source: HiSusy/trunk/Pythia8/pythia8170/xmldoc/HiddenValleyProcesses.xml @ 1

Last change on this file since 1 was 1, checked in by zerwas, 11 years ago

first import of structure, PYTHIA8 and DELPHES

File size: 21.5 KB
Line 
1<chapter name="Hidden Valley Processes">
2
3<h2>Hidden Valley Processes</h2>
4
5This Hidden Valley (HV) scenario has been developed specifically
6to allow the study of visible consequences of radiation in a
7hidden sector, by recoil effect. A key aspect is therefore that
8the normal timelike showering machinery has been expanded with a
9third kind of radiation, in addition to the QCD and QED ones.
10These three kinds of radiation are fully interleaved, i.e.
11evolution occurs in a common <ei>pT</ei>-ordered sequence.
12The scenario is described in <ref>Car10</ref>. Furthermore
13hadronization in the hidden sector has been implemented.
14Three main scenarios for production into and decay out of the
15hidden sector can be compared, in each case either for an
16Abelian or a non-Abelian gauge group in the HV. For further details
17see <ref>Car11</ref>.
18
19<h3>Particle content and properties</h3>
20
21For simplicity we assume that the HV contains an unbroken <b>SU(N)</b> 
22gauge symmetry. This is used in the calculation of production cross
23sections. These could be rescaled by hand for other gauge groups.
24 
25<modeopen name="HiddenValley:Ngauge" default="3" min="1">
26is <b>U(1)</b> for <code>Ngauge = 1</code>, is <b>SU(N)</b> if
27<code>Ngauge &gt; 1</code>. Note that pair production cross sections
28contains a factor of <code>Ngauge</code> for new particles
29in the fundamental representation of this group.
30</modeopen>
31
32<p/>
33A minimal HV particle content has been introduced. Firstly, there is
34a set of 12 particles that mirrors the Standard Model flavour
35structure, and is charged under both the SM and the HV symmetry groups.
36Each new particle couples flavour-diagonally to a corresponding SM
37state, and has the same SM charge and colour, but in addition is in
38the fundamental representation of the HV colour, as follows:
39<br/><code>Dv</code>, identity 4900001, partner to the normal
40<code>d</code> quark;
41<br/><code>Uv</code>, identity 4900002, partner to the normal
42<code>u</code> quark;
43<br/><code>Sv</code>, identity 4900003, partner to the normal
44<code>s</code> quark;
45<br/><code>Cv</code>, identity 4900004, partner to the normal
46<code>c</code> quark;
47<br/><code>Bv</code>, identity 4900005, partner to the normal
48<code>b</code> quark;
49<br/><code>Tv</code>, identity 4900006, partner to the normal
50<code>t</code> quark;
51<br/><code>Ev</code>, identity 4900011, partner to the normal
52<code>e</code> lepton;
53<br/><code>nuEv</code>, identity 4900012, partner to the normal
54<code>nue</code> neutrino;
55<br/><code>MUv</code>, identity 4900013, partner to the normal
56<code>mu</code> lepton;
57<br/><code>nuMUv</code>, identity 4900014, partner to the normal
58<code>numu</code> neutrino;
59<br/><code>TAUv</code>, identity 4900015, partner to the normal
60<code>tau</code> lepton;
61<br/><code>nuTAUv</code>, identity 4900016, partner to the normal
62<code>nutau</code> neutrino.
63<br/>Collectively we will refer to these states as <code>Fv</code>;
64note, however, that they need not be fermions themselves.
65
66<p/>
67In addition the model contains the HV gauge particle, either
68a HV-gluon or a HV-photon, but not both; see <code>Ngauge</code>
69above:
70<br/><code>gv</code>, identity 4900021, is the massless
71gauge boson of the HV <b>SU(N)</b> group;
72<br/><code>gammav</code>, identity 4900022,  is the massless
73gauge boson of the HV <b>U(1)</b> group.
74
75<p/>
76Finally, for the basic HV scenario, there is a new massive particle
77with only HV charge sitting in the fundamental representation of the
78HV gauge group:
79<br/><code>qv</code>, identity 4900101.
80
81<p/>The typical scenario would be for pair production of one of the
82states presented first above, e.g. <ei>g g -> Dv Dvbar</ei>.
83Such a <ei>Dv</ei> can radiate gluons and photons like an SM quark,
84but in addition HV-gluons or HV-photons in a similar fashion.
85Eventually the <ei>Dv</ei> will decay like <ei>Dv -> d + qv</ei>.
86The strength of this decay is not set as such, but is implicit in
87your choice of width for the <ei>Dv</ei> state. Thereafter the
88<ei>d</ei> and <ei>qv</ei> can radiate further within their
89respective sectors. The <ei>qv</ei>, <ei>gv</ei> or <ei>gammav</ei> 
90are invisible, so their fate need not be considered further.
91
92<p/>
93While not part of the standard scenario, as an alternative there is
94also a kind of <ei>Z'</ei> resonance:
95<br/><code>Zv</code>, identity 4900023, a boson that can couple 
96both to pairs of Standard Model fermions and to <ei>qv qvbar</ei>
97pairs. Mass, total width and branching ratios can be set as convenient.
98<br/>This opens up for alternative processes
99<ei>l^+l^-, q qbar -> Zv -> qv qvbar</ei>.   
100
101<p/>
102The possibility of a leakage back from the hidden sector will be
103considered in the Hadronization section below. For the <b>U(1)</b>
104case the <ei>gammav</ei> acquires a mass and can decay back to a
105Standard-Model fermion pair, while the <ei>qv</ei> remains invisible.
106The <b>SU(N)</b> alternative remains unbroken, so confinement holds
107and the <ei>gv</ei> is massless. A string like
108<ei>qv - gv - ... - gv - qvbar</ei> can break by the production of
109new <ei>qv - qvbar</ei> pairs, which will produce <ei>qv-qvbar</ei>
110mesons. It would be possible to build a rather sophisticated hidden
111sector by trivial extensions of the HV flavour content. For now,
112however, the <ei>qv</ei> can be duplicated in up to eight copies
113with the same properties except for the flavour charge. These are
114assigned codes 4900101 - 4900108. This gives a total of 64 possible
115lowest-lying mesons. We also include a duplication of that, into two
116multiplets, corrsesponding to the pseudoscalar and vector mesons of
117QCD. For now, again, these are assumed to have the same mass and
118other properties. Only the flavour-diagonal ones can decay back into
119the Standard-Model sector, however, while the rest remains in the
120hidden sector. It is therefore only necessary to distinguish a few
121states:
122<br/><code>pivDiag</code>, identity 4900111, a flavour-diagonal
123HV-meson with spin 0 that can decay back into the Standard-Model sector;
124<br/><code>rhovDiag</code>, identity 4900113, a flavour-diagonal
125HV-meson with spin 1 that can decay back into the Standard-Model sector;
126<br/><code>pivUp</code>, identity 4900211, an off-diagonal
127HV-meson with spin 0 that is stable and invisible, with an antiparticle
128<code>pivDn</code> with identity -4900211; the particle is
129the one where the code of the flavour is larger than that of the
130antiflavour;
131<br/><code>rhovUp</code>, identity 4900213, an off-diagonal
132HV-meson with spin 1 that is stable and invisible, with an antiparticle
133<code>rhovDn</code> with identity -4900213; again the particle is
134the one where the code of the flavour is larger than that of the
135antiflavour;
136<br/><code>ggv</code>, identity 4900991, is only rarely used,
137to handle cases where it is kinematically impossible to produce an
138HV-meson on shell, and it therefore is assumed to de-excite by the
139emission of invisible <ei>gv-gv </ei> v-glueball bound states.
140
141<p/>
142Only the spin of the HV-gluon or HV-photon is determined unambiguously
143to be unity, for the others you can make your choice.
144 
145<modepick name="HiddenValley:spinFv" default="1" min="0" max="2">
146The spin of the HV partners of the SM fermions, e.g.
147<ei>Dv</ei>, <ei>Uv</ei>, <ei>Ev</ei> and <ei>nuEv</ei>.
148<option value="0">spin 0.</option>
149<option value="1">spin 1/2.</option>
150<option value="2">spin 1.</option> 
151</modepick>
152 
153<modepick name="HiddenValley:spinqv" default="0" min="0" max="1">
154The spin of <ei>qv</ei> when the <ei>Fv</ei> (the HV partners of
155the SM fermions) have spin 1/2. (While, if they have spin 0 or 1,
156the <ei>qv</ei> spin is fixed at 1/2.)
157<option value="0">spin 0.</option>
158<option value="1">spin 1.</option> 
159</modepick>
160
161<parm name="HiddenValley:kappa" default="1.">
162If the <ei>Fv</ei> have spin 1 then their production
163cross section depends on the presence of ananomalous magnetic dipole
164moment, i.e. of a <ei>kappa</ei> different from unity. For other spins
165this parameter is not used. 
166</parm>
167
168<flag name="HiddenValley:doKinMix" default="off">
169allow kinemtic mixing or not.
170</flag>
171
172<parm name="HiddenValley:kinMix" default="1.">
173strength of kinetic mixing.
174</parm>
175 
176<p/>
177You should set the <ei>Fv</ei> and <ei>qv</ei> masses appropriately,
178with the latter smaller than the former two to allow decays.
179When <b>U(1)</b> hadronization is switched on, you need to set the
180<ei>gammav</ei> mass and decay modes. For <b>SU(N)</b> hadronization
181the HV-meson masses should be set to match the <ei>qv</ei> ones.
182The simplest is to assume that <ei>m_qv</ei> defines a constituent
183mass, so that  <ei>m_HVmeson = 2 m_qv</ei>. The <ei>hvMesonDiag</ei> 
184decay modes also need to be set.
185
186<h3>Production processes</h3>
187 
188<flag name="HiddenValley:all" default="off">
189Common switch for the group of all hard Hidden Valley processes,
190as listed separately in the following.
191</flag>
192 
193<flag name="HiddenValley:gg2DvDvbar" default="off">
194Pair production <ei>g g -> Dv Dvbar</ei>.
195Code 4901.
196</flag>
197 
198<flag name="HiddenValley:gg2UvUvbar" default="off">
199Pair production <ei>g g -> Uv Uvbar</ei>.
200Code 4902.
201</flag>
202 
203<flag name="HiddenValley:gg2SvSvbar" default="off">
204Pair production <ei>g g -> Sv Svbar</ei>.
205Code 4903.
206</flag>
207 
208<flag name="HiddenValley:gg2CvCvbar" default="off">
209Pair production <ei>g g -> Cv Cvbar</ei>.
210Code 4904.
211</flag>
212 
213<flag name="HiddenValley:gg2BvBvbar" default="off">
214Pair production <ei>g g -> Bv Bvbar</ei>.
215Code 4905.
216</flag>
217 
218<flag name="HiddenValley:gg2TvTvbar" default="off">
219Pair production <ei>g g -> Tv Tvbar</ei>.
220Code 4906.
221</flag>
222 
223<flag name="HiddenValley:qqbar2DvDvbar" default="off">
224Pair production <ei>q qbar -> Dv Dvbar</ei> 
225via intermediate gluon.
226Code 4911.
227</flag>
228 
229<flag name="HiddenValley:qqbar2UvUvbar" default="off">
230Pair production <ei>q qbar -> Uv Uvbar</ei>
231via intermediate gluon.
232Code 4912.
233</flag>
234 
235<flag name="HiddenValley:qqbar2SvSvbar" default="off">
236Pair production <ei>q qbar -> Sv Svbar</ei> 
237via intermediate gluon.
238Code 4913.
239</flag>
240 
241<flag name="HiddenValley:qqbar2CvCvbar" default="off">
242Pair production <ei>q qbar -> Cv Cvbar</ei>
243via intermediate gluon.
244Code 4914.
245</flag>
246 
247<flag name="HiddenValley:qqbar2BvBvbar" default="off">
248Pair production <ei>q qbar -> Bv Bvbar</ei> 
249via intermediate gluon.
250Code 4915.
251</flag>
252 
253<flag name="HiddenValley:qqbar2TvTvbar" default="off">
254Pair production <ei>q qbar -> Tv Tvbar</ei>
255via intermediate gluon.
256Code 4916.
257</flag>
258 
259<flag name="HiddenValley:ffbar2DvDvbar" default="off">
260Pair production <ei>f fbar -> Dv Dvbar</ei> 
261via intermediate <ei>gamma*/Z^*</ei>.
262Code 4921.
263</flag>
264 
265<flag name="HiddenValley:ffbar2UvUvbar" default="off">
266Pair production <ei>f fbar -> Uv Uvbar</ei>
267via intermediate <ei>gamma*/Z^*</ei>.
268Code 4922.
269</flag>
270 
271<flag name="HiddenValley:ffbar2SvSvbar" default="off">
272Pair production <ei>f fbar -> Sv Svbar</ei> 
273via intermediate <ei>gamma*/Z^*</ei>.
274Code 4923.
275</flag>
276 
277<flag name="HiddenValley:ffbar2CvCvbar" default="off">
278Pair production <ei>f fbar -> Cv Cvbar</ei>
279via intermediate <ei>gamma*/Z^*</ei>.
280Code 4924.
281</flag>
282 
283<flag name="HiddenValley:ffbar2BvBvbar" default="off">
284Pair production <ei>f fbar -> Bv Bvbar</ei> 
285via intermediate <ei>gamma*/Z^*</ei>.
286Code 4925.
287</flag>
288 
289<flag name="HiddenValley:ffbar2TvTvbar" default="off">
290Pair production <ei>f fbar -> Tv Tvbar</ei>
291via intermediate <ei>gamma*/Z^*</ei>.
292Code 4926.
293</flag>
294 
295<flag name="HiddenValley:ffbar2EvEvbar" default="off">
296Pair production <ei>f fbar -> Ev Evbar</ei> 
297via intermediate <ei>gamma*/Z^*</ei>.
298Code 4931.
299</flag>
300 
301<flag name="HiddenValley:ffbar2nuEvnuEvbar" default="off">
302Pair production <ei>f fbar -> nuEv nuEvbar</ei>
303via intermediate <ei>gamma*/Z^*</ei>.
304Code 4932.
305</flag>
306   
307<flag name="HiddenValley:ffbar2MUvMUvbar" default="off">
308Pair production <ei>f fbar -> MUv MUvbar</ei> 
309via intermediate <ei>gamma*/Z^*</ei>.
310Code 4933.
311</flag>
312 
313<flag name="HiddenValley:ffbar2nuMUvnuMUvbar" default="off">
314Pair production <ei>f fbar -> nuMUv nuMUvbar</ei>
315via intermediate <ei>gamma*/Z^*</ei>.
316Code 4934.
317</flag>
318
319<flag name="HiddenValley:ffbar2TAUvTAUvbar" default="off">
320Pair production <ei>f fbar -> TAUv TAUvbar</ei> 
321via intermediate <ei>gamma*/Z^*</ei>.
322Code 4935.
323</flag>
324 
325<flag name="HiddenValley:ffbar2nuTAUvnuTAUvbar" default="off">
326Pair production <ei>f fbar -> nuTAUv nuTAUvbar</ei>
327via intermediate <ei>gamma*/Z^*</ei>.
328Code 4936.
329</flag>
330 
331<flag name="HiddenValley:ffbar2Zv" default="off">
332Production <ei>f fbar -> Zv</ei> where <ei>Zv</ei> is a generic
333resonace that couples both SM fermion pairs and a <ei>qv qvbar</ei>
334pair. Not part of the framework of the above processes, but as an
335alternative. Code 4941.
336</flag>
337
338<h3>Timelike showers</h3>
339
340One key point of this HV scenario is that radiation off the
341HV-charged particles is allowed. This is done by the standard
342final-state showering machinery. (HV particles are not produced
343in initial-state radiation.) All the (anti)particles <ei>Fv</ei>
344and <ei>qv</ei> have one (negative) unit of HV charge. That is,
345radiation closely mimics the one in QCD. Both QCD, QED and HV
346radiation are interleaved in one common sequence of decreasing
347emission <ei>pT</ei> scales. Each radiation kind defines a set of
348dipoles, usually spanned between a radiating parton and its recoil
349partner, such that the invariant mass of the pair is not changed
350when a radiation occurs. This need not follow from trivial colour
351assignments, but is often obvious. For instance,  in a decay
352<ei>Qv -> q + qv</ei> the QCD dipole is between the <ei>q</ei> and
353the hole after <ei>Qv</ei>, but <ei>qv</ei> becomes the recoiler
354should a radiation occur, while the role of <ei>q</ei> and <ei>qv</ei> 
355is reversed for HV radiation.
356
357<p/>This also includes matrix-element corrections for a number
358of decay processes, with colour, spin and mass effects included
359<ref>Nor01</ref>. They were calculated within the context of the
360particle content of the MSSM, however, which does not include spin 1
361particles with unit colour charge. In such cases spin 0 is assumed
362instead. By experience, the main effects come from mass and colour
363flow anyway, so this is not a bad approximation. (Furthermore the
364MSSM formulae allow for <ei>gamma_5</ei> factors from wave
365functions or vertices; these are even less important.)
366
367<p/>An emitted <ei>gv</ei> can branch in its turn,
368<ei>gv -> gv + gv</ei>. This radiation may affect momenta
369in the visible sector by recoil effect, but this is a minor
370effect relative to the primary emission of the <ei>gv</ei>.
371
372<flag name="HiddenValley:FSR" default="off">
373switch on final-state shower of <ei>gv</ei> or <ei>gammav</ei> 
374in a HV production process.
375</flag>
376
377<parm name="HiddenValley:alphaFSR" default="0.1" min="0.0">
378fixed alpha scale of <ei>gv/gammav</ei> emission; corresponds to
379<ei>alpha_strong</ei> of QCD or <ei>alpha_em</ei> of QED. For
380shower branchings such as <ei>Dv -> Dv + gv</ei> the coupling is
381multiplied by <ei>C_F = (N^2 - 1) / (2 * N)</ei> for an
382<b>SU(N)</b> group and for <ei>gv -> gv + gv</ei> by <ei>N</ei>.
383</parm>
384
385<parm name="HiddenValley:pTminFSR" default="0.4" min="0.1">
386lowest allowed <ei>pT</ei> of emission. Chosen with same default
387as in normal QCD showers.
388</parm>
389
390<h3>Hadronization</h3>
391
392By default the HV particles with no Standard Model couplings
393are not visible. Their presence can only be deduced by the
394observation of missing (transverse) momentum in the event as a
395whole. In the current implementation it is possible to simulate
396two different scenarios where activity can leak back from the
397hidden sector.
398
399<p/>
400The first possibility is relevant for the <b>U(1)</b> scenario.
401The <b>U(1)</b> group may be broken, so that the <ei>gammav</ei> 
402acquires a mass. Furthermore, the <ei>gammav</ei> may have a
403small mixing angle with the normal photon, or with some <ei>Z'</ei> 
404state or other mediator, and may thus decay back into Standard
405Model particles. The <ei>qv</ei> still escapes undetected;
406recall that there is no confinement in the <b>U(1)</b> option.
407
408<p/>
409In order to enable this machinery two commands are necessary,
410<code>4900022:m0 = ...</code> to set the  <ei>gammav</ei> mass
411to the desired value, and <code>4900022:onMode = on</code> to enable
412<ei>gammav</ei> decays. The default <ei>gammav</ei> decay
413table contains all Standard Model fermion-antifermion pairs,
414except top, with branching ratios in proportion to their coupling
415to the photon, whenever the production channel is allowed by
416kinematics. This table could easily be tailored to more specific
417models and needs. For instance, for a mass below 1 - 2 GeV, it
418would make sense to construct a table of exclusive hadronic decay
419channels rather than go the way via a hadronizing quark pair.
420
421<p/>
422The <ei>gammav</ei> are expected to decay so rapidly that no
423secondary vertex will be detectable. However, it is possible to
424set <code>4900022:tau0</code> to a finite lifetime (in mm) that
425will be used to create separated secondary vertices.
426
427<p/>
428The second, more interesting, possibility is relevant for the
429<b>SU(N)</b> scenarios. Here the gauge group remains unbroken, i.e.
430<ei>gv</ei> is massless, and the partons are confined. Like in
431QCD, the HV-partons can therefore be arranged in one single
432HV-colour-ordered chain, with a <ei>qv</ei> in one end, a
433<ei>qvbar</ei> in the other, and a varying number of
434<ei>gv</ei> in between. Each event will only contain (at most)
435one such string, (i) since perturbative branchings
436<ei>gv -> qv qvbar</ei> have been neglected, as is a reasonable
437approximation for QCD, and (ii) since HV-colours are assigned in the
438<ei>N_C -> infinity</ei> limit, just like in the handling of
439string fragmentation in QCD. The HV-string can then fragment by the
440nonperturbative creation of <ei>qv qvbar</ei> pairs, leading to
441the formation of HV-mesons along the string, each with its
442<ei>qv</ei> from one vertex and its <ei>qvbar</ei> from
443the neighbouring one.
444
445<p/>
446Since, so far, we have only assumed there to be one <ei>qv</ei>
447species, all produced <ei>qv qvbar</ei> HV-mesons are of the
448same flavour-diagonal species. Such an HV-meson can decay back to
449the normal sector, typically by whatever mediator particle allowed
450production in the first place. In this framework the full energy put
451into the HV sector will leak back to the normal one. To allow more
452flexibility, an ad hoc possibility of <ei>n_Flav</ei> different
453<ei>qv</ei> species is introduced. For now they are all assumed
454to have the same mass and other properties, but distinguished by
455some flavour-like property. Only the flavour-diagonal ones can decay,
456meaning that only a fraction (approximately) <ei>1/n_Flav</ei> of the
457HV-energy leaks back, while the rest remains in the hidden sector. 
458
459<p/>
460This scenario contains more parameters than the first one, for the
461<b>U(1)</b> group. They can be subdivided into two sets. One is
462related to particle properties, both for <ei>qv</ei> and for the
463two different kinds of HV-mesons, here labelled 4900111 and 4900113
464for the diagonal ones, and +-4900211 and +-4900213 for the
465off-diagonal ones. It makes sense to set the HV-meson masses to be
466twice the <ei>qv</ei> one, as in a simple constituent mass context.
467Furthermore the <ei>hvMesonDiag</ei> decay modes need to be set up.
468Like with the
469<ei>gammav</ei> in the <b>U(1)</b> option, the default decay table
470is based on the branching ratios of an off-shell photon.   
471
472<p/>
473The second set are fragmentation parameters that extend or replace
474the ones used in normal string fragmentation. Some of them are not
475encoded in the same way as normally, however, but rather scale as
476the <ei>qv</ei> mass is changed, so as to keep a sensible default
477behaviour. This does not mean that deviations from this set should
478not be explored, or that other scaling rules could be prefered
479within alternative scenarios. These parameters are as follows.
480
481<flag name="HiddenValley:fragment" default="off">
482switch on string fragmentation of the HV partonic system.
483Only relevant for <b>SU(N)</b> scenarios.
484</flag>
485 
486<modeopen name="HiddenValley:nFlav" default="1" min="1" max="8">
487number of different flavours assumed to exist in the hadronization
488description, leading to approximately <ei>1/n_Flav</ei> of the
489produced HV-mesons being flavour-diagonal and capable to decay back
490to Standard Model particles.
491</modeopen>
492 
493<parm name="HiddenValley:probVector" default="0.75" min="0." max="1.">
494fraction of HV-mesons that are assigned spin 1 (vector), with the
495remainder spin 0 (pseudoscalar). Assuming the <ei>qv</ei> have
496spin <ei>1/2</ei> and the mass splitting is small, spin counting
497predicts that <ei>3/4</ei> of the mesons should have spin 1.
498</modeopen>
499
500<parm name="HiddenValley:aLund" default="0.3" min="0.0" max="2.0">
501The <ei>a</ei> parameter of the Lund symmetric fragmentation function.
502See the normal <aloc href="Fragmentation">fragmentation
503function</aloc> description for the shape of this function.</parm>
504
505<parm name="HiddenValley:bmqv2" default="0.8" min="0.2" max="2.0">
506The <ei>b</ei> parameter of the Lund symmetric fragmentation function,
507multiplied by the square of the <ei>qv</ei> mass. This scaling ensures
508that the fragmentation function keeps the same shape when the
509<ei>qv</ei> mass is changed (neglecting transverse momenta).
510</parm>
511
512<parm name="HiddenValley:rFactqv" default="1.0" min="0.0" max="2.0">
513<ei>r_qv</ei>, i.e. the Bowler correction factor to the Lund symmetric
514fragmentation function, which could be made weaker or stronger than
515its natural value.
516</parm>
517
518<parm name="HiddenValley:sigmamqv" default="0.5" min="0.0">
519the width <ei>sigma</ei> of transverse momenta in the HV fragmentation
520process, normalized to the <ei>qv</ei> mass. This ensures that
521<ei>sigma</ei> scales proportionately to <ei>m_qv</ei>.
522See the normal <aloc href="Fragmentation">fragmentation
523<ei>pT</ei></aloc> description for conventions for factors of 2.
524</parm>
525 
526</chapter>
527
528<!-- Copyright (C) 2012 Torbjorn Sjostrand -->
529
Note: See TracBrowser for help on using the repository browser.