the top quark goes to infinity, but scaled to the
215finite-top-mass coupling in <i>g g -> H^0</i>. (Complete loop
216expressions are available e.g. in PYTHIA 6.4 but are very lengthy.)
217This provides a reasonably accurate description for "intermediate"
218<i>pT</i> values, but fails when the <i>pT</i> scale approaches
219the top mass.
220 
221<p/><code>flag&nbsp; </code><strong> HiggsSM:gg2Hg(l:t) &nbsp;</strong> 
222 (<code>default = <strong>off</strong></code>)<br/>
223Scattering <i>g g -> H^0 g</i> via loop contributions primarily
224from top.
225Code 914.
226 
227 
228<p/><code>flag&nbsp; </code><strong> HiggsSM:qg2Hq(l:t) &nbsp;</strong> 
229 (<code>default = <strong>off</strong></code>)<br/>
230Scattering <i>q g -> H^0 q</i> via loop contributions primarily
231from top. Not to be confused with the <code>HiggsSM:qg2Hq</code>
232process above, with its direct fermion-to-Higgs coupling.
233Code 915.
234 
235 
236<p/><code>flag&nbsp; </code><strong> HiggsSM:qqbar2Hg(l:t) &nbsp;</strong> 
237 (<code>default = <strong>off</strong></code>)<br/>
238Scattering <i>q qbar -> H^0 g</i> via an <i>s</i>-channel gluon
239and loop contributions primarily from top. Is strictly speaking a
240"new" process, not directly derived from <i>g g -> H^0</i>, and
241could therefore be included in the standard mix without doublecounting,
242but is numerically negligible.
243Code 916.
244 
245
246<h3>Beyond-the-Standard-Model Higgs, introduction</h3>
247
248Further Higgs multiplets arise in a number of scenarios. We here
249concentrate on the MSSM scenario with two Higgs doublets, but with
250flexibility enough that also other two-Higgs-doublet scenarios could
251be represented by a suitable choice of parameters. Conventionally the
252Higgs states are labelled <i>h^0, H^0, A^0</i> and <i>H^+-</i>.
253If the scalar and pseudocalar states mix the resulting states are
254labelled <i>H_1^0, H_2^0, H_3^0</i>. In process names and parameter
255explanations both notations will be used, but for settings labels
256we have adapted the shorthand hybrid notation <code>H1</code> for
257<i>h^0(H_1^0)</i>, <code>H2</code> for <i>H^0(H_2^0)</i> and
258<code>A3</code> for <i>A^0(H_3^0)</i>. (Recall that the
259<code>Settings</code> database does not distinguish upper- and lowercase
260characters, so that the user has one thing less to worry about, but here
261it causes probles with <i>h^0</i> vs. <i>H^0</i>.) We leave the issue
262of mass ordering between <i>H^0</i> and <i>A^0</i> open, and thereby
263also that of <i>H_2^0</i> and <i>H_3^0</i>.
264
265<p/><code>flag&nbsp; </code><strong> Higgs:useBSM &nbsp;</strong> 
266 (<code>default = <strong>off</strong></code>)<br/>
267Master switch to initialize and use the two-Higgs-doublet states.
268If off, only the above SM Higgs processes can be used, with couplings
269as predicted in the SM. If on, only the below BSM Higgs processes can
270be used, with couplings that can be set freely, also found further down
271on this page.
272 
273
274<h3>Beyond-the-Standard-Model Higgs, basic processes</h3>
275
276This section provides the standard set of processes that can be
277run together to provide a reasonably complete overview of possible
278production channels for a single neutral Higgs state in a two-doublet
279scenarios such as MSSM. The list of processes for neutral states closely
280mimics the one found for the SM Higgs. Some of the processes
281vanish for a pure pseudoscalar <i>A^0</i>, but are kept for flexiblity
282in cases of mixing with the scalar <i>h^0</i> and <i>H^0</i> states,
283or for use in the context of non-MSSM models. This should work well to
284represent e.g. that a small admixture of the "wrong" parity would allow
285a process such as <i>q qbar -> A^0 Z^0</i>, which otherwise is forbidden.
286However, note that the loop integrals e.g. for <i>g g -> h^0/H^0/A^0</i>
287are hardcoded to be for scalars for the former two particles and for a
288pseudoscalar for the latter one, so absolute rates would not be
289correctly represented in the case of large scalar/pseudoscalar mixing. 
290
291<p/><code>flag&nbsp; </code><strong> HiggsBSM:all &nbsp;</strong> 
292 (<code>default = <strong>off</strong></code>)<br/>
293Common switch for the group of Higgs production beyond the Standard Model,
294as listed below.
295 
296
297<h4>1) <i>h^0(H_1^0)</i> processes</h4>
298
299<p/><code>flag&nbsp; </code><strong> HiggsBSM:allH1 &nbsp;</strong> 
300 (<code>default = <strong>off</strong></code>)<br/>
301Common switch for the group of <i>h^0(H_1^0)</i> production processes.
302 
303
304<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H1 &nbsp;</strong> 
305 (<code>default = <strong>off</strong></code>)<br/>
306Scattering <i>f fbar -> h^0(H_1^0)</i>, where <i>f</i> sums over available
307flavours except top.
308Code 1001.
309 
310
311<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H1 &nbsp;</strong> 
312 (<code>default = <strong>off</strong></code>)<br/>
313Scattering <i>g g -> h^0(H_1^0)</i> via loop contributions primarily from
314top.
315Code 1002.
316 
317
318<p/><code>flag&nbsp; </code><strong> HiggsBSM:gmgm2H1 &nbsp;</strong> 
319 (<code>default = <strong>off</strong></code>)<br/>
320Scattering <i>gamma gamma -> h^0(H_1^0)</i> via loop contributions
321primarily from top and <i>W</i>.
322Code 1003.
323 
324
325<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H1Z &nbsp;</strong> 
326 (<code>default = <strong>off</strong></code>)<br/>
327Scattering <i>f fbar -> h^0(H_1^0) Z^0</i> via <i>s</i>-channel
328<i>Z^0</i> exchange.
329Code 1004.
330 
331
332<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H1W &nbsp;</strong> 
333 (<code>default = <strong>off</strong></code>)<br/>
334Scattering <i>f fbar -> h^0(H_1^0) W^+-</i> via <i>s</i>-channel
335<i>W^+-</i> exchange.
336Code 1005.
337 
338
339<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2H1ff(t:ZZ) &nbsp;</strong> 
340 (<code>default = <strong>off</strong></code>)<br/>
341Scattering <i>f f' -> h^0(H_1^0) f f'</i> via <i>Z^0 Z^0</i> fusion.
342Code 1006.
343 
344
345<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2H1ff(t:WW) &nbsp;</strong> 
346 (<code>default = <strong>off</strong></code>)<br/>
347Scattering <i>f_1 f_2 -> h^0(H_1^0) f_3 f_4</i> via <i>W^+ W^-</i> 
348fusion.
349Code 1007.
350 
351
352<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H1ttbar &nbsp;</strong> 
353 (<code>default = <strong>off</strong></code>)<br/>
354Scattering <i>g g -> h^0(H_1^0) t tbar</i> via <i>t tbar</i> fusion
355(or, alternatively put, Higgs radiation off a top line).
356Warning: unfortunately this process is rather slow, owing to a
357lengthy cross-section expression and inefficient phase-space selection.
358Code 1008.
359 
360
361<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H1ttbar &nbsp;</strong> 
362 (<code>default = <strong>off</strong></code>)<br/>
363Scattering <i>q qbar -> h^0(H_1^0) t tbar</i> via <i>t tbar</i> fusion
364(or, alternatively put, Higgs radiation off a top line).
365Warning: unfortunately this process is rather slow, owing to a
366lengthy cross-section expression and inefficient phase-space selection.
367Code 1009.
368
369
370<h4>2) <i>H^0(H_2^0)</i> processes</h4>
371
372<p/><code>flag&nbsp; </code><strong> HiggsBSM:allH2 &nbsp;</strong> 
373 (<code>default = <strong>off</strong></code>)<br/>
374Common switch for the group of <i>H^0(H_2^0)</i> production processes.
375 
376
377<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H2 &nbsp;</strong> 
378 (<code>default = <strong>off</strong></code>)<br/>
379Scattering <i>f fbar -> H^0(H_2^0)</i>, where <i>f</i> sums over available
380flavours except top.
381Code 1021.
382 
383
384<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H2 &nbsp;</strong> 
385 (<code>default = <strong>off</strong></code>)<br/>
386Scattering <i>g g -> H^0(H_2^0)</i> via loop contributions primarily from
387top.
388Code 1022.
389 
390
391<p/><code>flag&nbsp; </code><strong> HiggsBSM:gmgm2H2 &nbsp;</strong> 
392 (<code>default = <strong>off</strong></code>)<br/>
393Scattering <i>gamma gamma -> H^0(H_2^0)</i> via loop contributions primarily
394from top and <i>W</i>.
395Code 1023.
396 
397
398<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H2Z &nbsp;</strong> 
399 (<code>default = <strong>off</strong></code>)<br/>
400Scattering <i>f fbar -> H^0(H_2^0) Z^0</i> via <i>s</i>-channel
401<i>Z^0</i> exchange.
402Code 1024.
403 
404
405<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H2W &nbsp;</strong> 
406 (<code>default = <strong>off</strong></code>)<br/>
407Scattering <i>f fbar -> H^0(H_2^0) W^+-</i> via <i>s</i>-channel
408<i>W^+-</i> exchange.
409Code 1025.
410 
411
412<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2H2ff(t:ZZ) &nbsp;</strong> 
413 (<code>default = <strong>off</strong></code>)<br/>
414Scattering <i>f f' -> H^0(H_2^0) f f'</i> via <i>Z^0 Z^0</i> fusion.
415Code 1026.
416 
417
418<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2H2ff(t:WW) &nbsp;</strong> 
419 (<code>default = <strong>off</strong></code>)<br/>
420Scattering <i>f_1 f_2 -> H^0(H_2^0) f_3 f_4</i> via <i>W^+ W^-</i> fusion.
421Code 1027.
422 
423
424<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H2ttbar &nbsp;</strong> 
425 (<code>default = <strong>off</strong></code>)<br/>
426Scattering <i>g g -> H^0(H_2^0) t tbar</i> via <i>t tbar</i> fusion
427(or, alternatively put, Higgs radiation off a top line).
428Warning: unfortunately this process is rather slow, owing to a
429lengthy cross-section expression and inefficient phase-space selection.
430Code 1028.
431 
432
433<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H2ttbar &nbsp;</strong> 
434 (<code>default = <strong>off</strong></code>)<br/>
435Scattering <i>q qbar -> H^0(H_2^0) t tbar</i> via <i>t tbar</i> fusion
436(or, alternatively put, Higgs radiation off a top line).
437Warning: unfortunately this process is rather slow, owing to a
438lengthy cross-section expression and inefficient phase-space selection.
439Code 1029.
440
441<h4>3) <i>A^0(H_3^0)</i> processes</h4>
442
443<p/><code>flag&nbsp; </code><strong> HiggsBSM:allA3 &nbsp;</strong> 
444 (<code>default = <strong>off</strong></code>)<br/>
445Common switch for the group of <i>A^0(H_3^0)</i> production processes.
446 
447
448<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3 &nbsp;</strong> 
449 (<code>default = <strong>off</strong></code>)<br/>
450Scattering <i>f fbar -> A^0(H_3^0)</i>, where <i>f</i> sums over available
451flavours except top.
452Code 1041.
453 
454
455<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2A3 &nbsp;</strong> 
456 (<code>default = <strong>off</strong></code>)<br/>
457Scattering <i>g g -> A^0(A_3^0)</i> via loop contributions primarily from
458top.
459Code 1042.
460 
461
462<p/><code>flag&nbsp; </code><strong> HiggsBSM:gmgm2A3 &nbsp;</strong> 
463 (<code>default = <strong>off</strong></code>)<br/>
464Scattering <i>gamma gamma -> A^0(A_3^0)</i> via loop contributions primarily
465from top and <i>W</i>.
466Code 1043.
467 
468
469<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3Z &nbsp;</strong> 
470 (<code>default = <strong>off</strong></code>)<br/>
471Scattering <i>f fbar -> A^0(A_3^0) Z^0</i> via <i>s</i>-channel
472<i>Z^0</i> exchange.
473Code 1044.
474 
475
476<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3W &nbsp;</strong> 
477 (<code>default = <strong>off</strong></code>)<br/>
478Scattering <i>f fbar -> A^0(A_3^0) W^+-</i> via <i>s</i>-channel
479<i>W^+-</i> exchange.
480Code 1045.
481 
482
483<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2A3ff(t:ZZ) &nbsp;</strong> 
484 (<code>default = <strong>off</strong></code>)<br/>
485Scattering <i>f f' -> A^0(A_3^0) f f'</i> via <i>Z^0 Z^0</i> fusion.
486Code 1046.
487 
488
489<p/><code>flag&nbsp; </code><strong> HiggsBSM:ff2A3ff(t:WW) &nbsp;</strong> 
490 (<code>default = <strong>off</strong></code>)<br/>
491Scattering <i>f_1 f_2 -> A^0(A_3^0) f_3 f_4</i> via <i>W^+ W^-</i> fusion.
492Code 1047.
493 
494
495<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2A3ttbar &nbsp;</strong> 
496 (<code>default = <strong>off</strong></code>)<br/>
497Scattering <i>g g -> A^0(A_3^0) t tbar</i> via <i>t tbar</i> fusion
498(or, alternatively put, Higgs radiation off a top line).
499Warning: unfortunately this process is rather slow, owing to a
500lengthy cross-section expression and inefficient phase-space selection.
501Code 1048.
502 
503
504<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2A3ttbar &nbsp;</strong> 
505 (<code>default = <strong>off</strong></code>)<br/>
506Scattering <i>q qbar -> A^0(A_3^0) t tbar</i> via <i>t tbar</i> fusion
507(or, alternatively put, Higgs radiation off a top line).
508Warning: unfortunately this process is rather slow, owing to a
509lengthy cross-section expression and inefficient phase-space selection.
510Code 1049.
511
512<h4>4) <i>H+-</i> processes</h4>
513
514<p/><code>flag&nbsp; </code><strong> HiggsBSM:allH+- &nbsp;</strong> 
515 (<code>default = <strong>off</strong></code>)<br/>
516Common switch for the group of <i>H^+-</i> production processes.
517 
518
519<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H+- &nbsp;</strong> 
520 (<code>default = <strong>off</strong></code>)<br/>
521Scattering <i>f fbar' -> H^+-</i>, where <i>f, fbar'</i> sums over
522available incoming flavours. Since couplings are assumed
523generation-diagonal, in practice this means <i>c sbar -> H^+</i>
524and <i>s cbar -> H^-</i>.
525Code 1061.
526 
527
528<p/><code>flag&nbsp; </code><strong> HiggsBSM:bg2H+-t &nbsp;</strong> 
529 (<code>default = <strong>off</strong></code>)<br/>
530Scattering <i>b g -> H^+ tbar</i>. At hadron colliders this is the
531dominant process for single-charged-Higgs production.
532Code 1062.
533 
534
535<h4>5) Higgs-pair processes</h4>
536
537<p/><code>flag&nbsp; </code><strong> HiggsBSM:allHpair &nbsp;</strong> 
538 (<code>default = <strong>off</strong></code>)<br/>
539Common switch for the group of Higgs pair-production processes.
540 
541
542<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3H1 &nbsp;</strong> 
543 (<code>default = <strong>off</strong></code>)<br/>
544Scattering <i>f fbar -> A^0(H_3) h^0(H_1)</i>.
545Code 1081.
546 
547
548<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2A3H2 &nbsp;</strong> 
549 (<code>default = <strong>off</strong></code>)<br/>
550Scattering <i>f fbar -> A^0(H_3) H^0(H_2)</i>.
551Code 1082.
552 
553
554<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H+-H1 &nbsp;</strong> 
555 (<code>default = <strong>off</strong></code>)<br/>
556Scattering <i>f fbar -> H^+- h^0(H_1)</i>.
557Code 1083.
558 
559
560<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H+-H2 &nbsp;</strong> 
561 (<code>default = <strong>off</strong></code>)<br/>
562Scattering <i>f fbar -> H^+- H^0(H_2)</i>.
563Code 1084.
564 
565
566<p/><code>flag&nbsp; </code><strong> HiggsBSM:ffbar2H+H- &nbsp;</strong> 
567 (<code>default = <strong>off</strong></code>)<br/>
568Scattering <i>f fbar -> H+ H-</i>.
569Code 1085.
570 
571
572<h3>Beyond-the-Standard-Model Higgs, further processes</h3>
573
574This section mimics the above section on "Standard-Model Higgs,
575further processes", i.e. it contains higher-order corrections
576to the processes already listed. The two sets therefore could not
577be used simultaneously without unphysical doublecounting.
578They are not controlled by any group flag, but have to be switched
579on for each separate process after due consideration. We refer to
580the standard-model description for a set of further comments on
581the processes.
582
583<h4>1) <i>h^0(H_1^0)</i> processes</h4> 
584
585<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2H1q &nbsp;</strong> 
586 (<code>default = <strong>off</strong></code>)<br/>
587Scattering <i>q g -> h^0 q</i>. This process gives first-order
588corrections to the <i>f fbar -> h^0</i> one above, and should only be
589used to study  the high-<i>pT</i> tail, while <i>f fbar -> h^0</i> 
590should be used for inclusive production. Only the dominant <i>c</i> 
591and <i>b</i> contributions are included, and generated separately
592for technical reasons. Note that another first-order process would be
593<i>q qbar -> h^0 g</i>, which is not explicitly implemented here,
594but is obtained from showering off the lowest-order process. It does not
595contain any <i>b</i> at large <i>pT</i>, however, so is less
596interesting for many applications.
597Code 1011.
598 
599
600<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H1bbbar &nbsp;</strong> 
601 (<code>default = <strong>off</strong></code>)<br/>
602Scattering <i>g g -> h^0 b bbar</i>. This process is yet one order
603higher of the <i>b bbar -> h^0</i> and <i>b g -> h^0 b</i> chain,
604where now two quarks should be required above some large <i>pT</i>
605threshold.
606Warning: unfortunately this process is rather slow, owing to a
607lengthy cross-section expression and inefficient phase-space selection.
608Code 1012.
609 
610
611<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H1bbbar &nbsp;</strong> 
612 (<code>default = <strong>off</strong></code>)<br/>
613Scattering <i>q qbar -> h^0 b bbar</i> via an <i>s</i>-channel
614gluon, so closely related to the previous one, but typically less
615important owing to the smaller rate of (anti)quarks relative to
616gluons.
617Warning: unfortunately this process is rather slow, owing to a
618lengthy cross-section expression and inefficient phase-space selection.
619Code 1013.
620 
621 
622<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H1g(l:t) &nbsp;</strong> 
623 (<code>default = <strong>off</strong></code>)<br/>
624Scattering <i>g g -> h^0 g</i> via loop contributions primarily
625from top.
626Code 1014.
627 
628 
629<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2H1q(l:t) &nbsp;</strong> 
630 (<code>default = <strong>off</strong></code>)<br/>
631Scattering <i>q g -> h^0 q</i> via loop contributions primarily
632from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
633process above, with its direct fermion-to-Higgs coupling.
634Code 1015.
635 
636 
637<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H1g(l:t) &nbsp;</strong> 
638 (<code>default = <strong>off</strong></code>)<br/>
639Scattering <i>q qbar -> h^0 g</i> via an <i>s</i>-channel gluon
640and loop contributions primarily from top. Is strictly speaking a
641"new" process, not directly derived from <i>g g -> h^0</i>, and
642could therefore be included in the standard mix without doublecounting,
643but is numerically negligible.
644Code 1016.
645 
646
647<h4>2) <i>H^0(H_2^0)</i> processes</h4>
648
649<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2H2q &nbsp;</strong> 
650 (<code>default = <strong>off</strong></code>)<br/>
651Scattering <i>q g -> H^0 q</i>. This process gives first-order
652corrections to the <i>f fbar -> H^0</i> one above, and should only be
653used to study  the high-<i>pT</i> tail, while <i>f fbar -> H^0</i> 
654should be used for inclusive production. Only the dominant <i>c</i> 
655and <i>b</i> contributions are included, and generated separately
656for technical reasons. Note that another first-order process would be
657<i>q qbar -> H^0 g</i>, which is not explicitly implemented here,
658but is obtained from showering off the lowest-order process. It does not
659contain any <i>b</i> at large <i>pT</i>, however, so is less
660interesting for many applications.
661Code 1031.
662 
663
664<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H2bbbar &nbsp;</strong> 
665 (<code>default = <strong>off</strong></code>)<br/>
666Scattering <i>g g -> H^0 b bbar</i>. This process is yet one order
667higher of the <i>b bbar -> H^0</i> and <i>b g -> H^0 b</i> chain,
668where now two quarks should be required above some large <i>pT</i>
669threshold.
670Warning: unfortunately this process is rather slow, owing to a
671lengthy cross-section expression and inefficient phase-space selection.
672Code 1032.
673 
674
675<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H2bbbar &nbsp;</strong> 
676 (<code>default = <strong>off</strong></code>)<br/>
677Scattering <i>q qbar -> H^0 b bbar</i> via an <i>s</i>-channel
678gluon, so closely related to the previous one, but typically less
679important owing to the smaller rate of (anti)quarks relative to
680gluons.
681Warning: unfortunately this process is rather slow, owing to a
682lengthy cross-section expression and inefficient phase-space selection.
683Code 1033.
684 
685 
686<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2H2g(l:t) &nbsp;</strong> 
687 (<code>default = <strong>off</strong></code>)<br/>
688Scattering <i>g g -> H^0 g</i> via loop contributions primarily
689from top.
690Code 1034.
691 
692 
693<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2H2q(l:t) &nbsp;</strong> 
694 (<code>default = <strong>off</strong></code>)<br/>
695Scattering <i>q g -> H^0 q</i> via loop contributions primarily
696from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
697process above, with its direct fermion-to-Higgs coupling.
698Code 1035.
699 
700 
701<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2H2g(l:t) &nbsp;</strong> 
702 (<code>default = <strong>off</strong></code>)<br/>
703Scattering <i>q qbar -> H^0 g</i> via an <i>s</i>-channel gluon
704and loop contributions primarily from top. Is strictly speaking a
705"new" process, not directly derived from <i>g g -> H^0</i>, and
706could therefore be included in the standard mix without doublecounting,
707but is numerically negligible.
708Code 1036.
709 
710
711<h4>3) <i>A^0(H_3^0)</i> processes</h4>
712
713<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2A3q &nbsp;</strong> 
714 (<code>default = <strong>off</strong></code>)<br/>
715Scattering <i>q g -> A^0 q</i>. This process gives first-order
716corrections to the <i>f fbar -> A^0</i> one above, and should only be
717used to study  the high-<i>pT</i> tail, while <i>f fbar -> A^0</i> 
718should be used for inclusive production. Only the dominant <i>c</i> 
719and <i>b</i> contributions are included, and generated separately
720for technical reasons. Note that another first-order process would be
721<i>q qbar -> A^0 g</i>, which is not explicitly implemented here,
722but is obtained from showering off the lowest-order process. It does not
723contain any <i>b</i> at large <i>pT</i>, however, so is less
724interesting for many applications.
725Code 1051.
726 
727
728<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2A3bbbar &nbsp;</strong> 
729 (<code>default = <strong>off</strong></code>)<br/>
730Scattering <i>g g -> A^0 b bbar</i>. This process is yet one order
731higher of the <i>b bbar -> A^0</i> and <i>b g -> A^0 b</i> chain,
732where now two quarks should be required above some large <i>pT</i>
733threshold.
734Warning: unfortunately this process is rather slow, owing to a
735lengthy cross-section expression and inefficient phase-space selection.
736Code 1052.
737 
738
739<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2A3bbbar &nbsp;</strong> 
740 (<code>default = <strong>off</strong></code>)<br/>
741Scattering <i>q qbar -> A^0 b bbar</i> via an <i>s</i>-channel
742gluon, so closely related to the previous one, but typically less
743important owing to the smaller rate of (anti)quarks relative to
744gluons.
745Warning: unfortunately this process is rather slow, owing to a
746lengthy cross-section expression and inefficient phase-space selection.
747Code 1053.
748 
749 
750<p/><code>flag&nbsp; </code><strong> HiggsBSM:gg2A3g(l:t) &nbsp;</strong> 
751 (<code>default = <strong>off</strong></code>)<br/>
752Scattering <i>g g -> A^0 g</i> via loop contributions primarily
753from top.
754Code 1054.
755 
756 
757<p/><code>flag&nbsp; </code><strong> HiggsBSM:qg2A3q(l:t) &nbsp;</strong> 
758 (<code>default = <strong>off</strong></code>)<br/>
759Scattering <i>q g -> A^0 q</i> via loop contributions primarily
760from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
761process above, with its direct fermion-to-Higgs coupling.
762Code 1055.
763 
764 
765<p/><code>flag&nbsp; </code><strong> HiggsBSM:qqbar2A3g(l:t) &nbsp;</strong> 
766 (<code>default = <strong>off</strong></code>)<br/>
767Scattering <i>q qbar -> A^0 g</i> via an <i>s</i>-channel gluon
768and loop contributions primarily from top. Is strictly speaking a
769"new" process, not directly derived from <i>g g -> A^0</i>, and
770could therefore be included in the standard mix without doublecounting,
771but is numerically negligible.
772Code 1056.
773 
774
775<h3>Parameters for Beyond-the-Standard-Model Higgs production and decay</h3>
776
777This section offers a big flexibility to set couplings of the various
778Higgs states to fermions and gauge bosons, and also to each other.
779The intention is that, for scenarios like MSSM, you should use standard
780input from the <a href="SUSYLesHouchesAccord.html" target="page">SUSY Les Houches
781Accord</a>, rather than having to set it all yourself. In other cases,
782however, the freedom is there for you to use. Kindly note that some
783of the internal calculations of partial widths from the parameters provided
784do not include mixing between the scalar and pseudoscalar states.
785
786<p/>
787Masses would be set in the <code>ParticleData</code> database,
788while couplings are set below. When possible, the couplings of the Higgs
789states are normalized to the corresponding coupling within the SM.
790When not, their values within the MSSM are indicated, from which
791it should be straightforward to understand what to use instead.
792The exception is some couplings that vanish also in the MSSM, where the
793normalization has been defined in close analogy with nonvanishing ones.
794Some parameter names are asymmetric but crossing can always be used,
795i.e. the coupling for <i>A^0 -> H^0 Z^0</i> obviously is also valid
796for <i>H^0 -> A^0 Z^0</i> and <i>Z^0 -> H^0 A^0</i>.
797Note that couplings usually appear quadratically in matrix elements.
798
799<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2d &nbsp;</strong> 
800 (<code>default = <strong>1.</strong></code>)<br/>
801The <i>h^0(H_1^0)</i> coupling to down-type quarks.
802 
803
804<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2u &nbsp;</strong> 
805 (<code>default = <strong>1.</strong></code>)<br/>
806The <i>h^0(H_1^0)</i> coupling to up-type quarks.
807 
808
809<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2l &nbsp;</strong> 
810 (<code>default = <strong>1.</strong></code>)<br/>
811The <i>h^0(H_1^0)</i> coupling to (charged) leptons.
812 
813
814<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2Z &nbsp;</strong> 
815 (<code>default = <strong>1.</strong></code>)<br/>
816The <i>h^0(H_1^0)</i> coupling to <i>Z^0</i>.
817 
818
819<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2W &nbsp;</strong> 
820 (<code>default = <strong>1.</strong></code>)<br/>
821The <i>h^0(H_1^0)</i> coupling to <i>W^+-</i>.
822 
823
824<p/><code>parm&nbsp; </code><strong> HiggsH1:coup2Hchg &nbsp;</strong> 
825 (<code>default = <strong>0.</strong></code>)<br/>
826The <i>h^0(H_1^0)</i> coupling to <i>H^+-</i> (in loops).
827Is <i>sin(beta - alpha) + cos(2 beta) sin(beta + alpha) /
828(2 cos^2theta_W)</i> in the MSSM.
829 
830
831<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2d &nbsp;</strong> 
832 (<code>default = <strong>1.</strong></code>)<br/>
833The <i>H^0(H_2^0)</i> coupling to down-type quarks.
834 
835
836<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2u &nbsp;</strong> 
837 (<code>default = <strong>1.</strong></code>)<br/>
838The <i>H^0(H_2^0)</i> coupling to up-type quarks.
839 
840
841<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2l &nbsp;</strong> 
842 (<code>default = <strong>1.</strong></code>)<br/>
843The <i>H^0(H_2^0)</i> coupling to (charged) leptons.
844 
845
846<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2Z &nbsp;</strong> 
847 (<code>default = <strong>1.</strong></code>)<br/>
848The <i>H^0(H_2^0)</i> coupling to <i>Z^0</i>.
849 
850
851<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2W &nbsp;</strong> 
852 (<code>default = <strong>1.</strong></code>)<br/>
853The <i>H^0(H_2^0)</i> coupling to <i>W^+-</i>.
854 
855
856<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2Hchg &nbsp;</strong> 
857 (<code>default = <strong>0.</strong></code>)<br/>
858The <i>H^0(H_2^0)</i> coupling to <i>H^+-</i> (in loops).
859Is <i>cos(beta - alpha) + cos(2 beta) cos(beta + alpha) /
860(2 cos^2theta_W)</i> in the MSSM.
861 
862
863<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2H1H1 &nbsp;</strong> 
864 (<code>default = <strong>1.</strong></code>)<br/>
865The <i>H^0(H_2^0)</i> coupling to a <i>h^0(H_1^0)</i> pair.
866Is <i>cos(2 alpha) cos(beta + alpha) - 2 sin(2 alpha)
867sin(beta + alpha)</i> in the MSSM.
868 
869
870<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2A3A3 &nbsp;</strong> 
871 (<code>default = <strong>1.</strong></code>)<br/>
872The <i>H^0(H_2^0)</i> coupling to an <i>A^0(H_3^0)</i> pair.
873Is <i>cos(2 beta) cos(beta + alpha)</i> in the MSSM.
874 
875
876<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2H1Z &nbsp;</strong> 
877 (<code>default = <strong>0.</strong></code>)<br/>
878The <i>H^0(H_2^0)</i> coupling to a <i>h^0(H_1^0) Z^0</i> pair.
879Vanishes in the MSSM.
880 
881
882<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2A3H1 &nbsp;</strong> 
883 (<code>default = <strong>0.</strong></code>)<br/>
884The <i>H^0(H_2^0)</i> coupling to an <i>A^0(H_3^0) h^0(H_1^0)</i> pair.
885Vanishes in the MSSM.
886 
887
888<p/><code>parm&nbsp; </code><strong> HiggsH2:coup2HchgW &nbsp;</strong> 
889 (<code>default = <strong>0.</strong></code>)<br/>
890The <i>H^0(H_2^0)</i> coupling to a <i>H^+- W-+</i> pair.
891Is <i>sin(beta - alpha)</i> in the MSSM.
892 
893
894<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2d &nbsp;</strong> 
895 (<code>default = <strong>1.</strong></code>)<br/>
896The <i>A^0(H_3^0)</i> coupling to down-type quarks.
897 
898
899<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2u &nbsp;</strong> 
900 (<code>default = <strong>1.</strong></code>)<br/>
901The <i>A^0(H_3^0)</i> coupling to up-type quarks.
902 
903
904<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2l &nbsp;</strong> 
905 (<code>default = <strong>1.</strong></code>)<br/>
906The <i>A^0(H_3^0)</i> coupling to (charged) leptons.
907 
908
909<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2H1Z &nbsp;</strong> 
910 (<code>default = <strong>1.</strong></code>)<br/>
911The <i>A^0(H_3^0)</i> coupling to a <i>h^0(H_1^0) Z^0</i> pair.
912Is <i>cos(beta - alpha)</i> in the MSSM.
913 
914
915<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2H2Z &nbsp;</strong> 
916 (<code>default = <strong>1.</strong></code>)<br/>
917The <i>A^0(H_3^0)</i> coupling to a <i>H^0(H_2^0) Z^0</i> pair.
918Is <i>sin(beta - alpha)</i> in the MSSM.
919 
920
921<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2Z &nbsp;</strong> 
922 (<code>default = <strong>0.</strong></code>)<br/>
923The <i>A^0(H_3^0)</i> coupling to <i>Z^0</i>.
924Vanishes in the MSSM.
925 
926
927<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2W &nbsp;</strong> 
928 (<code>default = <strong>0.</strong></code>)<br/>
929The <i>A^0(H_3^0)</i> coupling to <i>W^+-</i>.
930Vanishes in the MSSM.
931 
932
933<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2H1H1 &nbsp;</strong> 
934 (<code>default = <strong>0.</strong></code>)<br/>
935The <i>A^0(H_3^0)</i> coupling to a <i>h^0(H_1^0)</i> pair.
936Vanishes in the MSSM.
937 
938
939<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2Hchg &nbsp;</strong> 
940 (<code>default = <strong>0.</strong></code>)<br/>
941The <i>A^0(H_3^0)</i> coupling to <i>H^+-</i>.
942Vanishes in the MSSM.
943 
944
945<p/><code>parm&nbsp; </code><strong> HiggsA3:coup2HchgW &nbsp;</strong> 
946 (<code>default = <strong>1.</strong></code>)<br/>
947The <i>A^0(H_3^0)</i> coupling to a <i>H^+- W-+</i> pair.
948Is 1 in the MSSM.
949 
950
951<p/><code>parm&nbsp; </code><strong> HiggsHchg:tanBeta &nbsp;</strong> 
952 (<code>default = <strong>5.</strong></code>)<br/>
953The <i>tan(beta)</i> value, which leads to an enhancement of the
954<i>H^+-</i> coupling to down-type fermions and suppression to
955up-type ones. The same angle also appears in many other places,
956but this particular parameter is only used for the charged-Higgs case.
957 
958
959<p/><code>parm&nbsp; </code><strong> HiggsHchg:coup2H1W &nbsp;</strong> 
960 (<code>default = <strong>1.</strong></code>)<br/>
961The <i>H^+-</i> coupling to a <i>h^0(H_1^0) W^+-</i> pair.
962Is <i>cos(beta - alpha)</i> in the MSSM.
963 
964
965<p/><code>parm&nbsp; </code><strong> HiggsHchg:coup2H2W &nbsp;</strong> 
966 (<code>default = <strong>0.</strong></code>)<br/>
967The <i>H^+-</i> coupling to a <i>H^0(H_2^0) W^+-</i> pair.
968Is <i>sin(beta - alpha)</i> in the MSSM.
969 
970
971<p/>
972Another set of parameters are not used in the production stage but
973exclusively for the description of angular distributions in decays.
974
975<p/><code>mode&nbsp; </code><strong> HiggsH1:parity &nbsp;</strong> 
976 (<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
977possibility to modify angular decay correlations in the decay of a
978<i>h^0(H_1)</i> decay <i>Z^0 Z^0</i> or <i>W^+ W^-</i> to four
979fermions. Currently it does not affect the partial width of the
980channels, which is only based on the above parameters.
981<br/><code>option </code><strong> 0</strong> : isotropic decays. 
982<br/><code>option </code><strong> 1</strong> : assuming the <i>h^0(H_1)</i> is a pure scalar
983(CP-even), as in the MSSM. 
984<br/><code>option </code><strong> 2</strong> : assuming the <i>h^0(H_1)</i> is a pure pseudoscalar
985(CP-odd). 
986<br/><code>option </code><strong> 3</strong> : assuming the <i>h^0(H_1)</i> is a mixture of the two,
987including the CP-violating interference term. The parameter
988<i>eta</i>, see below, sets the strength of the CP-odd admixture,
989with the interference term being proportional to <i>eta</i>
990and the CP-odd one to <i>eta^2</i>
991 
992
993<p/><code>parm&nbsp; </code><strong> HiggsH1:etaParity &nbsp;</strong> 
994 (<code>default = <strong>0.</strong></code>)<br/>
995The <i>eta</i> value of CP-violation in the
996<code>HiggsSM:parity = 3</code> option.
997 
998
999<p/><code>mode&nbsp; </code><strong> HiggsH2:parity &nbsp;</strong> 
1000 (<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
1001possibility to modify angular decay correlations in the decay of a
1002<i>H^0(H_2)</i> decay <i>Z^0 Z^0</i> or <i>W^+ W^-</i> to four
1003fermions. Currently it does not affect the partial width of the
1004channels, which is only based on the above parameters.
1005<br/><code>option </code><strong> 0</strong> : isotropic decays. 
1006<br/><code>option </code><strong> 1</strong> : assuming the <i>H^0(H_2)</i> is a pure scalar
1007(CP-even), as in the MSSM. 
1008<br/><code>option </code><strong> 2</strong> : assuming the <i>H^0(H_2)</i> is a pure pseudoscalar
1009(CP-odd). 
1010<br/><code>option </code><strong> 3</strong> : assuming the <i>H^0(H_2)</i> is a mixture of the two,
1011including the CP-violating interference term. The parameter
1012<i>eta</i>, see below, sets the strength of the CP-odd admixture,
1013with the interference term being proportional to <i>eta</i>
1014and the CP-odd one to <i>eta^2</i>
1015 
1016
1017<p/><code>parm&nbsp; </code><strong> HiggsH2:etaParity &nbsp;</strong> 
1018 (<code>default = <strong>0.</strong></code>)<br/>
1019The <i>eta</i> value of CP-violation in the
1020<code>HiggsSM:parity = 3</code> option.
1021 
1022
1023<p/><code>mode&nbsp; </code><strong> HiggsA3:parity &nbsp;</strong> 
1024 (<code>default = <strong>2</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
1025possibility to modify angular decay correlations in the decay of a
1026<i>A^0(H_3)</i> decay <i>Z^0 Z^0</i> or <i>W^+ W^-</i> to four
1027fermions. Currently it does not affect the partial width of the
1028channels, which is only based on the above parameters.
1029<br/><code>option </code><strong> 0</strong> : isotropic decays. 
1030<br/><code>option </code><strong> 1</strong> : assuming the <i>A^0(H_3)</i> is a pure scalar
1031(CP-even). 
1032<br/><code>option </code><strong> 2</strong> : assuming the <i>A^0(H_3)</i> is a pure pseudoscalar
1033(CP-odd), as in the MSSM. 
1034<br/><code>option </code><strong> 3</strong> : assuming the <i>A^0(H_3)</i> is a mixture of the two,
1035including the CP-violating interference term. The parameter
1036<i>eta</i>, see below, sets the strength of the CP-odd admixture,
1037with the interference term being proportional to <i>eta</i>
1038and the CP-odd one to <i>eta^2</i>
1039 
1040
1041<p/><code>parm&nbsp; </code><strong> HiggsA3:etaParity &nbsp;</strong> 
1042 (<code>default = <strong>0.</strong></code>)<br/>
1043The <i>eta</i> value of CP-violation in the
1044<code>HiggsSM:parity = 3</code> option.
1045 
1046
1047</body>
1048</html>
1049
1050<!-- Copyright (C) 2012 Torbjorn Sjostrand -->
1051
Note: See TracBrowser for help on using the repository browser.