source: HiSusy/trunk/Pythia8/pythia8170/phpdoc/NewGaugeBosonProcesses.php @ 1

Last change on this file since 1 was 1, checked in by zerwas, 11 years ago

first import of structure, PYTHIA8 and DELPHES

File size: 23.3 KB
Line 
1<html>
2<head>
3<title>New-Gauge-Boson Processes</title>
4<link rel="stylesheet" type="text/css" href="pythia.css"/>
5<link rel="shortcut icon" href="pythia32.gif"/>
6</head>
7<body>
8
9<script language=javascript type=text/javascript>
10function stopRKey(evt) {
11var evt = (evt) ? evt : ((event) ? event : null);
12var node = (evt.target) ? evt.target :((evt.srcElement) ? evt.srcElement : null);
13if ((evt.keyCode == 13) && (node.type=="text"))
14{return false;}
15}
16
17document.onkeypress = stopRKey;
18</script>
19<?php
20if($_POST['saved'] == 1) {
21if($_POST['filepath'] != "files/") {
22echo "<font color='red'>SETTINGS SAVED TO FILE</font><br/><br/>"; }
23else {
24echo "<font color='red'>NO FILE SELECTED YET.. PLEASE DO SO </font><a href='SaveSettings.php'>HERE</a><br/><br/>"; }
25}
26?>
27
28<form method='post' action='NewGaugeBosonProcesses.php'>
29
30<h2>New-Gauge-Boson Processes</h2>
31
32This page contains the production of new <i>Z'^0</i> and
33<i>W'^+-</i> gauge bosons, e.g. within the context of a new
34<i>U(1)</i> or <i>SU(2)</i> gauge group, and also a
35(rather speculative) horizontal gauge boson <i>R^0</i>.
36Left-right-symmetry scenarios also contain new gauge bosons,
37but are described
38<?php $filepath = $_GET["filepath"];
39echo "<a href='LeftRightSymmetryProcesses.php?filepath=".$filepath."' target='page'>";?>separately</a>.
40 
41<h3><i>Z'^0</i></h3>
42 
43This group only contains one subprocess, with the full
44<i>gamma^*/Z^0/Z'^0</i> interference structure for couplings
45to fermion pairs. It is possible to pick only a subset, e.g, only
46the pure <i>Z'^0</i> piece. No higher-order processes are
47available explicitly, but the ISR showers contain automatic
48matching to the <i>Z'^0</i> + 1 jet matrix elements, as for
49the corresponding <i>gamma^*/Z^0</i> process.
50 
51<br/><br/><strong>NewGaugeBoson:ffbar2gmZZprime</strong>  <input type="radio" name="1" value="on"><strong>On</strong>
52<input type="radio" name="1" value="off" checked="checked"><strong>Off</strong>
53 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
54Scattering <i>f fbar ->Z'^0</i>.
55Code 3001.
56 
57
58<br/><br/><table><tr><td><strong>Zprime:gmZmode </td><td>  &nbsp;&nbsp;(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 6</code>)</td></tr></table>
59Choice of full <ei>gamma^*/Z^0/Z'^0</ei> structure or not in
60the above process. Note that, with the <ei>Z'^0</ei> part switched
61off, this process is reduced to what already exists among
62<aloc href="ElectroweakProcesses">electroweak processes</aloc>,
63so those options are here only for crosschecks.
64<br/>
65<input type="radio" name="2" value="0" checked="checked"><strong>0 </strong>: full <ei>gamma^*/Z^0/Z'^0</ei> structure, with interference included.<br/>
66<input type="radio" name="2" value="1"><strong>1 </strong>: only pure <ei>gamma^*</ei> contribution.<br/>
67<input type="radio" name="2" value="2"><strong>2 </strong>: only pure <ei>Z^0</ei> contribution.<br/>
68<input type="radio" name="2" value="3"><strong>3 </strong>: only pure <ei>Z'^0</ei> contribution.<br/>
69<input type="radio" name="2" value="4"><strong>4 </strong>: only the <ei>gamma^*/Z^0</ei> contribution, including interference.<br/>
70<input type="radio" name="2" value="5"><strong>5 </strong>: only the <ei>gamma^*/Z'^0</ei> contribution, including interference.<br/>
71<input type="radio" name="2" value="6"><strong>6 </strong>: only the <ei>Z^0/Z'^0</ei> contribution, including interference.<br/>
72<br/><b>Note</b>: irrespective of the option used, the particle produced
73will always be assigned code 32 for <ei>Z'^0</ei>, and open decay channels
74is purely dictated by what is set for the <ei>Z'^0</ei>.
75
76<p/>
77The couplings of the <i>Z'^0</i> to quarks and leptons can
78either be assumed universal, i.e. generation-independent, or not.
79In the former case eight numbers parametrize the vector and axial
80couplings of down-type quarks, up-type quarks, leptons and neutrinos,
81respectively. Depending on your assumed neutrino nature you may
82want to restrict your freedom in that sector, but no limitations
83are enforced by the program. The default corresponds to the same
84couplings as that of the Standard Model <i>Z^0</i>, with axial
85couplings <i>a_f = +-1</i> and vector couplings
86<i>v_f = a_f - 4 e_f sin^2(theta_W)</i>, with
87<i>sin^2(theta_W) = 0.23</i>. Without universality
88the same eight numbers have to be set separately also for the
89second and the third generation. The choice of fixed axial and
90vector couplings implies a resonance width that increases linearly
91with the <i>Z'^0</i> mass.
92
93<p/>
94By a suitable choice of the parameters, it is possible to simulate
95just about any imaginable <i>Z'^0</i> scenario, with full
96interference effects in cross sections and decay angular
97distributions and generation-dependent couplings; the default values
98should mainly be viewed as placeholders. The conversion
99from the coupling conventions in a set of different <i>Z'^0</i>
100models in the literature to those used in PYTHIA is described by
101<a href="http://www.hep.uiuc.edu/home/catutza/nota12.ps">C.
102Ciobanu et al.</a>
103
104<br/><br/><strong>Zprime:universality</strong>  <input type="radio" name="3" value="on" checked="checked"><strong>On</strong>
105<input type="radio" name="3" value="off"><strong>Off</strong>
106 &nbsp;&nbsp;(<code>default = <strong>on</strong></code>)<br/>
107If on then you need only set the first-generation couplings
108below, and these are automatically also used for the second and
109third generation. If off, then couplings can be chosen separately
110for each generation.
111 
112
113<p/>
114Here are the couplings always valid for the first generation,
115and normally also for the second and third by trivial analogy:
116
117<br/><br/><table><tr><td><strong>Zprime:vd </td><td></td><td> <input type="text" name="4" value="-0.693" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.693</strong></code>)</td></tr></table>
118vector coupling of <i>d</i> quarks.
119 
120
121<br/><br/><table><tr><td><strong>Zprime:ad </td><td></td><td> <input type="text" name="5" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
122axial coupling of <i>d</i> quarks.
123 
124
125<br/><br/><table><tr><td><strong>Zprime:vu </td><td></td><td> <input type="text" name="6" value="0.387" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.387</strong></code>)</td></tr></table>
126vector coupling of <i>u</i> quarks.
127 
128
129<br/><br/><table><tr><td><strong>Zprime:au </td><td></td><td> <input type="text" name="7" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
130axial coupling of <i>u</i> quarks.
131 
132
133<br/><br/><table><tr><td><strong>Zprime:ve </td><td></td><td> <input type="text" name="8" value="-0.08" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.08</strong></code>)</td></tr></table>
134vector coupling of <i>e</i> leptons.
135 
136
137<br/><br/><table><tr><td><strong>Zprime:ae </td><td></td><td> <input type="text" name="9" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
138axial coupling of <i>e</i> leptons.
139 
140
141<br/><br/><table><tr><td><strong>Zprime:vnue </td><td></td><td> <input type="text" name="10" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
142vector coupling of <i>nu_e</i> neutrinos.
143 
144
145<br/><br/><table><tr><td><strong>Zprime:anue </td><td></td><td> <input type="text" name="11" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
146axial coupling of <i>nu_e</i> neutrinos.
147 
148
149<p/>
150Here are the further couplings that are specific for
151a scenario with <code>Zprime:universality</code> swiched off:
152
153<br/><br/><table><tr><td><strong>Zprime:vs </td><td></td><td> <input type="text" name="12" value="-0.693" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.693</strong></code>)</td></tr></table>
154vector coupling of <i>s</i> quarks.
155 
156
157<br/><br/><table><tr><td><strong>Zprime:as </td><td></td><td> <input type="text" name="13" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
158axial coupling of <i>s</i> quarks.
159 
160
161<br/><br/><table><tr><td><strong>Zprime:vc </td><td></td><td> <input type="text" name="14" value="0.387" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.387</strong></code>)</td></tr></table>
162vector coupling of <i>c</i> quarks.
163 
164
165<br/><br/><table><tr><td><strong>Zprime:ac </td><td></td><td> <input type="text" name="15" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
166axial coupling of <i>c</i> quarks.
167 
168
169<br/><br/><table><tr><td><strong>Zprime:vmu </td><td></td><td> <input type="text" name="16" value="-0.08" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.08</strong></code>)</td></tr></table>
170vector coupling of <i>mu</i> leptons.
171 
172
173<br/><br/><table><tr><td><strong>Zprime:amu </td><td></td><td> <input type="text" name="17" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
174axial coupling of <i>mu</i> leptons.
175 
176
177<br/><br/><table><tr><td><strong>Zprime:vnumu </td><td></td><td> <input type="text" name="18" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
178vector coupling of <i>nu_mu</i> neutrinos.
179 
180
181<br/><br/><table><tr><td><strong>Zprime:anumu </td><td></td><td> <input type="text" name="19" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
182axial coupling of <i>nu_mu</i> neutrinos.
183 
184
185<br/><br/><table><tr><td><strong>Zprime:vb </td><td></td><td> <input type="text" name="20" value="-0.693" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.693</strong></code>)</td></tr></table>
186vector coupling of <i>b</i> quarks.
187 
188
189<br/><br/><table><tr><td><strong>Zprime:ab </td><td></td><td> <input type="text" name="21" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
190axial coupling of <i>b</i> quarks.
191 
192
193<br/><br/><table><tr><td><strong>Zprime:vt </td><td></td><td> <input type="text" name="22" value="0.387" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.387</strong></code>)</td></tr></table>
194vector coupling of <i>t</i> quarks.
195 
196
197<br/><br/><table><tr><td><strong>Zprime:at </td><td></td><td> <input type="text" name="23" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
198axial coupling of <i>t</i> quarks.
199 
200
201<br/><br/><table><tr><td><strong>Zprime:vtau </td><td></td><td> <input type="text" name="24" value="-0.08" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.08</strong></code>)</td></tr></table>
202vector coupling of <i>tau</i> leptons.
203 
204
205<br/><br/><table><tr><td><strong>Zprime:atau </td><td></td><td> <input type="text" name="25" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
206axial coupling of <i>tau</i> leptons.
207 
208
209<br/><br/><table><tr><td><strong>Zprime:vnutau </td><td></td><td> <input type="text" name="26" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
210vector coupling of <i>nu_tau</i> neutrinos.
211 
212
213<br/><br/><table><tr><td><strong>Zprime:anutau </td><td></td><td> <input type="text" name="27" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
214axial coupling of <i>nu_tau</i> neutrinos.
215 
216
217<p/>
218The coupling to the decay channel <i>Z'^0 -> W^+ W^-</i> is
219more model-dependent. By default it is therefore off, but can be
220switched on as follows. Furthermore, we have left some amount of
221freedom in the choice of decay angular correlations in this
222channel, but obviously alternative shapes could be imagined.
223
224<br/><br/><table><tr><td><strong>Zprime:coup2WW </td><td></td><td> <input type="text" name="28" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
225the coupling <i>Z'^0 -> W^+ W^-</i> is taken to be this number
226times <i>m_W^2 / m_Z'^2</i> times the <i>Z^0 -> W^+ W^-</i>
227coupling. Thus a unit value corresponds to the
228<i>Z^0 -> W^+ W^-</i> coupling, scaled down by a factor
229<i>m_W^2 / m_Z'^2</i>, and gives a <i>Z'^0</i> partial
230width into this channel that again increases linearly. If you
231cancel this behaviour, by letting <code>Zprime:coup2WW</code> be
232proportional to <i>m_Z'^2 / m_W^2</i>, you instead obtain a
233partial width that goes like the fifth power of the <i>Z'^0</i>
234mass. These two extremes correspond to the "extended gauge model"
235and the "reference model", respectively, of [<a href="Bibliography.php" target="page">Alt89</a>].
236Note that this channel only includes the pure <i>Z'</i> part,
237while <i>f fbar -> gamma^*/Z^*0 -> W^+ W^-</i> is available
238as a separate electroweak process.
239 
240
241<br/><br/><table><tr><td><strong>Zprime:anglesWW </td><td></td><td> <input type="text" name="29" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)</td></tr></table>
242in the decay chain <i>Z'^0 -> W^+ W^- ->f_1 fbar_2 f_3 fbar_4</i>
243the decay angular distributions is taken to be a mixture of two
244possible shapes. This parameter gives the fraction that is distributed
245as in Higgs <i>h^0 -> W^+ W^-</i> (longitudinal bosons),
246with the remainder (by default all) is taken to be the same as for
247<i>Z^0 -> W^+ W^-</i> (a mixture of transverse and longitudinal
248bosons).   
249 
250
251<p/>
252A massive <i>Z'^0</i> is also likely to decay into Higgses
253and potentially into other now unknown particles. Such possibilities
254clearly are quite model-dependent, and have not been included
255for now.
256
257<h3><i>W'^+-</i></h3>
258 
259The <i>W'^+-</i> implementation is less ambitious than the
260<i>Z'^0</i>. Specifically, while indirect detection of a
261<i>Z'^0</i> through its interference contribution is
262a possible discovery channel in lepton colliders, there is no
263equally compelling case for <i>W^+-/W'^+-</i> interference
264effects being of importance for discovery, and such interference
265has therefore not been implemented for now. Related to this, a
266<i>Z'^0</i> could appear on its own in a new <i>U(1)</i> group,
267while <i>W'^+-</i> would have to sit in a <i>SU(2)</i> group
268and thus have a <i>Z'^0</i> partner that is likely to be found
269first. Only one process is implemented but, like for the
270<i>W^+-</i>, the ISR showers contain automatic matching to the
271<i>W'^+-</i> + 1 jet matrix elements.
272
273<br/><br/><strong>NewGaugeBoson:ffbar2Wprime</strong>  <input type="radio" name="30" value="on"><strong>On</strong>
274<input type="radio" name="30" value="off" checked="checked"><strong>Off</strong>
275 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
276Scattering <i>f fbar' -> W'^+-</i>.
277Code 3021.
278 
279
280<p/>
281The couplings of the <i>W'^+-</i> are here assumed universal,
282i.e. the same for all generations. One may set vector and axial
283couplings freely, separately for the <i>q qbar'</i> and the
284<i>l nu_l</i> decay channels. The defaults correspond to the
285<i>V - A</i> structure and normalization of the Standard Model
286<i>W^+-</i>, but can be changed to simulate a wide selection
287of models. One limitation is that, for simplicity, the same
288Cabibbo--Kobayashi--Maskawa quark mixing matrix is assumed as for
289the standard <i>W^+-</i>. Depending on your assumed neutrino
290nature you may want to restrict your freedom in the lepton sector,
291but no limitations are enforced by the program.
292
293<br/><br/><table><tr><td><strong>Wprime:vq </td><td></td><td> <input type="text" name="31" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
294vector coupling of quarks.
295 
296
297<br/><br/><table><tr><td><strong>Wprime:aq </td><td></td><td> <input type="text" name="32" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
298axial coupling of quarks.
299 
300
301<br/><br/><table><tr><td><strong>Wprime:vl </td><td></td><td> <input type="text" name="33" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
302vector coupling of leptons.
303 
304
305<br/><br/><table><tr><td><strong>Wprime:al </td><td></td><td> <input type="text" name="34" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
306axial coupling of leptons.
307 
308
309<p/>
310The coupling to the decay channel <i>W'^+- -> W^+- Z^0</i> is
311more model-dependent, like for <i>Z'^0 -> W^+ W^-</i> described
312above. By default it is therefore off, but can be
313switched on as follows. Furthermore, we have left some amount of
314freedom in the choice of decay angular correlations in this
315channel, but obviously alternative shapes could be imagined.
316
317<br/><br/><table><tr><td><strong>Wprime:coup2WZ </td><td></td><td> <input type="text" name="35" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
318the coupling <i>W'^0 -> W^+- Z^0</i> is taken to be this number
319times <i>m_W^2 / m_W'^2</i> times the <i>W^+- -> W^+- Z^0</i>
320coupling. Thus a unit value corresponds to the
321<i>W^+- -> W^+- Z^0</i> coupling, scaled down by a factor
322<i>m_W^2 / m_W'^2</i>, and gives a <i>W'^+-</i> partial
323width into this channel that increases linearly with the
324<i>W'^+-</i> mass. If you cancel this behaviour, by letting
325<code>Wprime:coup2WZ</code> be proportional to <i>m_W'^2 / m_W^2</i>,
326you instead obtain a partial width that goes like the fifth power
327of the <i>W'^+-</i> mass. These two extremes correspond to the
328"extended gauge model" and the "reference model", respectively,
329of [<a href="Bibliography.php" target="page">Alt89</a>].
330 
331
332<br/><br/><table><tr><td><strong>Wprime:anglesWZ </td><td></td><td> <input type="text" name="36" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)</td></tr></table>
333in the decay chain <i>W'^+- -> W^+- Z^0 ->f_1 fbar_2 f_3 fbar_4</i>
334the decay angular distributions is taken to be a mixture of two
335possible shapes. This parameter gives the fraction that is distributed
336as in Higgs <i>H^+- -> W^+- Z^0</i> (longitudinal bosons),
337with the remainder (by default all) is taken to be the same as for
338<i>W^+- -> W^+- Z^0</i> (a mixture of transverse and longitudinal
339bosons).   
340 
341
342<p/>
343A massive <i>W'^+-</i> is also likely to decay into Higgses
344and potentially into other now unknown particles. Such possibilities
345clearly are quite model-dependent, and have not been included
346for now.
347
348<h3><i>R^0</i></h3>
349 
350The <i>R^0</i> boson (particle code 41) represents one possible
351scenario for a horizontal gauge boson, i.e. a gauge boson
352that couples between the generations, inducing processes like
353<i>s dbar -> R^0 -> mu^- e^+</i>. Experimental limits on
354flavour-changing neutral currents forces such a boson to be fairly
355heavy. In spite of being neutral the antiparticle is distinct from
356the particle: one carries a net positive generation number and
357the other a negative one. This particular model has no new
358parameters beyond the <i>R^0</i> mass. Decays are assumed isotropic. 
359For further details see [<a href="Bibliography.php" target="page">Ben85</a>].
360 
361<br/><br/><strong>NewGaugeBoson:ffbar2R0</strong>  <input type="radio" name="37" value="on"><strong>On</strong>
362<input type="radio" name="37" value="off" checked="checked"><strong>Off</strong>
363 &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
364Scattering <i>f_1 fbar_2 -> R^0 -> f_3 fbar_4</i>, where
365<i>f_1</i> and <i>fbar_2</i> are separated by <i>+-</i> one
366generation and similarly for <i>f_3</i> and <i>fbar_4</i>.
367Thus possible final states are e.g. <i>d sbar</i>, <i>u cbar</i>
368<i>s bbar</i>, <i>c tbar</i>, <i>e- mu+</i> and
369<i>mu- tau+</i>.
370Code 3041.
371 
372
373<input type="hidden" name="saved" value="1"/>
374
375<?php
376echo "<input type='hidden' name='filepath' value='".$_GET["filepath"]."'/>"?>
377
378<table width="100%"><tr><td align="right"><input type="submit" value="Save Settings" /></td></tr></table>
379</form>
380
381<?php
382
383if($_POST["saved"] == 1)
384{
385$filepath = $_POST["filepath"];
386$handle = fopen($filepath, 'a');
387
388if($_POST["1"] != "off")
389{
390$data = "NewGaugeBoson:ffbar2gmZZprime = ".$_POST["1"]."\n";
391fwrite($handle,$data);
392}
393if($_POST["2"] != "0")
394{
395$data = "Zprime:gmZmode = ".$_POST["2"]."\n";
396fwrite($handle,$data);
397}
398if($_POST["3"] != "on")
399{
400$data = "Zprime:universality = ".$_POST["3"]."\n";
401fwrite($handle,$data);
402}
403if($_POST["4"] != "-0.693")
404{
405$data = "Zprime:vd = ".$_POST["4"]."\n";
406fwrite($handle,$data);
407}
408if($_POST["5"] != "-1.")
409{
410$data = "Zprime:ad = ".$_POST["5"]."\n";
411fwrite($handle,$data);
412}
413if($_POST["6"] != "0.387")
414{
415$data = "Zprime:vu = ".$_POST["6"]."\n";
416fwrite($handle,$data);
417}
418if($_POST["7"] != "1.")
419{
420$data = "Zprime:au = ".$_POST["7"]."\n";
421fwrite($handle,$data);
422}
423if($_POST["8"] != "-0.08")
424{
425$data = "Zprime:ve = ".$_POST["8"]."\n";
426fwrite($handle,$data);
427}
428if($_POST["9"] != "-1.")
429{
430$data = "Zprime:ae = ".$_POST["9"]."\n";
431fwrite($handle,$data);
432}
433if($_POST["10"] != "1.")
434{
435$data = "Zprime:vnue = ".$_POST["10"]."\n";
436fwrite($handle,$data);
437}
438if($_POST["11"] != "1.")
439{
440$data = "Zprime:anue = ".$_POST["11"]."\n";
441fwrite($handle,$data);
442}
443if($_POST["12"] != "-0.693")
444{
445$data = "Zprime:vs = ".$_POST["12"]."\n";
446fwrite($handle,$data);
447}
448if($_POST["13"] != "-1.")
449{
450$data = "Zprime:as = ".$_POST["13"]."\n";
451fwrite($handle,$data);
452}
453if($_POST["14"] != "0.387")
454{
455$data = "Zprime:vc = ".$_POST["14"]."\n";
456fwrite($handle,$data);
457}
458if($_POST["15"] != "1.")
459{
460$data = "Zprime:ac = ".$_POST["15"]."\n";
461fwrite($handle,$data);
462}
463if($_POST["16"] != "-0.08")
464{
465$data = "Zprime:vmu = ".$_POST["16"]."\n";
466fwrite($handle,$data);
467}
468if($_POST["17"] != "-1.")
469{
470$data = "Zprime:amu = ".$_POST["17"]."\n";
471fwrite($handle,$data);
472}
473if($_POST["18"] != "1.")
474{
475$data = "Zprime:vnumu = ".$_POST["18"]."\n";
476fwrite($handle,$data);
477}
478if($_POST["19"] != "1.")
479{
480$data = "Zprime:anumu = ".$_POST["19"]."\n";
481fwrite($handle,$data);
482}
483if($_POST["20"] != "-0.693")
484{
485$data = "Zprime:vb = ".$_POST["20"]."\n";
486fwrite($handle,$data);
487}
488if($_POST["21"] != "-1.")
489{
490$data = "Zprime:ab = ".$_POST["21"]."\n";
491fwrite($handle,$data);
492}
493if($_POST["22"] != "0.387")
494{
495$data = "Zprime:vt = ".$_POST["22"]."\n";
496fwrite($handle,$data);
497}
498if($_POST["23"] != "1.")
499{
500$data = "Zprime:at = ".$_POST["23"]."\n";
501fwrite($handle,$data);
502}
503if($_POST["24"] != "-0.08")
504{
505$data = "Zprime:vtau = ".$_POST["24"]."\n";
506fwrite($handle,$data);
507}
508if($_POST["25"] != "-1.")
509{
510$data = "Zprime:atau = ".$_POST["25"]."\n";
511fwrite($handle,$data);
512}
513if($_POST["26"] != "1.")
514{
515$data = "Zprime:vnutau = ".$_POST["26"]."\n";
516fwrite($handle,$data);
517}
518if($_POST["27"] != "1.")
519{
520$data = "Zprime:anutau = ".$_POST["27"]."\n";
521fwrite($handle,$data);
522}
523if($_POST["28"] != "0.")
524{
525$data = "Zprime:coup2WW = ".$_POST["28"]."\n";
526fwrite($handle,$data);
527}
528if($_POST["29"] != "0.")
529{
530$data = "Zprime:anglesWW = ".$_POST["29"]."\n";
531fwrite($handle,$data);
532}
533if($_POST["30"] != "off")
534{
535$data = "NewGaugeBoson:ffbar2Wprime = ".$_POST["30"]."\n";
536fwrite($handle,$data);
537}
538if($_POST["31"] != "1.")
539{
540$data = "Wprime:vq = ".$_POST["31"]."\n";
541fwrite($handle,$data);
542}
543if($_POST["32"] != "-1.")
544{
545$data = "Wprime:aq = ".$_POST["32"]."\n";
546fwrite($handle,$data);
547}
548if($_POST["33"] != "1.")
549{
550$data = "Wprime:vl = ".$_POST["33"]."\n";
551fwrite($handle,$data);
552}
553if($_POST["34"] != "-1.")
554{
555$data = "Wprime:al = ".$_POST["34"]."\n";
556fwrite($handle,$data);
557}
558if($_POST["35"] != "0.")
559{
560$data = "Wprime:coup2WZ = ".$_POST["35"]."\n";
561fwrite($handle,$data);
562}
563if($_POST["36"] != "0.")
564{
565$data = "Wprime:anglesWZ = ".$_POST["36"]."\n";
566fwrite($handle,$data);
567}
568if($_POST["37"] != "off")
569{
570$data = "NewGaugeBoson:ffbar2R0 = ".$_POST["37"]."\n";
571fwrite($handle,$data);
572}
573fclose($handle);
574}
575
576?>
577</body>
578</html>
579
580<!-- Copyright (C) 2012 Torbjorn Sjostrand -->
581
Note: See TracBrowser for help on using the repository browser.