source: HiSusy/trunk/Pythia8/pythia8170/phpdoc/HiggsProcesses.php @ 1

Last change on this file since 1 was 1, checked in by zerwas, 11 years ago

first import of structure, PYTHIA8 and DELPHES

File size: 68.3 KB
Line 
1<html>
2<head>
3<title>Higgs Processes</title>
4<link rel="stylesheet" type="text/css" href="pythia.css"/>
5<link rel="shortcut icon" href="pythia32.gif"/>
6</head>
7<body>
8
9<script language=javascript type=text/javascript>
10function stopRKey(evt) {
11var evt = (evt) ? evt : ((event) ? event : null);
12var node = (evt.target) ? evt.target :((evt.srcElement) ? evt.srcElement : null);
13if ((evt.keyCode == 13) && (node.type=="text"))
14{return false;}
15}
16
17document.onkeypress = stopRKey;
18</script>
19<?php
20if($_POST['saved'] == 1) {
21if($_POST['filepath'] != "files/") {
22echo "<font color='red'>SETTINGS SAVED TO FILE</font><br/><br/>"; }
23else {
24echo "<font color='red'>NO FILE SELECTED YET.. PLEASE DO SO </font><a href='SaveSettings.php'>HERE</a><br/><br/>"; }
25}
26?>
27
28<form method='post' action='HiggsProcesses.php'>
29
30<h2>Higgs Processes</h2>
31
32This page documents Higgs production within and beyond the Standard Model
33(SM and BSM for short). This includes several different processes and,
34for the BSM scenarios, a large set of parameters that would only be fixed
35within a more specific framework such as MSSM. Three choices can be made
36irrespective of the particular model:
37
38<br/><br/><strong>Higgs:cubicWidth</strong>  <input type="radio" name="1" value="on"><strong>On</strong>
39<input type="radio" name="1" value="off" checked="checked"><strong>Off</strong>
40 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
41The partial width of a Higgs particle to a pair of gauge bosons,
42<i>W^+ W^-</i> or <i>Z^0 Z^0</i>, depends cubically on the
43Higgs mass. When selecting the Higgs according to a Breit-Wigner,
44so that the actual mass <i>mHat</i> does not agree with the
45nominal <i>m_Higgs</i> one, an ambiguity arises which of the
46two to use [<a href="Bibliography.php" target="page">Sey95</a>]. The default is to use a linear
47dependence on <i>mHat</i>, i.e. a width proportional to
48<i>m_Higgs^2 * mHat</i>, while <code>on</code> gives a
49<i>mHat^3</i> dependence. This does not affect the widths to
50fermions, which only depend linearly on <i>mHat</i>.
51This flag is used both for SM and BSM Higgses.
52 
53
54<br/><br/><strong>Higgs:runningLoopMass</strong>  <input type="radio" name="2" value="on" checked="checked"><strong>On</strong>
55<input type="radio" name="2" value="off"><strong>Off</strong>
56 &nbsp;&nbsp;(<code>default = <strong>on</strong></code>)<br/>
57The partial width of a Higgs particle to a pair of gluons or photons,
58or a <i>gamma Z^0</i> pair, proceeds in part through quark loops,
59mainly <i>b</i> and <i>t</i>. There is some ambiguity what kind
60of masses to use. Default is running MSbar ones, but alternatively
61fixed pole masses are allowed (as was standard in PYTHIA 6), which
62typically gives a noticeably higher cross section for these channels.
63(For a decay to a pair of fermions, such as top, the running mass is
64used for couplings and the fixed one for phase space.)
65 
66
67<br/><br/><strong>Higgs:clipWings</strong>  <input type="radio" name="3" value="on" checked="checked"><strong>On</strong>
68<input type="radio" name="3" value="off"><strong>Off</strong>
69 &nbsp;&nbsp;(<code>default = <strong>on</strong></code>)<br/>
70The Breit-Wigner shape of a Higgs is nontrivial, owing to the rapid
71width variation with the mass of a Higgs. This imples that a Higgs
72of low nominal mass may still acquire a non-negligible high-end tail.
73The validity of the calculation may be questioned in these wings.
74With this option on, the <code>Higgs:wingsFac</code> value is used to
75cut away the wings.
76 
77
78<br/><br/><table><tr><td><strong>Higgs:wingsFac </td><td></td><td> <input type="text" name="4" value="50." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>50.</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
79With <code>Higgs:clipWings</code> on, all Higgs masses which deviate
80from the nominal one by more than <code>Higgs:wingsFac</code>
81times the nominal width are forbidden. This is achieved by setting
82the <code>mMin</code> and <code>mMax</code> values of the Higgs states
83at initialization (but never so as to allow a wider range than already
84set by the user, alternatively by the default values).   
85 
86
87<h3>Standard-Model Higgs, basic processes</h3>
88
89This section provides the standard set of processes that can be
90run together to provide a reasonably complete overview of possible
91production channels for a single SM Higgs.
92The main parameter is the choice of Higgs mass, which can be set in the
93normal <code>ParticleData</code> database; thereafter the properties
94within the SM are essentially fixed.
95
96<br/><br/><strong>HiggsSM:all</strong>  <input type="radio" name="5" value="on"><strong>On</strong>
97<input type="radio" name="5" value="off" checked="checked"><strong>Off</strong>
98 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
99Common switch for the group of Higgs production within the Standard Model.
100 
101
102<br/><br/><strong>HiggsSM:ffbar2H</strong>  <input type="radio" name="6" value="on"><strong>On</strong>
103<input type="radio" name="6" value="off" checked="checked"><strong>Off</strong>
104 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
105Scattering <i>f fbar -> H^0</i>, where <i>f</i> sums over available
106flavours except top. Related to the mass-dependent Higgs point coupling
107to fermions, so at hadron colliders the bottom contribution will
108dominate.
109Code 901.
110 
111
112<br/><br/><strong>HiggsSM:gg2H</strong>  <input type="radio" name="7" value="on"><strong>On</strong>
113<input type="radio" name="7" value="off" checked="checked"><strong>Off</strong>
114 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
115Scattering <i>g g -> H^0</i> via loop contributions primarily from
116top.
117Code 902.
118 
119
120<br/><br/><strong>HiggsSM:gmgm2H</strong>  <input type="radio" name="8" value="on"><strong>On</strong>
121<input type="radio" name="8" value="off" checked="checked"><strong>Off</strong>
122 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
123Scattering <i>gamma gamma -> H^0</i> via loop contributions primarily
124from top and <i>W</i>.
125Code 903.
126 
127
128<br/><br/><strong>HiggsSM:ffbar2HZ</strong>  <input type="radio" name="9" value="on"><strong>On</strong>
129<input type="radio" name="9" value="off" checked="checked"><strong>Off</strong>
130 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
131Scattering <i>f fbar -> H^0 Z^0</i> via <i>s</i>-channel <i>Z^0</i>
132exchange.
133Code 904.
134 
135
136<br/><br/><strong>HiggsSM:ffbar2HW</strong>  <input type="radio" name="10" value="on"><strong>On</strong>
137<input type="radio" name="10" value="off" checked="checked"><strong>Off</strong>
138 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
139Scattering <i>f fbar -> H^0 W^+-</i> via <i>s</i>-channel <i>W^+-</i>
140exchange.
141Code 905.
142 
143
144<br/><br/><strong>HiggsSM:ff2Hff(t:ZZ)</strong>  <input type="radio" name="11" value="on"><strong>On</strong>
145<input type="radio" name="11" value="off" checked="checked"><strong>Off</strong>
146 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
147Scattering <i>f f' -> H^0 f f'</i> via <i>Z^0 Z^0</i> fusion.
148Code 906.
149 
150
151<br/><br/><strong>HiggsSM:ff2Hff(t:WW)</strong>  <input type="radio" name="12" value="on"><strong>On</strong>
152<input type="radio" name="12" value="off" checked="checked"><strong>Off</strong>
153 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
154Scattering <i>f_1 f_2 -> H^0 f_3 f_4</i> via <i>W^+ W^-</i> fusion.
155Code 907.
156 
157
158<br/><br/><strong>HiggsSM:gg2Httbar</strong>  <input type="radio" name="13" value="on"><strong>On</strong>
159<input type="radio" name="13" value="off" checked="checked"><strong>Off</strong>
160 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
161Scattering <i>g g -> H^0 t tbar</i> via <i>t tbar</i> fusion
162(or, alternatively put, Higgs radiation off a top line).
163Warning: unfortunately this process is rather slow, owing to a
164lengthy cross-section expression and inefficient phase-space selection.
165Code 908.
166 
167
168<br/><br/><strong>HiggsSM:qqbar2Httbar</strong>  <input type="radio" name="14" value="on"><strong>On</strong>
169<input type="radio" name="14" value="off" checked="checked"><strong>Off</strong>
170 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
171Scattering <i>q qbar -> H^0 t tbar</i> via <i>t tbar</i> fusion
172(or, alternatively put, Higgs radiation off a top line).
173Warning: unfortunately this process is rather slow, owing to a
174lengthy cross-section expression and inefficient phase-space selection.
175Code 909.
176 
177
178<h3>Standard-Model Higgs, further processes</h3>
179
180A number of further production processes has been implemented, that
181are specializations of some of the above ones to the high-<i>pT</i>
182region. The sets therefore could not be used simultaneously
183without unphysical doublecounting, as further explained below.
184They are not switched on by the <code>HiggsSM:all</code> flag, but
185have to be switched on for each separate process after due consideration.
186
187<p/>
188The first three processes in this section are related to the Higgs
189point coupling to fermions, and so primarily are of interest for
190<i>b</i> quarks. It is here useful to begin by reminding that
191a process like <i>b bbar -> H^0</i> implies that a <i>b/bbar</i>
192is taken from each incoming hadron, leaving behind its respective
193antiparticle. The initial-state showers will then add one
194<i>g -> b bbar</i> branching on either side, so that effectively
195the process becomes <i>g g -> H0 b bbar</i>. This would be the
196same basic process as the <i>g g -> H^0 t tbar</i> one used for top.
197The difference is that (a) no PDF's are defined for top and
198(b) the shower approach would not be good enough to provide sensible
199kinematics for the <i>H^0 t tbar</i> subsystem. By contrast, owing
200to the <i>b</i> being much lighter than the Higgs, multiple
201gluon emissions must be resummed for <i>b</i>, as is done by PDF's
202and showers, in order to obtain a sensible description of the total
203production rate,  when the <i>b</i> quarks predominantly are produced
204at small <i>pT</i> values.
205
206<br/><br/><strong>HiggsSM:qg2Hq</strong>  <input type="radio" name="15" value="on"><strong>On</strong>
207<input type="radio" name="15" value="off" checked="checked"><strong>Off</strong>
208 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
209Scattering <i>q g -> H^0 q</i>. This process gives first-order
210corrections to the <i>f fbar -> H^0</i> one above, and should only be
211used to study  the high-<i>pT</i> tail, while <i>f fbar -> H^0</i>
212should be used for inclusive production. Only the dominant <i>c</i>
213and <i>b</i> contributions are included, and generated separately
214for technical reasons. Note that another first-order process would be
215<i>q qbar -> H^0 g</i>, which is not explicitly implemented here,
216but is obtained from showering off the lowest-order process. It does not
217contain any <i>b</i> at large <i>pT</i>, however, so is less
218interesting for many applications.
219Code 911.
220
221 
222<br/><br/><strong>HiggsSM:gg2Hbbbar</strong>  <input type="radio" name="16" value="on"><strong>On</strong>
223<input type="radio" name="16" value="off" checked="checked"><strong>Off</strong>
224 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
225Scattering <i>g g -> H^0 b bbar</i>. This process is yet one order
226higher of the <i>b bbar -> H^0</i> and <i>b g -> H^0 b</i> chain,
227where now two quarks should be required above some large <i>pT</i>
228threshold.
229Warning: unfortunately this process is rather slow, owing to a
230lengthy cross-section expression and inefficient phase-space selection.
231Code 912.
232 
233
234<br/><br/><strong>HiggsSM:qqbar2Hbbbar</strong>  <input type="radio" name="17" value="on"><strong>On</strong>
235<input type="radio" name="17" value="off" checked="checked"><strong>Off</strong>
236 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
237Scattering <i>q qbar -> H^0 b bbar</i> via an <i>s</i>-channel
238gluon, so closely related to the previous one, but typically less
239important owing to the smaller rate of (anti)quarks relative to
240gluons.
241Warning: unfortunately this process is rather slow, owing to a
242lengthy cross-section expression and inefficient phase-space selection.
243Code 913.
244 
245
246<p/>
247The second set of processes are predominantly first-order corrections
248to the <i>g g -> H^0</i> process, again dominated by the top loop.
249We here only provide the kinematical expressions obtained in the
250limit that the top quark goes to infinity, but scaled to the
251finite-top-mass coupling in <i>g g -> H^0</i>. (Complete loop
252expressions are available e.g. in PYTHIA 6.4 but are very lengthy.)
253This provides a reasonably accurate description for "intermediate"
254<i>pT</i> values, but fails when the <i>pT</i> scale approaches
255the top mass.
256 
257<br/><br/><strong>HiggsSM:gg2Hg(l:t)</strong>  <input type="radio" name="18" value="on"><strong>On</strong>
258<input type="radio" name="18" value="off" checked="checked"><strong>Off</strong>
259 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
260Scattering <i>g g -> H^0 g</i> via loop contributions primarily
261from top.
262Code 914.
263 
264 
265<br/><br/><strong>HiggsSM:qg2Hq(l:t)</strong>  <input type="radio" name="19" value="on"><strong>On</strong>
266<input type="radio" name="19" value="off" checked="checked"><strong>Off</strong>
267 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
268Scattering <i>q g -> H^0 q</i> via loop contributions primarily
269from top. Not to be confused with the <code>HiggsSM:qg2Hq</code>
270process above, with its direct fermion-to-Higgs coupling.
271Code 915.
272 
273 
274<br/><br/><strong>HiggsSM:qqbar2Hg(l:t)</strong>  <input type="radio" name="20" value="on"><strong>On</strong>
275<input type="radio" name="20" value="off" checked="checked"><strong>Off</strong>
276 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
277Scattering <i>q qbar -> H^0 g</i> via an <i>s</i>-channel gluon
278and loop contributions primarily from top. Is strictly speaking a
279"new" process, not directly derived from <i>g g -> H^0</i>, and
280could therefore be included in the standard mix without doublecounting,
281but is numerically negligible.
282Code 916.
283 
284
285<h3>Beyond-the-Standard-Model Higgs, introduction</h3>
286
287Further Higgs multiplets arise in a number of scenarios. We here
288concentrate on the MSSM scenario with two Higgs doublets, but with
289flexibility enough that also other two-Higgs-doublet scenarios could
290be represented by a suitable choice of parameters. Conventionally the
291Higgs states are labelled <i>h^0, H^0, A^0</i> and <i>H^+-</i>.
292If the scalar and pseudocalar states mix the resulting states are
293labelled <i>H_1^0, H_2^0, H_3^0</i>. In process names and parameter
294explanations both notations will be used, but for settings labels
295we have adapted the shorthand hybrid notation <code>H1</code> for
296<i>h^0(H_1^0)</i>, <code>H2</code> for <i>H^0(H_2^0)</i> and
297<code>A3</code> for <i>A^0(H_3^0)</i>. (Recall that the
298<code>Settings</code> database does not distinguish upper- and lowercase
299characters, so that the user has one thing less to worry about, but here
300it causes probles with <i>h^0</i> vs. <i>H^0</i>.) We leave the issue
301of mass ordering between <i>H^0</i> and <i>A^0</i> open, and thereby
302also that of <i>H_2^0</i> and <i>H_3^0</i>.
303
304<br/><br/><strong>Higgs:useBSM</strong>  <input type="radio" name="21" value="on"><strong>On</strong>
305<input type="radio" name="21" value="off" checked="checked"><strong>Off</strong>
306 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
307Master switch to initialize and use the two-Higgs-doublet states.
308If off, only the above SM Higgs processes can be used, with couplings
309as predicted in the SM. If on, only the below BSM Higgs processes can
310be used, with couplings that can be set freely, also found further down
311on this page.
312 
313
314<h3>Beyond-the-Standard-Model Higgs, basic processes</h3>
315
316This section provides the standard set of processes that can be
317run together to provide a reasonably complete overview of possible
318production channels for a single neutral Higgs state in a two-doublet
319scenarios such as MSSM. The list of processes for neutral states closely
320mimics the one found for the SM Higgs. Some of the processes
321vanish for a pure pseudoscalar <i>A^0</i>, but are kept for flexiblity
322in cases of mixing with the scalar <i>h^0</i> and <i>H^0</i> states,
323or for use in the context of non-MSSM models. This should work well to
324represent e.g. that a small admixture of the "wrong" parity would allow
325a process such as <i>q qbar -> A^0 Z^0</i>, which otherwise is forbidden.
326However, note that the loop integrals e.g. for <i>g g -> h^0/H^0/A^0</i>
327are hardcoded to be for scalars for the former two particles and for a
328pseudoscalar for the latter one, so absolute rates would not be
329correctly represented in the case of large scalar/pseudoscalar mixing. 
330
331<br/><br/><strong>HiggsBSM:all</strong>  <input type="radio" name="22" value="on"><strong>On</strong>
332<input type="radio" name="22" value="off" checked="checked"><strong>Off</strong>
333 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
334Common switch for the group of Higgs production beyond the Standard Model,
335as listed below.
336 
337
338<h4>1) <i>h^0(H_1^0)</i> processes</h4>
339
340<br/><br/><strong>HiggsBSM:allH1</strong>  <input type="radio" name="23" value="on"><strong>On</strong>
341<input type="radio" name="23" value="off" checked="checked"><strong>Off</strong>
342 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
343Common switch for the group of <i>h^0(H_1^0)</i> production processes.
344 
345
346<br/><br/><strong>HiggsBSM:ffbar2H1</strong>  <input type="radio" name="24" value="on"><strong>On</strong>
347<input type="radio" name="24" value="off" checked="checked"><strong>Off</strong>
348 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
349Scattering <i>f fbar -> h^0(H_1^0)</i>, where <i>f</i> sums over available
350flavours except top.
351Code 1001.
352 
353
354<br/><br/><strong>HiggsBSM:gg2H1</strong>  <input type="radio" name="25" value="on"><strong>On</strong>
355<input type="radio" name="25" value="off" checked="checked"><strong>Off</strong>
356 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
357Scattering <i>g g -> h^0(H_1^0)</i> via loop contributions primarily from
358top.
359Code 1002.
360 
361
362<br/><br/><strong>HiggsBSM:gmgm2H1</strong>  <input type="radio" name="26" value="on"><strong>On</strong>
363<input type="radio" name="26" value="off" checked="checked"><strong>Off</strong>
364 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
365Scattering <i>gamma gamma -> h^0(H_1^0)</i> via loop contributions
366primarily from top and <i>W</i>.
367Code 1003.
368 
369
370<br/><br/><strong>HiggsBSM:ffbar2H1Z</strong>  <input type="radio" name="27" value="on"><strong>On</strong>
371<input type="radio" name="27" value="off" checked="checked"><strong>Off</strong>
372 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
373Scattering <i>f fbar -> h^0(H_1^0) Z^0</i> via <i>s</i>-channel
374<i>Z^0</i> exchange.
375Code 1004.
376 
377
378<br/><br/><strong>HiggsBSM:ffbar2H1W</strong>  <input type="radio" name="28" value="on"><strong>On</strong>
379<input type="radio" name="28" value="off" checked="checked"><strong>Off</strong>
380 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
381Scattering <i>f fbar -> h^0(H_1^0) W^+-</i> via <i>s</i>-channel
382<i>W^+-</i> exchange.
383Code 1005.
384 
385
386<br/><br/><strong>HiggsBSM:ff2H1ff(t:ZZ)</strong>  <input type="radio" name="29" value="on"><strong>On</strong>
387<input type="radio" name="29" value="off" checked="checked"><strong>Off</strong>
388 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
389Scattering <i>f f' -> h^0(H_1^0) f f'</i> via <i>Z^0 Z^0</i> fusion.
390Code 1006.
391 
392
393<br/><br/><strong>HiggsBSM:ff2H1ff(t:WW)</strong>  <input type="radio" name="30" value="on"><strong>On</strong>
394<input type="radio" name="30" value="off" checked="checked"><strong>Off</strong>
395 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
396Scattering <i>f_1 f_2 -> h^0(H_1^0) f_3 f_4</i> via <i>W^+ W^-</i>
397fusion.
398Code 1007.
399 
400
401<br/><br/><strong>HiggsBSM:gg2H1ttbar</strong>  <input type="radio" name="31" value="on"><strong>On</strong>
402<input type="radio" name="31" value="off" checked="checked"><strong>Off</strong>
403 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
404Scattering <i>g g -> h^0(H_1^0) t tbar</i> via <i>t tbar</i> fusion
405(or, alternatively put, Higgs radiation off a top line).
406Warning: unfortunately this process is rather slow, owing to a
407lengthy cross-section expression and inefficient phase-space selection.
408Code 1008.
409 
410
411<br/><br/><strong>HiggsBSM:qqbar2H1ttbar</strong>  <input type="radio" name="32" value="on"><strong>On</strong>
412<input type="radio" name="32" value="off" checked="checked"><strong>Off</strong>
413 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
414Scattering <i>q qbar -> h^0(H_1^0) t tbar</i> via <i>t tbar</i> fusion
415(or, alternatively put, Higgs radiation off a top line).
416Warning: unfortunately this process is rather slow, owing to a
417lengthy cross-section expression and inefficient phase-space selection.
418Code 1009.
419
420
421<h4>2) <i>H^0(H_2^0)</i> processes</h4>
422
423<br/><br/><strong>HiggsBSM:allH2</strong>  <input type="radio" name="33" value="on"><strong>On</strong>
424<input type="radio" name="33" value="off" checked="checked"><strong>Off</strong>
425 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
426Common switch for the group of <i>H^0(H_2^0)</i> production processes.
427 
428
429<br/><br/><strong>HiggsBSM:ffbar2H2</strong>  <input type="radio" name="34" value="on"><strong>On</strong>
430<input type="radio" name="34" value="off" checked="checked"><strong>Off</strong>
431 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
432Scattering <i>f fbar -> H^0(H_2^0)</i>, where <i>f</i> sums over available
433flavours except top.
434Code 1021.
435 
436
437<br/><br/><strong>HiggsBSM:gg2H2</strong>  <input type="radio" name="35" value="on"><strong>On</strong>
438<input type="radio" name="35" value="off" checked="checked"><strong>Off</strong>
439 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
440Scattering <i>g g -> H^0(H_2^0)</i> via loop contributions primarily from
441top.
442Code 1022.
443 
444
445<br/><br/><strong>HiggsBSM:gmgm2H2</strong>  <input type="radio" name="36" value="on"><strong>On</strong>
446<input type="radio" name="36" value="off" checked="checked"><strong>Off</strong>
447 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
448Scattering <i>gamma gamma -> H^0(H_2^0)</i> via loop contributions primarily
449from top and <i>W</i>.
450Code 1023.
451 
452
453<br/><br/><strong>HiggsBSM:ffbar2H2Z</strong>  <input type="radio" name="37" value="on"><strong>On</strong>
454<input type="radio" name="37" value="off" checked="checked"><strong>Off</strong>
455 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
456Scattering <i>f fbar -> H^0(H_2^0) Z^0</i> via <i>s</i>-channel
457<i>Z^0</i> exchange.
458Code 1024.
459 
460
461<br/><br/><strong>HiggsBSM:ffbar2H2W</strong>  <input type="radio" name="38" value="on"><strong>On</strong>
462<input type="radio" name="38" value="off" checked="checked"><strong>Off</strong>
463 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
464Scattering <i>f fbar -> H^0(H_2^0) W^+-</i> via <i>s</i>-channel
465<i>W^+-</i> exchange.
466Code 1025.
467 
468
469<br/><br/><strong>HiggsBSM:ff2H2ff(t:ZZ)</strong>  <input type="radio" name="39" value="on"><strong>On</strong>
470<input type="radio" name="39" value="off" checked="checked"><strong>Off</strong>
471 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
472Scattering <i>f f' -> H^0(H_2^0) f f'</i> via <i>Z^0 Z^0</i> fusion.
473Code 1026.
474 
475
476<br/><br/><strong>HiggsBSM:ff2H2ff(t:WW)</strong>  <input type="radio" name="40" value="on"><strong>On</strong>
477<input type="radio" name="40" value="off" checked="checked"><strong>Off</strong>
478 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
479Scattering <i>f_1 f_2 -> H^0(H_2^0) f_3 f_4</i> via <i>W^+ W^-</i> fusion.
480Code 1027.
481 
482
483<br/><br/><strong>HiggsBSM:gg2H2ttbar</strong>  <input type="radio" name="41" value="on"><strong>On</strong>
484<input type="radio" name="41" value="off" checked="checked"><strong>Off</strong>
485 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
486Scattering <i>g g -> H^0(H_2^0) t tbar</i> via <i>t tbar</i> fusion
487(or, alternatively put, Higgs radiation off a top line).
488Warning: unfortunately this process is rather slow, owing to a
489lengthy cross-section expression and inefficient phase-space selection.
490Code 1028.
491 
492
493<br/><br/><strong>HiggsBSM:qqbar2H2ttbar</strong>  <input type="radio" name="42" value="on"><strong>On</strong>
494<input type="radio" name="42" value="off" checked="checked"><strong>Off</strong>
495 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
496Scattering <i>q qbar -> H^0(H_2^0) t tbar</i> via <i>t tbar</i> fusion
497(or, alternatively put, Higgs radiation off a top line).
498Warning: unfortunately this process is rather slow, owing to a
499lengthy cross-section expression and inefficient phase-space selection.
500Code 1029.
501
502<h4>3) <i>A^0(H_3^0)</i> processes</h4>
503
504<br/><br/><strong>HiggsBSM:allA3</strong>  <input type="radio" name="43" value="on"><strong>On</strong>
505<input type="radio" name="43" value="off" checked="checked"><strong>Off</strong>
506 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
507Common switch for the group of <i>A^0(H_3^0)</i> production processes.
508 
509
510<br/><br/><strong>HiggsBSM:ffbar2A3</strong>  <input type="radio" name="44" value="on"><strong>On</strong>
511<input type="radio" name="44" value="off" checked="checked"><strong>Off</strong>
512 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
513Scattering <i>f fbar -> A^0(H_3^0)</i>, where <i>f</i> sums over available
514flavours except top.
515Code 1041.
516 
517
518<br/><br/><strong>HiggsBSM:gg2A3</strong>  <input type="radio" name="45" value="on"><strong>On</strong>
519<input type="radio" name="45" value="off" checked="checked"><strong>Off</strong>
520 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
521Scattering <i>g g -> A^0(A_3^0)</i> via loop contributions primarily from
522top.
523Code 1042.
524 
525
526<br/><br/><strong>HiggsBSM:gmgm2A3</strong>  <input type="radio" name="46" value="on"><strong>On</strong>
527<input type="radio" name="46" value="off" checked="checked"><strong>Off</strong>
528 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
529Scattering <i>gamma gamma -> A^0(A_3^0)</i> via loop contributions primarily
530from top and <i>W</i>.
531Code 1043.
532 
533
534<br/><br/><strong>HiggsBSM:ffbar2A3Z</strong>  <input type="radio" name="47" value="on"><strong>On</strong>
535<input type="radio" name="47" value="off" checked="checked"><strong>Off</strong>
536 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
537Scattering <i>f fbar -> A^0(A_3^0) Z^0</i> via <i>s</i>-channel
538<i>Z^0</i> exchange.
539Code 1044.
540 
541
542<br/><br/><strong>HiggsBSM:ffbar2A3W</strong>  <input type="radio" name="48" value="on"><strong>On</strong>
543<input type="radio" name="48" value="off" checked="checked"><strong>Off</strong>
544 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
545Scattering <i>f fbar -> A^0(A_3^0) W^+-</i> via <i>s</i>-channel
546<i>W^+-</i> exchange.
547Code 1045.
548 
549
550<br/><br/><strong>HiggsBSM:ff2A3ff(t:ZZ)</strong>  <input type="radio" name="49" value="on"><strong>On</strong>
551<input type="radio" name="49" value="off" checked="checked"><strong>Off</strong>
552 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
553Scattering <i>f f' -> A^0(A_3^0) f f'</i> via <i>Z^0 Z^0</i> fusion.
554Code 1046.
555 
556
557<br/><br/><strong>HiggsBSM:ff2A3ff(t:WW)</strong>  <input type="radio" name="50" value="on"><strong>On</strong>
558<input type="radio" name="50" value="off" checked="checked"><strong>Off</strong>
559 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
560Scattering <i>f_1 f_2 -> A^0(A_3^0) f_3 f_4</i> via <i>W^+ W^-</i> fusion.
561Code 1047.
562 
563
564<br/><br/><strong>HiggsBSM:gg2A3ttbar</strong>  <input type="radio" name="51" value="on"><strong>On</strong>
565<input type="radio" name="51" value="off" checked="checked"><strong>Off</strong>
566 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
567Scattering <i>g g -> A^0(A_3^0) t tbar</i> via <i>t tbar</i> fusion
568(or, alternatively put, Higgs radiation off a top line).
569Warning: unfortunately this process is rather slow, owing to a
570lengthy cross-section expression and inefficient phase-space selection.
571Code 1048.
572 
573
574<br/><br/><strong>HiggsBSM:qqbar2A3ttbar</strong>  <input type="radio" name="52" value="on"><strong>On</strong>
575<input type="radio" name="52" value="off" checked="checked"><strong>Off</strong>
576 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
577Scattering <i>q qbar -> A^0(A_3^0) t tbar</i> via <i>t tbar</i> fusion
578(or, alternatively put, Higgs radiation off a top line).
579Warning: unfortunately this process is rather slow, owing to a
580lengthy cross-section expression and inefficient phase-space selection.
581Code 1049.
582
583<h4>4) <i>H+-</i> processes</h4>
584
585<br/><br/><strong>HiggsBSM:allH+-</strong>  <input type="radio" name="53" value="on"><strong>On</strong>
586<input type="radio" name="53" value="off" checked="checked"><strong>Off</strong>
587 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
588Common switch for the group of <i>H^+-</i> production processes.
589 
590
591<br/><br/><strong>HiggsBSM:ffbar2H+-</strong>  <input type="radio" name="54" value="on"><strong>On</strong>
592<input type="radio" name="54" value="off" checked="checked"><strong>Off</strong>
593 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
594Scattering <i>f fbar' -> H^+-</i>, where <i>f, fbar'</i> sums over
595available incoming flavours. Since couplings are assumed
596generation-diagonal, in practice this means <i>c sbar -> H^+</i>
597and <i>s cbar -> H^-</i>.
598Code 1061.
599 
600
601<br/><br/><strong>HiggsBSM:bg2H+-t</strong>  <input type="radio" name="55" value="on"><strong>On</strong>
602<input type="radio" name="55" value="off" checked="checked"><strong>Off</strong>
603 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
604Scattering <i>b g -> H^+ tbar</i>. At hadron colliders this is the
605dominant process for single-charged-Higgs production.
606Code 1062.
607 
608
609<h4>5) Higgs-pair processes</h4>
610
611<br/><br/><strong>HiggsBSM:allHpair</strong>  <input type="radio" name="56" value="on"><strong>On</strong>
612<input type="radio" name="56" value="off" checked="checked"><strong>Off</strong>
613 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
614Common switch for the group of Higgs pair-production processes.
615 
616
617<br/><br/><strong>HiggsBSM:ffbar2A3H1</strong>  <input type="radio" name="57" value="on"><strong>On</strong>
618<input type="radio" name="57" value="off" checked="checked"><strong>Off</strong>
619 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
620Scattering <i>f fbar -> A^0(H_3) h^0(H_1)</i>.
621Code 1081.
622 
623
624<br/><br/><strong>HiggsBSM:ffbar2A3H2</strong>  <input type="radio" name="58" value="on"><strong>On</strong>
625<input type="radio" name="58" value="off" checked="checked"><strong>Off</strong>
626 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
627Scattering <i>f fbar -> A^0(H_3) H^0(H_2)</i>.
628Code 1082.
629 
630
631<br/><br/><strong>HiggsBSM:ffbar2H+-H1</strong>  <input type="radio" name="59" value="on"><strong>On</strong>
632<input type="radio" name="59" value="off" checked="checked"><strong>Off</strong>
633 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
634Scattering <i>f fbar -> H^+- h^0(H_1)</i>.
635Code 1083.
636 
637
638<br/><br/><strong>HiggsBSM:ffbar2H+-H2</strong>  <input type="radio" name="60" value="on"><strong>On</strong>
639<input type="radio" name="60" value="off" checked="checked"><strong>Off</strong>
640 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
641Scattering <i>f fbar -> H^+- H^0(H_2)</i>.
642Code 1084.
643 
644
645<br/><br/><strong>HiggsBSM:ffbar2H+H-</strong>  <input type="radio" name="61" value="on"><strong>On</strong>
646<input type="radio" name="61" value="off" checked="checked"><strong>Off</strong>
647 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
648Scattering <i>f fbar -> H+ H-</i>.
649Code 1085.
650 
651
652<h3>Beyond-the-Standard-Model Higgs, further processes</h3>
653
654This section mimics the above section on "Standard-Model Higgs,
655further processes", i.e. it contains higher-order corrections
656to the processes already listed. The two sets therefore could not
657be used simultaneously without unphysical doublecounting.
658They are not controlled by any group flag, but have to be switched
659on for each separate process after due consideration. We refer to
660the standard-model description for a set of further comments on
661the processes.
662
663<h4>1) <i>h^0(H_1^0)</i> processes</h4>
664
665<br/><br/><strong>HiggsBSM:qg2H1q</strong>  <input type="radio" name="62" value="on"><strong>On</strong>
666<input type="radio" name="62" value="off" checked="checked"><strong>Off</strong>
667 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
668Scattering <i>q g -> h^0 q</i>. This process gives first-order
669corrections to the <i>f fbar -> h^0</i> one above, and should only be
670used to study  the high-<i>pT</i> tail, while <i>f fbar -> h^0</i>
671should be used for inclusive production. Only the dominant <i>c</i>
672and <i>b</i> contributions are included, and generated separately
673for technical reasons. Note that another first-order process would be
674<i>q qbar -> h^0 g</i>, which is not explicitly implemented here,
675but is obtained from showering off the lowest-order process. It does not
676contain any <i>b</i> at large <i>pT</i>, however, so is less
677interesting for many applications.
678Code 1011.
679 
680
681<br/><br/><strong>HiggsBSM:gg2H1bbbar</strong>  <input type="radio" name="63" value="on"><strong>On</strong>
682<input type="radio" name="63" value="off" checked="checked"><strong>Off</strong>
683 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
684Scattering <i>g g -> h^0 b bbar</i>. This process is yet one order
685higher of the <i>b bbar -> h^0</i> and <i>b g -> h^0 b</i> chain,
686where now two quarks should be required above some large <i>pT</i>
687threshold.
688Warning: unfortunately this process is rather slow, owing to a
689lengthy cross-section expression and inefficient phase-space selection.
690Code 1012.
691 
692
693<br/><br/><strong>HiggsBSM:qqbar2H1bbbar</strong>  <input type="radio" name="64" value="on"><strong>On</strong>
694<input type="radio" name="64" value="off" checked="checked"><strong>Off</strong>
695 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
696Scattering <i>q qbar -> h^0 b bbar</i> via an <i>s</i>-channel
697gluon, so closely related to the previous one, but typically less
698important owing to the smaller rate of (anti)quarks relative to
699gluons.
700Warning: unfortunately this process is rather slow, owing to a
701lengthy cross-section expression and inefficient phase-space selection.
702Code 1013.
703 
704 
705<br/><br/><strong>HiggsBSM:gg2H1g(l:t)</strong>  <input type="radio" name="65" value="on"><strong>On</strong>
706<input type="radio" name="65" value="off" checked="checked"><strong>Off</strong>
707 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
708Scattering <i>g g -> h^0 g</i> via loop contributions primarily
709from top.
710Code 1014.
711 
712 
713<br/><br/><strong>HiggsBSM:qg2H1q(l:t)</strong>  <input type="radio" name="66" value="on"><strong>On</strong>
714<input type="radio" name="66" value="off" checked="checked"><strong>Off</strong>
715 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
716Scattering <i>q g -> h^0 q</i> via loop contributions primarily
717from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
718process above, with its direct fermion-to-Higgs coupling.
719Code 1015.
720 
721 
722<br/><br/><strong>HiggsBSM:qqbar2H1g(l:t)</strong>  <input type="radio" name="67" value="on"><strong>On</strong>
723<input type="radio" name="67" value="off" checked="checked"><strong>Off</strong>
724 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
725Scattering <i>q qbar -> h^0 g</i> via an <i>s</i>-channel gluon
726and loop contributions primarily from top. Is strictly speaking a
727"new" process, not directly derived from <i>g g -> h^0</i>, and
728could therefore be included in the standard mix without doublecounting,
729but is numerically negligible.
730Code 1016.
731 
732
733<h4>2) <i>H^0(H_2^0)</i> processes</h4>
734
735<br/><br/><strong>HiggsBSM:qg2H2q</strong>  <input type="radio" name="68" value="on"><strong>On</strong>
736<input type="radio" name="68" value="off" checked="checked"><strong>Off</strong>
737 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
738Scattering <i>q g -> H^0 q</i>. This process gives first-order
739corrections to the <i>f fbar -> H^0</i> one above, and should only be
740used to study  the high-<i>pT</i> tail, while <i>f fbar -> H^0</i>
741should be used for inclusive production. Only the dominant <i>c</i>
742and <i>b</i> contributions are included, and generated separately
743for technical reasons. Note that another first-order process would be
744<i>q qbar -> H^0 g</i>, which is not explicitly implemented here,
745but is obtained from showering off the lowest-order process. It does not
746contain any <i>b</i> at large <i>pT</i>, however, so is less
747interesting for many applications.
748Code 1031.
749 
750
751<br/><br/><strong>HiggsBSM:gg2H2bbbar</strong>  <input type="radio" name="69" value="on"><strong>On</strong>
752<input type="radio" name="69" value="off" checked="checked"><strong>Off</strong>
753 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
754Scattering <i>g g -> H^0 b bbar</i>. This process is yet one order
755higher of the <i>b bbar -> H^0</i> and <i>b g -> H^0 b</i> chain,
756where now two quarks should be required above some large <i>pT</i>
757threshold.
758Warning: unfortunately this process is rather slow, owing to a
759lengthy cross-section expression and inefficient phase-space selection.
760Code 1032.
761 
762
763<br/><br/><strong>HiggsBSM:qqbar2H2bbbar</strong>  <input type="radio" name="70" value="on"><strong>On</strong>
764<input type="radio" name="70" value="off" checked="checked"><strong>Off</strong>
765 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
766Scattering <i>q qbar -> H^0 b bbar</i> via an <i>s</i>-channel
767gluon, so closely related to the previous one, but typically less
768important owing to the smaller rate of (anti)quarks relative to
769gluons.
770Warning: unfortunately this process is rather slow, owing to a
771lengthy cross-section expression and inefficient phase-space selection.
772Code 1033.
773 
774 
775<br/><br/><strong>HiggsBSM:gg2H2g(l:t)</strong>  <input type="radio" name="71" value="on"><strong>On</strong>
776<input type="radio" name="71" value="off" checked="checked"><strong>Off</strong>
777 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
778Scattering <i>g g -> H^0 g</i> via loop contributions primarily
779from top.
780Code 1034.
781 
782 
783<br/><br/><strong>HiggsBSM:qg2H2q(l:t)</strong>  <input type="radio" name="72" value="on"><strong>On</strong>
784<input type="radio" name="72" value="off" checked="checked"><strong>Off</strong>
785 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
786Scattering <i>q g -> H^0 q</i> via loop contributions primarily
787from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
788process above, with its direct fermion-to-Higgs coupling.
789Code 1035.
790 
791 
792<br/><br/><strong>HiggsBSM:qqbar2H2g(l:t)</strong>  <input type="radio" name="73" value="on"><strong>On</strong>
793<input type="radio" name="73" value="off" checked="checked"><strong>Off</strong>
794 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
795Scattering <i>q qbar -> H^0 g</i> via an <i>s</i>-channel gluon
796and loop contributions primarily from top. Is strictly speaking a
797"new" process, not directly derived from <i>g g -> H^0</i>, and
798could therefore be included in the standard mix without doublecounting,
799but is numerically negligible.
800Code 1036.
801 
802
803<h4>3) <i>A^0(H_3^0)</i> processes</h4>
804
805<br/><br/><strong>HiggsBSM:qg2A3q</strong>  <input type="radio" name="74" value="on"><strong>On</strong>
806<input type="radio" name="74" value="off" checked="checked"><strong>Off</strong>
807 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
808Scattering <i>q g -> A^0 q</i>. This process gives first-order
809corrections to the <i>f fbar -> A^0</i> one above, and should only be
810used to study  the high-<i>pT</i> tail, while <i>f fbar -> A^0</i>
811should be used for inclusive production. Only the dominant <i>c</i>
812and <i>b</i> contributions are included, and generated separately
813for technical reasons. Note that another first-order process would be
814<i>q qbar -> A^0 g</i>, which is not explicitly implemented here,
815but is obtained from showering off the lowest-order process. It does not
816contain any <i>b</i> at large <i>pT</i>, however, so is less
817interesting for many applications.
818Code 1051.
819 
820
821<br/><br/><strong>HiggsBSM:gg2A3bbbar</strong>  <input type="radio" name="75" value="on"><strong>On</strong>
822<input type="radio" name="75" value="off" checked="checked"><strong>Off</strong>
823 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
824Scattering <i>g g -> A^0 b bbar</i>. This process is yet one order
825higher of the <i>b bbar -> A^0</i> and <i>b g -> A^0 b</i> chain,
826where now two quarks should be required above some large <i>pT</i>
827threshold.
828Warning: unfortunately this process is rather slow, owing to a
829lengthy cross-section expression and inefficient phase-space selection.
830Code 1052.
831 
832
833<br/><br/><strong>HiggsBSM:qqbar2A3bbbar</strong>  <input type="radio" name="76" value="on"><strong>On</strong>
834<input type="radio" name="76" value="off" checked="checked"><strong>Off</strong>
835 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
836Scattering <i>q qbar -> A^0 b bbar</i> via an <i>s</i>-channel
837gluon, so closely related to the previous one, but typically less
838important owing to the smaller rate of (anti)quarks relative to
839gluons.
840Warning: unfortunately this process is rather slow, owing to a
841lengthy cross-section expression and inefficient phase-space selection.
842Code 1053.
843 
844 
845<br/><br/><strong>HiggsBSM:gg2A3g(l:t)</strong>  <input type="radio" name="77" value="on"><strong>On</strong>
846<input type="radio" name="77" value="off" checked="checked"><strong>Off</strong>
847 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
848Scattering <i>g g -> A^0 g</i> via loop contributions primarily
849from top.
850Code 1054.
851 
852 
853<br/><br/><strong>HiggsBSM:qg2A3q(l:t)</strong>  <input type="radio" name="78" value="on"><strong>On</strong>
854<input type="radio" name="78" value="off" checked="checked"><strong>Off</strong>
855 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
856Scattering <i>q g -> A^0 q</i> via loop contributions primarily
857from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
858process above, with its direct fermion-to-Higgs coupling.
859Code 1055.
860 
861 
862<br/><br/><strong>HiggsBSM:qqbar2A3g(l:t)</strong>  <input type="radio" name="79" value="on"><strong>On</strong>
863<input type="radio" name="79" value="off" checked="checked"><strong>Off</strong>
864 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
865Scattering <i>q qbar -> A^0 g</i> via an <i>s</i>-channel gluon
866and loop contributions primarily from top. Is strictly speaking a
867"new" process, not directly derived from <i>g g -> A^0</i>, and
868could therefore be included in the standard mix without doublecounting,
869but is numerically negligible.
870Code 1056.
871 
872
873<h3>Parameters for Beyond-the-Standard-Model Higgs production and decay</h3>
874
875This section offers a big flexibility to set couplings of the various
876Higgs states to fermions and gauge bosons, and also to each other.
877The intention is that, for scenarios like MSSM, you should use standard
878input from the <?php $filepath = $_GET["filepath"];
879echo "<a href='SUSYLesHouchesAccord.php?filepath=".$filepath."' target='page'>";?>SUSY Les Houches
880Accord</a>, rather than having to set it all yourself. In other cases,
881however, the freedom is there for you to use. Kindly note that some
882of the internal calculations of partial widths from the parameters provided
883do not include mixing between the scalar and pseudoscalar states.
884
885<p/>
886Masses would be set in the <code>ParticleData</code> database,
887while couplings are set below. When possible, the couplings of the Higgs
888states are normalized to the corresponding coupling within the SM.
889When not, their values within the MSSM are indicated, from which
890it should be straightforward to understand what to use instead.
891The exception is some couplings that vanish also in the MSSM, where the
892normalization has been defined in close analogy with nonvanishing ones.
893Some parameter names are asymmetric but crossing can always be used,
894i.e. the coupling for <i>A^0 -> H^0 Z^0</i> obviously is also valid
895for <i>H^0 -> A^0 Z^0</i> and <i>Z^0 -> H^0 A^0</i>.
896Note that couplings usually appear quadratically in matrix elements.
897
898<br/><br/><table><tr><td><strong>HiggsH1:coup2d </td><td></td><td> <input type="text" name="80" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
899The <i>h^0(H_1^0)</i> coupling to down-type quarks.
900 
901
902<br/><br/><table><tr><td><strong>HiggsH1:coup2u </td><td></td><td> <input type="text" name="81" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
903The <i>h^0(H_1^0)</i> coupling to up-type quarks.
904 
905
906<br/><br/><table><tr><td><strong>HiggsH1:coup2l </td><td></td><td> <input type="text" name="82" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
907The <i>h^0(H_1^0)</i> coupling to (charged) leptons.
908 
909
910<br/><br/><table><tr><td><strong>HiggsH1:coup2Z </td><td></td><td> <input type="text" name="83" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
911The <i>h^0(H_1^0)</i> coupling to <i>Z^0</i>.
912 
913
914<br/><br/><table><tr><td><strong>HiggsH1:coup2W </td><td></td><td> <input type="text" name="84" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
915The <i>h^0(H_1^0)</i> coupling to <i>W^+-</i>.
916 
917
918<br/><br/><table><tr><td><strong>HiggsH1:coup2Hchg </td><td></td><td> <input type="text" name="85" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
919The <i>h^0(H_1^0)</i> coupling to <i>H^+-</i> (in loops).
920Is <i>sin(beta - alpha) + cos(2 beta) sin(beta + alpha) /
921(2 cos^2theta_W)</i> in the MSSM.
922 
923
924<br/><br/><table><tr><td><strong>HiggsH2:coup2d </td><td></td><td> <input type="text" name="86" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
925The <i>H^0(H_2^0)</i> coupling to down-type quarks.
926 
927
928<br/><br/><table><tr><td><strong>HiggsH2:coup2u </td><td></td><td> <input type="text" name="87" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
929The <i>H^0(H_2^0)</i> coupling to up-type quarks.
930 
931
932<br/><br/><table><tr><td><strong>HiggsH2:coup2l </td><td></td><td> <input type="text" name="88" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
933The <i>H^0(H_2^0)</i> coupling to (charged) leptons.
934 
935
936<br/><br/><table><tr><td><strong>HiggsH2:coup2Z </td><td></td><td> <input type="text" name="89" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
937The <i>H^0(H_2^0)</i> coupling to <i>Z^0</i>.
938 
939
940<br/><br/><table><tr><td><strong>HiggsH2:coup2W </td><td></td><td> <input type="text" name="90" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
941The <i>H^0(H_2^0)</i> coupling to <i>W^+-</i>.
942 
943
944<br/><br/><table><tr><td><strong>HiggsH2:coup2Hchg </td><td></td><td> <input type="text" name="91" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
945The <i>H^0(H_2^0)</i> coupling to <i>H^+-</i> (in loops).
946Is <i>cos(beta - alpha) + cos(2 beta) cos(beta + alpha) /
947(2 cos^2theta_W)</i> in the MSSM.
948 
949
950<br/><br/><table><tr><td><strong>HiggsH2:coup2H1H1 </td><td></td><td> <input type="text" name="92" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
951The <i>H^0(H_2^0)</i> coupling to a <i>h^0(H_1^0)</i> pair.
952Is <i>cos(2 alpha) cos(beta + alpha) - 2 sin(2 alpha)
953sin(beta + alpha)</i> in the MSSM.
954 
955
956<br/><br/><table><tr><td><strong>HiggsH2:coup2A3A3 </td><td></td><td> <input type="text" name="93" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
957The <i>H^0(H_2^0)</i> coupling to an <i>A^0(H_3^0)</i> pair.
958Is <i>cos(2 beta) cos(beta + alpha)</i> in the MSSM.
959 
960
961<br/><br/><table><tr><td><strong>HiggsH2:coup2H1Z </td><td></td><td> <input type="text" name="94" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
962The <i>H^0(H_2^0)</i> coupling to a <i>h^0(H_1^0) Z^0</i> pair.
963Vanishes in the MSSM.
964 
965
966<br/><br/><table><tr><td><strong>HiggsH2:coup2A3H1 </td><td></td><td> <input type="text" name="95" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
967The <i>H^0(H_2^0)</i> coupling to an <i>A^0(H_3^0) h^0(H_1^0)</i> pair.
968Vanishes in the MSSM.
969 
970
971<br/><br/><table><tr><td><strong>HiggsH2:coup2HchgW </td><td></td><td> <input type="text" name="96" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
972The <i>H^0(H_2^0)</i> coupling to a <i>H^+- W-+</i> pair.
973Is <i>sin(beta - alpha)</i> in the MSSM.
974 
975
976<br/><br/><table><tr><td><strong>HiggsA3:coup2d </td><td></td><td> <input type="text" name="97" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
977The <i>A^0(H_3^0)</i> coupling to down-type quarks.
978 
979
980<br/><br/><table><tr><td><strong>HiggsA3:coup2u </td><td></td><td> <input type="text" name="98" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
981The <i>A^0(H_3^0)</i> coupling to up-type quarks.
982 
983
984<br/><br/><table><tr><td><strong>HiggsA3:coup2l </td><td></td><td> <input type="text" name="99" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
985The <i>A^0(H_3^0)</i> coupling to (charged) leptons.
986 
987
988<br/><br/><table><tr><td><strong>HiggsA3:coup2H1Z </td><td></td><td> <input type="text" name="100" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
989The <i>A^0(H_3^0)</i> coupling to a <i>h^0(H_1^0) Z^0</i> pair.
990Is <i>cos(beta - alpha)</i> in the MSSM.
991 
992
993<br/><br/><table><tr><td><strong>HiggsA3:coup2H2Z </td><td></td><td> <input type="text" name="101" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
994The <i>A^0(H_3^0)</i> coupling to a <i>H^0(H_2^0) Z^0</i> pair.
995Is <i>sin(beta - alpha)</i> in the MSSM.
996 
997
998<br/><br/><table><tr><td><strong>HiggsA3:coup2Z </td><td></td><td> <input type="text" name="102" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
999The <i>A^0(H_3^0)</i> coupling to <i>Z^0</i>.
1000Vanishes in the MSSM.
1001 
1002
1003<br/><br/><table><tr><td><strong>HiggsA3:coup2W </td><td></td><td> <input type="text" name="103" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
1004The <i>A^0(H_3^0)</i> coupling to <i>W^+-</i>.
1005Vanishes in the MSSM.
1006 
1007
1008<br/><br/><table><tr><td><strong>HiggsA3:coup2H1H1 </td><td></td><td> <input type="text" name="104" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
1009The <i>A^0(H_3^0)</i> coupling to a <i>h^0(H_1^0)</i> pair.
1010Vanishes in the MSSM.
1011 
1012
1013<br/><br/><table><tr><td><strong>HiggsA3:coup2Hchg </td><td></td><td> <input type="text" name="105" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
1014The <i>A^0(H_3^0)</i> coupling to <i>H^+-</i>.
1015Vanishes in the MSSM.
1016 
1017
1018<br/><br/><table><tr><td><strong>HiggsA3:coup2HchgW </td><td></td><td> <input type="text" name="106" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
1019The <i>A^0(H_3^0)</i> coupling to a <i>H^+- W-+</i> pair.
1020Is 1 in the MSSM.
1021 
1022
1023<br/><br/><table><tr><td><strong>HiggsHchg:tanBeta </td><td></td><td> <input type="text" name="107" value="5." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>5.</strong></code>)</td></tr></table>
1024The <i>tan(beta)</i> value, which leads to an enhancement of the
1025<i>H^+-</i> coupling to down-type fermions and suppression to
1026up-type ones. The same angle also appears in many other places,
1027but this particular parameter is only used for the charged-Higgs case.
1028 
1029
1030<br/><br/><table><tr><td><strong>HiggsHchg:coup2H1W </td><td></td><td> <input type="text" name="108" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
1031The <i>H^+-</i> coupling to a <i>h^0(H_1^0) W^+-</i> pair.
1032Is <i>cos(beta - alpha)</i> in the MSSM.
1033 
1034
1035<br/><br/><table><tr><td><strong>HiggsHchg:coup2H2W </td><td></td><td> <input type="text" name="109" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
1036The <i>H^+-</i> coupling to a <i>H^0(H_2^0) W^+-</i> pair.
1037Is <i>sin(beta - alpha)</i> in the MSSM.
1038 
1039
1040<p/>
1041Another set of parameters are not used in the production stage but
1042exclusively for the description of angular distributions in decays.
1043
1044<br/><br/><table><tr><td><strong>HiggsH1:parity </td><td>  &nbsp;&nbsp;(<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)</td></tr></table>
1045possibility to modify angular decay correlations in the decay of a
1046<ei>h^0(H_1)</ei> decay <ei>Z^0 Z^0</ei> or <ei>W^+ W^-</ei> to four
1047fermions. Currently it does not affect the partial width of the
1048channels, which is only based on the above parameters.
1049<br/>
1050<input type="radio" name="110" value="0"><strong>0 </strong>: isotropic decays.<br/>
1051<input type="radio" name="110" value="1" checked="checked"><strong>1 </strong>: assuming the <ei>h^0(H_1)</ei> is a pure scalar  (CP-even), as in the MSSM.<br/>
1052<input type="radio" name="110" value="2"><strong>2 </strong>: assuming the <ei>h^0(H_1)</ei> is a pure pseudoscalar (CP-odd).<br/>
1053<input type="radio" name="110" value="3"><strong>3 </strong>: assuming the <ei>h^0(H_1)</ei> is a mixture of the two,  including the CP-violating interference term. The parameter <ei>eta</ei>, see below, sets the strength of the CP-odd admixture, with the interference term being proportional to <ei>eta</ei> and the CP-odd one to <ei>eta^2</ei>.<br/>
1054
1055<br/><br/><table><tr><td><strong>HiggsH1:etaParity </td><td></td><td> <input type="text" name="111" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
1056The <i>eta</i> value of CP-violation in the
1057<code>HiggsSM:parity = 3</code> option.
1058 
1059
1060<br/><br/><table><tr><td><strong>HiggsH2:parity </td><td>  &nbsp;&nbsp;(<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)</td></tr></table>
1061possibility to modify angular decay correlations in the decay of a
1062<ei>H^0(H_2)</ei> decay <ei>Z^0 Z^0</ei> or <ei>W^+ W^-</ei> to four
1063fermions. Currently it does not affect the partial width of the
1064channels, which is only based on the above parameters.
1065<br/>
1066<input type="radio" name="112" value="0"><strong>0 </strong>: isotropic decays.<br/>
1067<input type="radio" name="112" value="1" checked="checked"><strong>1 </strong>: assuming the <ei>H^0(H_2)</ei> is a pure scalar  (CP-even), as in the MSSM.<br/>
1068<input type="radio" name="112" value="2"><strong>2 </strong>: assuming the <ei>H^0(H_2)</ei> is a pure pseudoscalar (CP-odd).<br/>
1069<input type="radio" name="112" value="3"><strong>3 </strong>: assuming the <ei>H^0(H_2)</ei> is a mixture of the two,  including the CP-violating interference term. The parameter <ei>eta</ei>, see below, sets the strength of the CP-odd admixture, with the interference term being proportional to <ei>eta</ei> and the CP-odd one to <ei>eta^2</ei>.<br/>
1070
1071<br/><br/><table><tr><td><strong>HiggsH2:etaParity </td><td></td><td> <input type="text" name="113" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
1072The <i>eta</i> value of CP-violation in the
1073<code>HiggsSM:parity = 3</code> option.
1074 
1075
1076<br/><br/><table><tr><td><strong>HiggsA3:parity </td><td>  &nbsp;&nbsp;(<code>default = <strong>2</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)</td></tr></table>
1077possibility to modify angular decay correlations in the decay of a
1078<ei>A^0(H_3)</ei> decay <ei>Z^0 Z^0</ei> or <ei>W^+ W^-</ei> to four
1079fermions. Currently it does not affect the partial width of the
1080channels, which is only based on the above parameters.
1081<br/>
1082<input type="radio" name="114" value="0"><strong>0 </strong>: isotropic decays.<br/>
1083<input type="radio" name="114" value="1"><strong>1 </strong>: assuming the <ei>A^0(H_3)</ei> is a pure scalar  (CP-even).<br/>
1084<input type="radio" name="114" value="2" checked="checked"><strong>2 </strong>: assuming the <ei>A^0(H_3)</ei> is a pure pseudoscalar (CP-odd), as in the MSSM.<br/>
1085<input type="radio" name="114" value="3"><strong>3 </strong>: assuming the <ei>A^0(H_3)</ei> is a mixture of the two,  including the CP-violating interference term. The parameter <ei>eta</ei>, see below, sets the strength of the CP-odd admixture, with the interference term being proportional to <ei>eta</ei> and the CP-odd one to <ei>eta^2</ei>.<br/>
1086
1087<br/><br/><table><tr><td><strong>HiggsA3:etaParity </td><td></td><td> <input type="text" name="115" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>)</td></tr></table>
1088The <i>eta</i> value of CP-violation in the
1089<code>HiggsSM:parity = 3</code> option.
1090 
1091
1092<input type="hidden" name="saved" value="1"/>
1093
1094<?php
1095echo "<input type='hidden' name='filepath' value='".$_GET["filepath"]."'/>"?>
1096
1097<table width="100%"><tr><td align="right"><input type="submit" value="Save Settings" /></td></tr></table>
1098</form>
1099
1100<?php
1101
1102if($_POST["saved"] == 1)
1103{
1104$filepath = $_POST["filepath"];
1105$handle = fopen($filepath, 'a');
1106
1107if($_POST["1"] != "off")
1108{
1109$data = "Higgs:cubicWidth = ".$_POST["1"]."\n";
1110fwrite($handle,$data);
1111}
1112if($_POST["2"] != "on")
1113{
1114$data = "Higgs:runningLoopMass = ".$_POST["2"]."\n";
1115fwrite($handle,$data);
1116}
1117if($_POST["3"] != "on")
1118{
1119$data = "Higgs:clipWings = ".$_POST["3"]."\n";
1120fwrite($handle,$data);
1121}
1122if($_POST["4"] != "50.")
1123{
1124$data = "Higgs:wingsFac = ".$_POST["4"]."\n";
1125fwrite($handle,$data);
1126}
1127if($_POST["5"] != "off")
1128{
1129$data = "HiggsSM:all = ".$_POST["5"]."\n";
1130fwrite($handle,$data);
1131}
1132if($_POST["6"] != "off")
1133{
1134$data = "HiggsSM:ffbar2H = ".$_POST["6"]."\n";
1135fwrite($handle,$data);
1136}
1137if($_POST["7"] != "off")
1138{
1139$data = "HiggsSM:gg2H = ".$_POST["7"]."\n";
1140fwrite($handle,$data);
1141}
1142if($_POST["8"] != "off")
1143{
1144$data = "HiggsSM:gmgm2H = ".$_POST["8"]."\n";
1145fwrite($handle,$data);
1146}
1147if($_POST["9"] != "off")
1148{
1149$data = "HiggsSM:ffbar2HZ = ".$_POST["9"]."\n";
1150fwrite($handle,$data);
1151}
1152if($_POST["10"] != "off")
1153{
1154$data = "HiggsSM:ffbar2HW = ".$_POST["10"]."\n";
1155fwrite($handle,$data);
1156}
1157if($_POST["11"] != "off")
1158{
1159$data = "HiggsSM:ff2Hff(t:ZZ) = ".$_POST["11"]."\n";
1160fwrite($handle,$data);
1161}
1162if($_POST["12"] != "off")
1163{
1164$data = "HiggsSM:ff2Hff(t:WW) = ".$_POST["12"]."\n";
1165fwrite($handle,$data);
1166}
1167if($_POST["13"] != "off")
1168{
1169$data = "HiggsSM:gg2Httbar = ".$_POST["13"]."\n";
1170fwrite($handle,$data);
1171}
1172if($_POST["14"] != "off")
1173{
1174$data = "HiggsSM:qqbar2Httbar = ".$_POST["14"]."\n";
1175fwrite($handle,$data);
1176}
1177if($_POST["15"] != "off")
1178{
1179$data = "HiggsSM:qg2Hq = ".$_POST["15"]."\n";
1180fwrite($handle,$data);
1181}
1182if($_POST["16"] != "off")
1183{
1184$data = "HiggsSM:gg2Hbbbar = ".$_POST["16"]."\n";
1185fwrite($handle,$data);
1186}
1187if($_POST["17"] != "off")
1188{
1189$data = "HiggsSM:qqbar2Hbbbar = ".$_POST["17"]."\n";
1190fwrite($handle,$data);
1191}
1192if($_POST["18"] != "off")
1193{
1194$data = "HiggsSM:gg2Hg(l:t) = ".$_POST["18"]."\n";
1195fwrite($handle,$data);
1196}
1197if($_POST["19"] != "off")
1198{
1199$data = "HiggsSM:qg2Hq(l:t) = ".$_POST["19"]."\n";
1200fwrite($handle,$data);
1201}
1202if($_POST["20"] != "off")
1203{
1204$data = "HiggsSM:qqbar2Hg(l:t) = ".$_POST["20"]."\n";
1205fwrite($handle,$data);
1206}
1207if($_POST["21"] != "off")
1208{
1209$data = "Higgs:useBSM = ".$_POST["21"]."\n";
1210fwrite($handle,$data);
1211}
1212if($_POST["22"] != "off")
1213{
1214$data = "HiggsBSM:all = ".$_POST["22"]."\n";
1215fwrite($handle,$data);
1216}
1217if($_POST["23"] != "off")
1218{
1219$data = "HiggsBSM:allH1 = ".$_POST["23"]."\n";
1220fwrite($handle,$data);
1221}
1222if($_POST["24"] != "off")
1223{
1224$data = "HiggsBSM:ffbar2H1 = ".$_POST["24"]."\n";
1225fwrite($handle,$data);
1226}
1227if($_POST["25"] != "off")
1228{
1229$data = "HiggsBSM:gg2H1 = ".$_POST["25"]."\n";
1230fwrite($handle,$data);
1231}
1232if($_POST["26"] != "off")
1233{
1234$data = "HiggsBSM:gmgm2H1 = ".$_POST["26"]."\n";
1235fwrite($handle,$data);
1236}
1237if($_POST["27"] != "off")
1238{
1239$data = "HiggsBSM:ffbar2H1Z = ".$_POST["27"]."\n";
1240fwrite($handle,$data);
1241}
1242if($_POST["28"] != "off")
1243{
1244$data = "HiggsBSM:ffbar2H1W = ".$_POST["28"]."\n";
1245fwrite($handle,$data);
1246}
1247if($_POST["29"] != "off")
1248{
1249$data = "HiggsBSM:ff2H1ff(t:ZZ) = ".$_POST["29"]."\n";
1250fwrite($handle,$data);
1251}
1252if($_POST["30"] != "off")
1253{
1254$data = "HiggsBSM:ff2H1ff(t:WW) = ".$_POST["30"]."\n";
1255fwrite($handle,$data);
1256}
1257if($_POST["31"] != "off")
1258{
1259$data = "HiggsBSM:gg2H1ttbar = ".$_POST["31"]."\n";
1260fwrite($handle,$data);
1261}
1262if($_POST["32"] != "off")
1263{
1264$data = "HiggsBSM:qqbar2H1ttbar = ".$_POST["32"]."\n";
1265fwrite($handle,$data);
1266}
1267if($_POST["33"] != "off")
1268{
1269$data = "HiggsBSM:allH2 = ".$_POST["33"]."\n";
1270fwrite($handle,$data);
1271}
1272if($_POST["34"] != "off")
1273{
1274$data = "HiggsBSM:ffbar2H2 = ".$_POST["34"]."\n";
1275fwrite($handle,$data);
1276}
1277if($_POST["35"] != "off")
1278{
1279$data = "HiggsBSM:gg2H2 = ".$_POST["35"]."\n";
1280fwrite($handle,$data);
1281}
1282if($_POST["36"] != "off")
1283{
1284$data = "HiggsBSM:gmgm2H2 = ".$_POST["36"]."\n";
1285fwrite($handle,$data);
1286}
1287if($_POST["37"] != "off")
1288{
1289$data = "HiggsBSM:ffbar2H2Z = ".$_POST["37"]."\n";
1290fwrite($handle,$data);
1291}
1292if($_POST["38"] != "off")
1293{
1294$data = "HiggsBSM:ffbar2H2W = ".$_POST["38"]."\n";
1295fwrite($handle,$data);
1296}
1297if($_POST["39"] != "off")
1298{
1299$data = "HiggsBSM:ff2H2ff(t:ZZ) = ".$_POST["39"]."\n";
1300fwrite($handle,$data);
1301}
1302if($_POST["40"] != "off")
1303{
1304$data = "HiggsBSM:ff2H2ff(t:WW) = ".$_POST["40"]."\n";
1305fwrite($handle,$data);
1306}
1307if($_POST["41"] != "off")
1308{
1309$data = "HiggsBSM:gg2H2ttbar = ".$_POST["41"]."\n";
1310fwrite($handle,$data);
1311}
1312if($_POST["42"] != "off")
1313{
1314$data = "HiggsBSM:qqbar2H2ttbar = ".$_POST["42"]."\n";
1315fwrite($handle,$data);
1316}
1317if($_POST["43"] != "off")
1318{
1319$data = "HiggsBSM:allA3 = ".$_POST["43"]."\n";
1320fwrite($handle,$data);
1321}
1322if($_POST["44"] != "off")
1323{
1324$data = "HiggsBSM:ffbar2A3 = ".$_POST["44"]."\n";
1325fwrite($handle,$data);
1326}
1327if($_POST["45"] != "off")
1328{
1329$data = "HiggsBSM:gg2A3 = ".$_POST["45"]."\n";
1330fwrite($handle,$data);
1331}
1332if($_POST["46"] != "off")
1333{
1334$data = "HiggsBSM:gmgm2A3 = ".$_POST["46"]."\n";
1335fwrite($handle,$data);
1336}
1337if($_POST["47"] != "off")
1338{
1339$data = "HiggsBSM:ffbar2A3Z = ".$_POST["47"]."\n";
1340fwrite($handle,$data);
1341}
1342if($_POST["48"] != "off")
1343{
1344$data = "HiggsBSM:ffbar2A3W = ".$_POST["48"]."\n";
1345fwrite($handle,$data);
1346}
1347if($_POST["49"] != "off")
1348{
1349$data = "HiggsBSM:ff2A3ff(t:ZZ) = ".$_POST["49"]."\n";
1350fwrite($handle,$data);
1351}
1352if($_POST["50"] != "off")
1353{
1354$data = "HiggsBSM:ff2A3ff(t:WW) = ".$_POST["50"]."\n";
1355fwrite($handle,$data);
1356}
1357if($_POST["51"] != "off")
1358{
1359$data = "HiggsBSM:gg2A3ttbar = ".$_POST["51"]."\n";
1360fwrite($handle,$data);
1361}
1362if($_POST["52"] != "off")
1363{
1364$data = "HiggsBSM:qqbar2A3ttbar = ".$_POST["52"]."\n";
1365fwrite($handle,$data);
1366}
1367if($_POST["53"] != "off")
1368{
1369$data = "HiggsBSM:allH+- = ".$_POST["53"]."\n";
1370fwrite($handle,$data);
1371}
1372if($_POST["54"] != "off")
1373{
1374$data = "HiggsBSM:ffbar2H+- = ".$_POST["54"]."\n";
1375fwrite($handle,$data);
1376}
1377if($_POST["55"] != "off")
1378{
1379$data = "HiggsBSM:bg2H+-t = ".$_POST["55"]."\n";
1380fwrite($handle,$data);
1381}
1382if($_POST["56"] != "off")
1383{
1384$data = "HiggsBSM:allHpair = ".$_POST["56"]."\n";
1385fwrite($handle,$data);
1386}
1387if($_POST["57"] != "off")
1388{
1389$data = "HiggsBSM:ffbar2A3H1 = ".$_POST["57"]."\n";
1390fwrite($handle,$data);
1391}
1392if($_POST["58"] != "off")
1393{
1394$data = "HiggsBSM:ffbar2A3H2 = ".$_POST["58"]."\n";
1395fwrite($handle,$data);
1396}
1397if($_POST["59"] != "off")
1398{
1399$data = "HiggsBSM:ffbar2H+-H1 = ".$_POST["59"]."\n";
1400fwrite($handle,$data);
1401}
1402if($_POST["60"] != "off")
1403{
1404$data = "HiggsBSM:ffbar2H+-H2 = ".$_POST["60"]."\n";
1405fwrite($handle,$data);
1406}
1407if($_POST["61"] != "off")
1408{
1409$data = "HiggsBSM:ffbar2H+H- = ".$_POST["61"]."\n";
1410fwrite($handle,$data);
1411}
1412if($_POST["62"] != "off")
1413{
1414$data = "HiggsBSM:qg2H1q = ".$_POST["62"]."\n";
1415fwrite($handle,$data);
1416}
1417if($_POST["63"] != "off")
1418{
1419$data = "HiggsBSM:gg2H1bbbar = ".$_POST["63"]."\n";
1420fwrite($handle,$data);
1421}
1422if($_POST["64"] != "off")
1423{
1424$data = "HiggsBSM:qqbar2H1bbbar = ".$_POST["64"]."\n";
1425fwrite($handle,$data);
1426}
1427if($_POST["65"] != "off")
1428{
1429$data = "HiggsBSM:gg2H1g(l:t) = ".$_POST["65"]."\n";
1430fwrite($handle,$data);
1431}
1432if($_POST["66"] != "off")
1433{
1434$data = "HiggsBSM:qg2H1q(l:t) = ".$_POST["66"]."\n";
1435fwrite($handle,$data);
1436}
1437if($_POST["67"] != "off")
1438{
1439$data = "HiggsBSM:qqbar2H1g(l:t) = ".$_POST["67"]."\n";
1440fwrite($handle,$data);
1441}
1442if($_POST["68"] != "off")
1443{
1444$data = "HiggsBSM:qg2H2q = ".$_POST["68"]."\n";
1445fwrite($handle,$data);
1446}
1447if($_POST["69"] != "off")
1448{
1449$data = "HiggsBSM:gg2H2bbbar = ".$_POST["69"]."\n";
1450fwrite($handle,$data);
1451}
1452if($_POST["70"] != "off")
1453{
1454$data = "HiggsBSM:qqbar2H2bbbar = ".$_POST["70"]."\n";
1455fwrite($handle,$data);
1456}
1457if($_POST["71"] != "off")
1458{
1459$data = "HiggsBSM:gg2H2g(l:t) = ".$_POST["71"]."\n";
1460fwrite($handle,$data);
1461}
1462if($_POST["72"] != "off")
1463{
1464$data = "HiggsBSM:qg2H2q(l:t) = ".$_POST["72"]."\n";
1465fwrite($handle,$data);
1466}
1467if($_POST["73"] != "off")
1468{
1469$data = "HiggsBSM:qqbar2H2g(l:t) = ".$_POST["73"]."\n";
1470fwrite($handle,$data);
1471}
1472if($_POST["74"] != "off")
1473{
1474$data = "HiggsBSM:qg2A3q = ".$_POST["74"]."\n";
1475fwrite($handle,$data);
1476}
1477if($_POST["75"] != "off")
1478{
1479$data = "HiggsBSM:gg2A3bbbar = ".$_POST["75"]."\n";
1480fwrite($handle,$data);
1481}
1482if($_POST["76"] != "off")
1483{
1484$data = "HiggsBSM:qqbar2A3bbbar = ".$_POST["76"]."\n";
1485fwrite($handle,$data);
1486}
1487if($_POST["77"] != "off")
1488{
1489$data = "HiggsBSM:gg2A3g(l:t) = ".$_POST["77"]."\n";
1490fwrite($handle,$data);
1491}
1492if($_POST["78"] != "off")
1493{
1494$data = "HiggsBSM:qg2A3q(l:t) = ".$_POST["78"]."\n";
1495fwrite($handle,$data);
1496}
1497if($_POST["79"] != "off")
1498{
1499$data = "HiggsBSM:qqbar2A3g(l:t) = ".$_POST["79"]."\n";
1500fwrite($handle,$data);
1501}
1502if($_POST["80"] != "1.")
1503{
1504$data = "HiggsH1:coup2d = ".$_POST["80"]."\n";
1505fwrite($handle,$data);
1506}
1507if($_POST["81"] != "1.")
1508{
1509$data = "HiggsH1:coup2u = ".$_POST["81"]."\n";
1510fwrite($handle,$data);
1511}
1512if($_POST["82"] != "1.")
1513{
1514$data = "HiggsH1:coup2l = ".$_POST["82"]."\n";
1515fwrite($handle,$data);
1516}
1517if($_POST["83"] != "1.")
1518{
1519$data = "HiggsH1:coup2Z = ".$_POST["83"]."\n";
1520fwrite($handle,$data);
1521}
1522if($_POST["84"] != "1.")
1523{
1524$data = "HiggsH1:coup2W = ".$_POST["84"]."\n";
1525fwrite($handle,$data);
1526}
1527if($_POST["85"] != "0.")
1528{
1529$data = "HiggsH1:coup2Hchg = ".$_POST["85"]."\n";
1530fwrite($handle,$data);
1531}
1532if($_POST["86"] != "1.")
1533{
1534$data = "HiggsH2:coup2d = ".$_POST["86"]."\n";
1535fwrite($handle,$data);
1536}
1537if($_POST["87"] != "1.")
1538{
1539$data = "HiggsH2:coup2u = ".$_POST["87"]."\n";
1540fwrite($handle,$data);
1541}
1542if($_POST["88"] != "1.")
1543{
1544$data = "HiggsH2:coup2l = ".$_POST["88"]."\n";
1545fwrite($handle,$data);
1546}
1547if($_POST["89"] != "1.")
1548{
1549$data = "HiggsH2:coup2Z = ".$_POST["89"]."\n";
1550fwrite($handle,$data);
1551}
1552if($_POST["90"] != "1.")
1553{
1554$data = "HiggsH2:coup2W = ".$_POST["90"]."\n";
1555fwrite($handle,$data);
1556}
1557if($_POST["91"] != "0.")
1558{
1559$data = "HiggsH2:coup2Hchg = ".$_POST["91"]."\n";
1560fwrite($handle,$data);
1561}
1562if($_POST["92"] != "1.")
1563{
1564$data = "HiggsH2:coup2H1H1 = ".$_POST["92"]."\n";
1565fwrite($handle,$data);
1566}
1567if($_POST["93"] != "1.")
1568{
1569$data = "HiggsH2:coup2A3A3 = ".$_POST["93"]."\n";
1570fwrite($handle,$data);
1571}
1572if($_POST["94"] != "0.")
1573{
1574$data = "HiggsH2:coup2H1Z = ".$_POST["94"]."\n";
1575fwrite($handle,$data);
1576}
1577if($_POST["95"] != "0.")
1578{
1579$data = "HiggsH2:coup2A3H1 = ".$_POST["95"]."\n";
1580fwrite($handle,$data);
1581}
1582if($_POST["96"] != "0.")
1583{
1584$data = "HiggsH2:coup2HchgW = ".$_POST["96"]."\n";
1585fwrite($handle,$data);
1586}
1587if($_POST["97"] != "1.")
1588{
1589$data = "HiggsA3:coup2d = ".$_POST["97"]."\n";
1590fwrite($handle,$data);
1591}
1592if($_POST["98"] != "1.")
1593{
1594$data = "HiggsA3:coup2u = ".$_POST["98"]."\n";
1595fwrite($handle,$data);
1596}
1597if($_POST["99"] != "1.")
1598{
1599$data = "HiggsA3:coup2l = ".$_POST["99"]."\n";
1600fwrite($handle,$data);
1601}
1602if($_POST["100"] != "1.")
1603{
1604$data = "HiggsA3:coup2H1Z = ".$_POST["100"]."\n";
1605fwrite($handle,$data);
1606}
1607if($_POST["101"] != "1.")
1608{
1609$data = "HiggsA3:coup2H2Z = ".$_POST["101"]."\n";
1610fwrite($handle,$data);
1611}
1612if($_POST["102"] != "0.")
1613{
1614$data = "HiggsA3:coup2Z = ".$_POST["102"]."\n";
1615fwrite($handle,$data);
1616}
1617if($_POST["103"] != "0.")
1618{
1619$data = "HiggsA3:coup2W = ".$_POST["103"]."\n";
1620fwrite($handle,$data);
1621}
1622if($_POST["104"] != "0.")
1623{
1624$data = "HiggsA3:coup2H1H1 = ".$_POST["104"]."\n";
1625fwrite($handle,$data);
1626}
1627if($_POST["105"] != "0.")
1628{
1629$data = "HiggsA3:coup2Hchg = ".$_POST["105"]."\n";
1630fwrite($handle,$data);
1631}
1632if($_POST["106"] != "1.")
1633{
1634$data = "HiggsA3:coup2HchgW = ".$_POST["106"]."\n";
1635fwrite($handle,$data);
1636}
1637if($_POST["107"] != "5.")
1638{
1639$data = "HiggsHchg:tanBeta = ".$_POST["107"]."\n";
1640fwrite($handle,$data);
1641}
1642if($_POST["108"] != "1.")
1643{
1644$data = "HiggsHchg:coup2H1W = ".$_POST["108"]."\n";
1645fwrite($handle,$data);
1646}
1647if($_POST["109"] != "0.")
1648{
1649$data = "HiggsHchg:coup2H2W = ".$_POST["109"]."\n";
1650fwrite($handle,$data);
1651}
1652if($_POST["110"] != "1")
1653{
1654$data = "HiggsH1:parity = ".$_POST["110"]."\n";
1655fwrite($handle,$data);
1656}
1657if($_POST["111"] != "0.")
1658{
1659$data = "HiggsH1:etaParity = ".$_POST["111"]."\n";
1660fwrite($handle,$data);
1661}
1662if($_POST["112"] != "1")
1663{
1664$data = "HiggsH2:parity = ".$_POST["112"]."\n";
1665fwrite($handle,$data);
1666}
1667if($_POST["113"] != "0.")
1668{
1669$data = "HiggsH2:etaParity = ".$_POST["113"]."\n";
1670fwrite($handle,$data);
1671}
1672if($_POST["114"] != "2")
1673{
1674$data = "HiggsA3:parity = ".$_POST["114"]."\n";
1675fwrite($handle,$data);
1676}
1677if($_POST["115"] != "0.")
1678{
1679$data = "HiggsA3:etaParity = ".$_POST["115"]."\n";
1680fwrite($handle,$data);
1681}
1682fclose($handle);
1683}
1684
1685?>
1686</body>
1687</html>
1688
1689<!-- Copyright (C) 2012 Torbjorn Sjostrand -->
1690
Note: See TracBrowser for help on using the repository browser.